Class: 11

COMMON HALFYEARLY EXAMINATION - 2024 - 25

Time Allowed: 3.00 Hours]

MATHEMATICS

[Max. Marks: 90

Answer all the questions.

PART - I

20x1=20

Let A and B be subsets of the universal set \mathbb{N} , the set of natural numbers.

Then $A' \cup [(A \cap B) \cup B']$ is

(1)A

(2) A' (3) B

The value of $\log_3 11 \cdot \log_{11} 13 \cdot \log_{13} 15 \cdot \log_{15} 27 \cdot \log_{27} 81$ is

(2) 2

(3) 3

 $\cos 1^{\circ} + \cos 2^{\circ} + \cos 3^{\circ} + \dots + \cos 179^{\circ} =$

(1)0

(3) -1 (4) 89

4. There are 10 points in a plane and 4 of them are collinear. The number of straight lines joining any two points is

(1)45

(3) 39

(4) 38.

The coefficient of x^6 in $(2 + 2x)^{10}$ is

(1) ${}^{10}C_6$ (2) 2^6 (3) ${}^{10}C_62^6$ (4) ${}^{10}C_62^{10}$.

The image of the point (2,3) in the line y = -x is

(1) (-3,-2) (2) (-3,2) (3) (-2,-3) (4) (3,2)

Find a so that the sum and product of the roots of the equation $2x^2 + (a-3)x + 3a - 5 = 0$ are equal is

(2)2

(3) 0

(4) 4

8. If $f(\theta) = |\sin \theta| + |\cos \theta|, \theta \in R$, then $f(\theta)$ is in the interval

(1) [0,2] (2) $[1,\sqrt{2}]$ (3) [1,2] (4) [0,1]

9. The sum up to n terms of the series $\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} + \cdots$ is

(1) $\frac{n(n+1)}{2}$ (2) 2n(n+1) (3) $\frac{n(n+1)}{\sqrt{2}}$

If the points (x, -2), (5,2), (8,8) are collinear, then x is equal to

(3)1

11. If X and Y be two events such that $P(X/Y) = \frac{1}{2}$, $P(Y/X) = \frac{1}{3}$ and $P(X \cap Y) = \frac{1}{6}$, then $P(X \cup Y)$ is

 $(1)\frac{1}{2}$ $(2)\frac{2}{5}$ $(3)\frac{1}{6}$ $(4)\frac{2}{3}$

If $\int \frac{3^{\frac{1}{x}}}{x^2} dx = k\left(3^{\frac{1}{x}}\right) + c$, then the value of k is

(1) $\log 3$ (2) $-\log 3$ (3) $-\frac{1}{\log 3}$ (4) $\frac{1}{\log 3}$

KKI/11/Mat/1

(4) 3log2

13. If
$$f(x) = x + 2$$
, then $f'(f(x))$ at $x = 4$ is

(1) 8 (2) 1 (3) 4 (4) 5

14.
$$\lim_{x \to 0} \frac{8^x - 4^x - 2^x + 1^x}{x^2} =$$

(1) $2 \log 2$ (2) $2(\log 2)^2$ (3) $\log 2$

- 15. If $|\vec{a} + \vec{b}| = 60$, $|\vec{a} \vec{b}| = 40$ and $|\vec{b}| = 46$, then $|\vec{a}|$ is
- 16. If $A + I = \begin{bmatrix} 3 & -2 \\ 4 & 1 \end{bmatrix}$, then (A + I)(A I) is equal to
- 17. Condition for perpendicular to the pair of straight lines $ax^2 + 2hxy + by^2 = 0$ (1) a + b = 0 (2) a - b = 0 (3) $h^2 - ab = 0$ (4) $h^2 + ab = 0$
- 18. Two vectors are parallel in the same direction then

$$(1)\theta = 0$$
 $(2) \theta = \frac{\pi}{2}$ $(3)\theta = \frac{\pi}{3}$ $(4)\theta = \frac{\pi}{4}$

19. If
$$x = at^2$$
, $y = 2at$ then $\frac{dy}{dx} =$
(1)t (2) $1/t$ (3)-t (4)2t

Answer any seven questions. Question No:30 is compulsory

7x2=14

- 21. If $f: [-2,2] \to B$ is given by $f(x) = 2x^3$, then find B so that f is onto.
- 22. Compute: 102⁴
- 23. Compute: $log_9 27 log_{27} 9$.
- 24. Find a direction ratio and direction cosines of $3\hat{\imath} 4\hat{k}$.
- 25. Prove that $\sin 4A = 4 \sin A \cos^3 A 4 \cos A \sin^3 A$.
- 26. Differentiate: $y = (x^3 1)^{100}$.
- 27. Show that the lines are 3x + 2y + 9 = 0 and 12x + 8y 15 = 0 are parallel lines.
- 28. An integer is chosen at random from the first ten positive integers. Find the probability that it is

