COMMON HALF YEARLY EXAMINATION - 2024

*		Standard XI	Reg.No.
		ATHEMATICS	
Time: 3.00 hrs I. Choose the col	roct answer:	Part - A	Marks: 90 20 x 1 = 20
1. The number of co	onstant functions	s from a set containing n	n elements to a set containing
n element is a) mn	b) m	c) n	d) m + n
2. The value of log _a a) 2 3. cos 1° + cos 2°	b) 1	c) 3	d) 4
a) 0	b) 1 $R \rightarrow R$ is defined on	c) -1 I by $f(x) = \sin x + \cos x$	d) 89
c) an even function d) both odd function of the following	tion ction and even fu	ınction	
a) $\sin\theta = \frac{-3}{4}$	b) $\cos \theta = -$	1 c) $\tan \theta = 25$	d) $\sec \theta = \frac{1}{4}$
	consecutive pos	itive integers is divisible	d) r!
a) 101 8. The coefficient o	b) 81	c) /1	d) 61
a) $\frac{2}{3}$	b) $\frac{3}{2}$	c) $\frac{-4}{15}$	d) 4/15
9. If the point (8, -5) lies on the locu	$\frac{x^2}{16} - \frac{y^2}{25} = k$, then the	value of k is
a) 00. If the two straight the value of k is	b) 1 lines x + (2k – 7)	c) 2 y + 3 = 0 and 3kx + 9y –	d) 3 5 = 0 are perpendicular, then
a) k = 3		c) $k = \frac{2}{3}$	하기 가지 않는 아이들은 아이들은 그리고 있다면 하는데 없었다.
1. The value of x, fo	r which the matr	ix $A = \begin{bmatrix} e^{x-2} & e^{7+x} \\ e^{2+x} & e^{2x+3} \end{bmatrix}$	is singular
a) 9	b) 8	c) 7	d) 6
2. If $A = \begin{bmatrix} -1 & 2 & 4 \\ 3 & 1 & 0 \\ -2 & 4 & 2 \end{bmatrix}$	and $B = \begin{vmatrix} -2 & 4 \\ 6 & 2 \\ -2 & 4 \end{vmatrix}$	2 0 8, then B is given by c) B = -A	
a) B=4A	b) B = -4A	c) B = -A	d) B = 6A

XI Maths

13.	If $\lambda \hat{i} + 2\lambda \hat{j} + 2\lambda \hat{k}$ is a unit vector the	ien the value of λ is			
	a) $\frac{1}{3}$ b) $\frac{1}{4}$	c) $\frac{1}{9}$	d) $\frac{1}{2}$		
14.	If $\vec{a}, \vec{b}, \vec{c}$ are the position vectors o true?	f three collinear points then	which of the following i		
	a) $\vec{a} = \vec{b} + \vec{c}$ b) $2\vec{a} = \vec{b} + \vec{c}$	c) $\vec{b} = \vec{c} + \vec{a}$	d) $4\bar{a} + \bar{b} + \bar{c} = \bar{0}$		
15.	The value of $x \to 0$ $\frac{\sin x}{\sqrt{x^2}}$ is				
16	a) 1 b) -1	c) 0 d) lir	mit does not exist		
	If $f(x) = x + 2$ then $f'(f(x))$ at $x = 4$ a) 8 b) 1 If $f(x)dx = g(x) + c$ then $f(x)g'(x)$	c) 4	d) 5		
	a) $\int (f(x))^2 dx$ b) $\int f(x)g(x)dx$		d) $\int (g(x))^2 dx$		
18.	∫e ^{-4x} cosx dx is				
	a) $\frac{e^{-4x}}{17} \left(4\cos x - \sin x\right) + c$	b) $\frac{e^{-4x}}{17} \left(-4\cos x + \frac{1}{2}\right)$	sinx)+c		
	c) $\frac{e^{-4x}}{17} (4\cos x + \sin x) + c$	d) $\frac{e^{-4x}}{17} \left(-4\cos x - \frac{1}{2} \right)$	sinx)+c		
19. A number is selected from the set {1,2,3,, 20}. The probability that the selection number is divisible by 3 or 4 is					
	a) $\frac{2}{5}$ b) $\frac{1}{8}$	c) $\frac{1}{2}$	d) $\frac{2}{3}$		
20.	If two events A and B are indepen P(B) is	dent such that P(A) = 0.35	and $P(A \cup B) = 0.6$ ther		
	a) $\frac{5}{13}$ b) $\frac{1}{13}$	c) $\frac{4}{13}$	d) 7 13		
II.	Answer any 7 questions. (Q.N ₀ ,	Part - B 30 is compulsory)	7 x 2 = 14		
21.	. If a and b are the roots of the equation $x^2 - px + q = 0$, find the value of $\frac{1}{a} + \frac{1}{b}$				
22	 If A = {1,2,3,4} and B = {3,4,5,6}, find n[(A ∪ B) x (A ∩ B) x (A Δ B)] In a circle of diameter 40 cm, a chord is of length 20 cm. Find the length of the mirror arc of the chord. 				
24.	Evaluate: $\frac{.n!}{-1/2-3}$ when $n=6$	1.0			

