www.Padasalai.Net www.Trb Tnpsc.Com Tenkasi District Tsi11M Common Half Yearly Exam, December - 2024 2,3-12-24 Standard 11 MATHS Marks: 90 Time: 3.00 Hours 20×1=20 Choose the best answer: I. 1) If two sets A and B have 17 elts in common, then the no. of elts common to the set A×B and B×A is b) 17² d) insufficient data a) 217 c) 34 2) Let $f: \mathbb{R} \to \mathbb{R}$ be denoted by f(x) = 1 - |x| then the range of f(x) is b) (1, ∞) d) (-∞, 1) a) R c) (−1, ∞) 3) The no. of roots of $(x+3)^4 + (x+5)^4 = 16$ is b) 2 d) 0 a) 4 c) 3 4) If 3 is the logarithm of 343, then the base is b) 7 d) 9 c) 6 a) 5 5) The max, value of $4 \sin^2 x + 3 \cos^2 x + \sin \frac{x}{2} + \cos \frac{x}{2}$ is a) $4 + \sqrt{2}$ b) $3 + \sqrt{2}$ c) 9 d) 4 6) If $\tan \alpha$ and $\tan \beta$ are the roots of $x^2 + ax + b = 0$ then $\frac{\sin(\alpha + \beta)}{\sin \alpha \sin \beta}$ is equal to b) $\frac{a}{h}$ d) - 1/2 a) ½ c) - ^a/_b 7) The no. of rectangles that a chessboard has. d) 6561 b) 9⁹ c) 1296 a) 81 8) The product of r consecutive +ve integers is divisible by d) r^r b) (r-1)! c) (r+1)! a) r! 9) If a, 8, b are in A.P., a, 4, b are in G.P. and if a, x, b are in H.P. then x is d) 16 b) 1 c) 4 a) 2 10) Straight line joining the pts (2, 3) and (-1, 4) passing through the pt (α, β) if b) $3\alpha + \beta = 9$ c) $\alpha + 3\beta = 11$ d) $3\alpha + \beta = 11$ a) α +2 β = 7 11) If one of the lines given by $6x^2-xy+4cy^2 = 0$ is 3x+4y = 0 then c equals to d) 1 b) -1 c) 3 a) -3 0 a -b 12) The value of the determinant of A = $\begin{bmatrix} -a & 0 & c \\ b & -c & 0 \end{bmatrix}$ is d) $a^2+b^2+c^2$ c) 0 a) -2abc b) abc 13) If $A = \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix}$ and $B = \begin{pmatrix} a & 1 \\ b & -1 \end{pmatrix}$ and $(A+B)^2 = A^2 + B^2$ then the value of **a** and **b** a) a = 4, b = 1 b) a = 1, b = 4 c) a = 0, b = 4 d) a = 2, b = 4 14) If $\lambda \vec{i} + 2\lambda \vec{j} + 2\lambda \vec{k}$ is a unit vector then the value of λ is b) $\frac{1}{4}$ c) $\frac{1}{9}$ d) 1/2 a) $\frac{1}{3}$ 15) If the projection of $5\vec{i} - \vec{j} - 3\vec{k}$ on the vector $\vec{i} + 3\vec{j} + \lambda\vec{k}$ is same as the projection of $\vec{i} + 3\vec{j} + \lambda \vec{k}$ on $5\vec{i} - \vec{j} - \vec{k}$ then λ is equal to c) ±5 d) ±1 a) ±4. b) ±3

Kindly Send Me Your Key Answer to Our email id - Padasalai.net@gmail.com

www.Padasalai.Net

Tsi11M

Í.

16)
$$\lim_{x \to 0} \frac{8^{x} - 4^{x} - 2^{x} + 1^{x}}{x^{2}} =$$

a) 2 log 2 b) 2 (log2)² c) log 2 d) 3 log 2
17) The differential co-efficient of $\log_{10}x$ with respect to $\log_{x}10$ is
a) 1 b) $-(\log_{10}x)^{2}$ c) $(\log_{x}10)^{2}$ d) $\frac{x^{2}}{100}$
18) $\frac{a^{x}}{dx}(a^{x}) =$
a) $a^{x} \log a$ b) $\frac{a^{x}}{\log a}$ c) $\frac{\log a}{a^{x}}$ d) $\frac{1}{a^{x} \log a}$
19) $e^{-4x} \cos x dx$ is
a) $\frac{e^{-4x}}{17} (4 \cos x - \sin x) + c$ b) $\frac{e^{-4x}}{17} (-4 \cos x + \sin x) + c$
c) $\frac{e^{-4x}}{17} (4 \cos x - \sin x) + c$ d) $\frac{e^{-4x}}{17} (-4 \cos x - \sin x) + c$
20) $\sqrt{x^{2} + a^{2}} dx =$
a) $\frac{x}{2} \sqrt{x^{2} + a^{2}} + \frac{a^{2}}{2} \log(x + \sqrt{x^{2} + a^{2}}) + c$ b) $\frac{x}{2} \sqrt{x^{2} - a^{2}} + \frac{a^{2}}{2} \log(x + \sqrt{x^{2} - a^{2}}) + c$
c) $\frac{x}{2} \sqrt{x^{2} + a^{2}} - \frac{a^{2}}{2} \log(x + \sqrt{x^{2} + a^{2}}) + c$ d) $\frac{x}{2} \sqrt{x^{2} - a^{2}} - \frac{a^{2}}{2} \log(x + \sqrt{x^{2} - a^{2}}) + c$
Answer any seven questions: Q.No. 30 is compulsory: $2 \times 7 = 14$
21) If $n[P(A)] = 1024$, $n(A \cup B) = 15$ and $n[P(B)] = 32$ then find $n(A \cap B)$
22) If α and β are the roots of the quadratic equation $x^{2} + \sqrt{2} + x^{3} = 0$ form a quadratic poly with zeroes $\frac{1}{\alpha}$, $\frac{1}{\beta}$
23) Prove that $\frac{\tan \theta + \sec \theta - 1}{\tan \theta - \sec \theta + 1} = \frac{1 + \sin \theta}{\cos \theta}$
24) Prove that $10c_{2} + 2x10c_{3} + 10c_{4} = 12c_{4}$