 (i) an even number (ii) multiple of three.
- 29. Compute $\lim_{x\to 1} \frac{x^3-1}{x-1}$.
- 30. Without expanding the determinant, prove that $\begin{vmatrix} s & a^2 & b^2 + c^2 \\ s & b^2 & c^2 + a^2 \\ s & c^2 & a^2 + b^2 \end{vmatrix} = 0,$

KK/11/Mat/2

Answer any seven questions. Question No:40 is compulsory

Prove that $\begin{vmatrix} 1 & x & x^2 \\ x & 1 & x \\ x & x & 1 \end{vmatrix} = \begin{vmatrix} 1 - 2x^2 & -x^2 & -x^2 \\ -x^2 & -1 & x^2 - 2x \\ -x^2 & x^2 - 2x & -1 \end{vmatrix}$.

7x3=21

- Find the area of a triangle having points A(1,0,0), B(0,1,0) and C(0,0,1) as its vertices.
- Find the principal solution of $\sin \theta = -\frac{\sqrt{3}}{2}$
- The probability of an event A occurring is 0.5 and B occurring is 0.3. If A and B are mutually exclusive events, then find the probability of
 - (i) $P(A \cup B)$
- (ii) $P(A \cap \bar{B})$ (iii) $P(\bar{A} \cap B)$
- 35. If $(n+1)C_8$: $^{(n-3)}P_4 = 57$: 16, find the value of n.
- If the 5th and 9th terms of a harmonic progression are $\frac{1}{19}$ and $\frac{1}{35}$, find the 12th term of the sequence.
- Differentiate: $y = \sqrt{x + \sqrt{x}}$
- Show that $4x^2 + 4xy + y^2 6x 3y 4 = 0$ represents a pair of parallel lines.
- 39. If $f'(x) = 3x^2 4x + 5$ and f(1) = 3, then find f(x).
- 40. A quadratic polynomial has one of its zeros $1 + \sqrt{5}$ and it satisfies p(1) = 2. Find the quadratic polynomial.

PART - IV

Answer all the questions.

7x5 = 35

A) Write the values of f at -3,5,2,-1,0 if A)

$$f(x) = \begin{cases} x^2 + x - 5, & \text{if } x \in (-\infty, 0) \\ x^2 + 3x - 2, & \text{if } x \in (3, \infty) \\ x^2, & \text{if } x \in (0, 2) \\ x^2 - 3, & \text{otherwise} \end{cases}$$

B) Show that
$$\begin{vmatrix} b+c & a-c & a-b \\ b-c & c+a & b-a \\ c-b & c-a & a+b \end{vmatrix} = 8abc.$$

A) Resolve the following rational expressions into partial fractions $\frac{x^2+x+1}{x^2-5x+6}$

B) Show that
$$\lim_{x \to \infty^+} x \left[\left[\frac{1}{x} \right] + \left[\frac{2}{x} \right] + \dots + \left[\frac{15}{x} \right] \right] = 120.$$

- A) If $A + B + C = \pi$, prove that $\cos^2 A + \cos^2 B + \cos^2 C = 1 2\cos A\cos B\cos C$.
 - B) Solve : $\frac{x+1}{x+3} < 3$.
- A) By the principle of mathematical induction, prove that, for $n \ge 1$

$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \left(\frac{n(n+1)}{2}\right)^{2}$$

KK/11/Mat/3

(OR)

- B) Integrate with respect to $x:\frac{2x-3}{x^2+4x-12}$
- 45. A) The coordinates of a moving point P are $\left(\frac{a}{2}(\csc\theta + \sin\theta), \frac{b}{2}(\csc\theta \sin\theta)\right)$, where θ is a variable parameter. Show that the equation of the locus P is $b^2x^2 a^2y^2 = a^2b^2$.

(OR)

- B) Prove that Section Formula Internal Division.
- A) Prove that $\sqrt{\frac{1-x}{1+x}}$ is approximately equal to $1-x+\frac{x^2}{2}$ when x is very small.

(OR)

- B) If $y = \frac{\sin^{-1} x}{\sqrt{1-x^2}}$, show that $(1-x^2)y_2 3xy_1 y = 0$.
- 47. A) A factory has two Machines-I and II. Machine-I produces 60% of items and Machine-II produces 40% of the items of the total output. Further 2% of the items produced by Machine-I are defective whereas 4% produced by Machine-II are defective. If an item is drawn at random what is the probability that it is defective?

MR

- B) Show that the points whose position vectors
- $4\hat{\imath} + 5\hat{\jmath} + \hat{k}$, $-\hat{\jmath} \hat{k}$, $3\hat{\imath} + 9\hat{\jmath} + 4\hat{k}$ and $-4\hat{\imath} + 4\hat{\jmath} + 4\hat{k}$ are coplanar.