25) If 5th and 9th terms of a harmonic progression are $\frac{1}{19}$ and $\frac{1}{35}$ find the 12th term of the sequence.

26) Show that the pts $0, \frac{-3}{2}$, (1, -1) and $2, -\frac{1}{2}$ are collinear.

27) Evaluate $e^{-5x} \sin 3x \, dx$

- 28) If G is the centroid of the $\triangle ABC$, Prove that $\overline{GA} + \overline{GB} + \overline{GC} = \overline{0}$
- 29) Differntiate: $y = e^{\sin x}$

Kindly Send Me Your Key Answer to Our email id - Padasalai.net@gmail.com

5×7=35

30) If A = $\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & -1 \end{array}$ show that A² is a unit matrix.

III. Answer any seven questions: Q.No. 40 is compulsory: 3×7=21

3

- 31) Find the range of the fun $f(x) = \frac{1}{1 3\cos x}$
- 32) Evaluate: $(256)^{-\frac{V}{2}}$
- 33) Find the values of other trigonometric fun of $\cos \theta = \frac{2}{3}$, θ lies in I quadrant.
- 34) If the letters of word MATHEMATICS are permitted in all possible ways and the strings thus formed are arranged in the dictionary order then find the rank of the word 'MATHEMATICS'
- 35) Compute the first n terms of the series 8+88+888+...

36) Prove that $\begin{vmatrix} 1+a & 1 & 1\\ 1 & 1+b & 1\\ 1 & 1 & 1+c \end{vmatrix} = abc \quad 1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$

If a, b are unit vectors and θ is the angle between them show that

(i)
$$\sin \frac{\theta}{2} = \frac{1}{2} |\mathbf{a} - \mathbf{b}|$$
 (ii) $\cos \frac{\theta}{2} = \frac{1}{2} |\mathbf{a} + \mathbf{b}|$

- 38) Evaluate: $\frac{\text{Lim}}{\mathbf{x} \to 0} (1 + \sin \mathbf{x})^{2 \csc \mathbf{x}}$
- 39) Differentiate: $y = \sqrt{x + \sqrt{x}}$
- 40) The slope of one of the straight lines ax²+2hxy+bx² = 0 is twice of the other show that 8h² = 9ab

IV. Answer all the questions:

41) From the curve y = x draw (i) y = -x (ii) y = 2x (iii) y = x+1 (iv) y = $\frac{1}{2}x+1$

(OR)

Evaluate: $\frac{3x+5}{x^2+4x+7} dx$

42) Resolve the rational expression $\frac{x+12}{(x+1)^2(x-2)}$ into partial fraction.

(OR)

Prove that $\frac{\text{Lim}}{\theta \to 0} \frac{\sin \theta}{\theta} = 1$

43) If A+B+C = $\frac{\pi}{2}$, then prove that sin 2A + sin 2B + sin 2C = 4 cos A cos B cos C

(OR)

Prove that $\sqrt[3]{x^3 + 7} - \sqrt[3]{x^3 + 4} \approx \frac{1}{x^2}$ when x is large.

Kindly Send Me Your Key Answer to Our email id - Padasalai.net@gmail.com

www.Trb Tnpsc.Com

www.Padasalai.Net

Tsi11M

44) By the principle of mathematical induction prove that for all integers, $n \ge 1$

$$1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\frac{n(n+1)(2n+1)}{6}$$

(OR)

3 5

Express the matrix A =

-6 $\begin{pmatrix} 8 & 3 \\ -4 & 6 & 5 \\ \end{pmatrix}$ as the sum of a symmetric and skew-

symmetric matrices.

45) The equation $\lambda x^2 - 10xy + 12y^2 + 5x - 16y - 3 = 0$ represent a pair of straight lines find (i) the value of λ and the separate equation of the lines (ii) point of intersection of the lines (iii) angle between the lines.

(OR)

Show that the points whose position vectors $4\vec{i} + 5\vec{j} + \vec{k}$, $-\vec{j} - \vec{k}$, $3\vec{i} + 9\vec{j} + 4\vec{k}$ and $-4\vec{i} + 4\vec{j} + 4\vec{k}$ are coplanar.

b+caa² $\begin{vmatrix} c + a & b & b^2 \\ a + b & c & c^2 \end{vmatrix} = (a+b+c) (a-b) (b-c) (c-a)$ 46) Using factor theorem show that

(OR) Evaluate: $\frac{1}{\sqrt{1+x} + \sqrt{x}} dx$ Soi Ram Matsiclitse Vallam - 622809 47) If $y = \frac{\sin^{-1}x}{\sqrt{1-x^{2}}}$, showthat $(1-x^{2})y_{2}-3xy_{1}-y = 0$ Tentran Dist

(OR)

Solve: $\sqrt{3} \tan^2 \theta + (\sqrt{3} - 1) \tan \theta - 1 = 0$