25. Find the equation of the line passing through the points (1,1) and (-2,3)

26. If G is the centroid of a triangle ABC, prove that $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{O}$

XI Maths

27. Compute:
$$\lim_{x\to -2} (x^3 - 3x + 6)(-x^2 + 15)$$

- 28. Evaluate: $\int (4x+5)^6 dx$
- 29. If two coins are tossed simultaneously, then find the probability of getting one head and one tail.
- 30. Differentiate w.r. to 'x' if $y = x^3 + e^x + \sin x + \log x$

III. Answer any 7 questions. (Q.No.40 is compulsory)

 $7 \times 3 = 21$

- 31. Find the range of the function $\frac{1}{2\cos x-1}$
- 32. To secure A grade one must obtain an average of 90 marks or more in 5 subjects each of maximum 100 marks. If one scored 84, 87, 95, 91 in first four subjects, what is the minimum mark one scored in the fifth subject to get A grade in the course?
- 33. Prove that $\sin(45^{\circ} + \theta) \sin(45^{\circ} \theta) = \sqrt{2} \sin \theta$
- 34. If $\frac{\log x}{y-z} = \frac{\log y}{z-x} = \frac{\log z}{x-y}$, then prove that xyz = 1
- 35. In an examination a student has to answer 5 questions. Out of 9 questions in which 2 are compulsory. In how many ways a student can answer the questions?
- 36. Find the equation of the line passing through the point of intersection lines 4x y + 3 = 0and 5x + 2y + 7 = 0, through the point (-1,2)
- 37. Show that $\begin{vmatrix} 0 & c & b^2 + c^2 & ab & ac \\ c & 0 & a & = & ab & c^2 + a^2 & bc \\ b & a & 0 & ac & bc & a^2 + b^2 \end{vmatrix}$
- 38. Evaluate: Lim √x+4-3 x-5 x-5
- 39. Find y', y' and y'' if $y = x^3 6x^2 5x + 3$
- 40. If f'(x) = 3x + 5 and f(2) = 20, find f(x)

 $7 \times 5 = 35$

- IV. Answer all the questions. 41. a) If A and B are two sets so that $n(B-A) = 2n(A-B) = 4n(A \cap B)$ and if $n(A \cup B) = 14$ then find n[P(A)]. (OR)
 - b) If ABCD is a quadrilateral and E and F are the midpoints of AC and BD respectively, then prove that $\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{CB} + \overrightarrow{CD} = 4 \overrightarrow{EF}$
- 42. a) Resolve into partial fractions: $\frac{x+1}{x^2(x-1)}$ (OR)
 - b) Prove that $\sqrt[3]{x^3+7} \sqrt[3]{x^3+4}$ is approximately equal to $\frac{1}{x^2}$ when x is large.

4

XI Maths

43. a) By the principle of mathematical induction, prove that for all integers $n \ge 1$,

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}$$
(OR)

- b) If $y = e^{\tan^{-1} x}$, show that $(1 + x^2)y'' + (2x 1)y' = 0$
- 44. a) Find the values of other five trigonometric functions for $\cos \theta = -\frac{1}{2}$, θ lies in the III quadrant.

(OR)

- b) Show that $\begin{vmatrix} x & a & a \\ a & x & a \\ a & a & x \end{vmatrix} = (x-a)^2 (x+2a)$ by using factor theorem.
- 45. a) Show that the equation $9x^2 24xy + 16y^2 12x + 16y 12 = 0$ represents a pair of parallel lines. Find the distance between them.

b) State and prove a Napier's formula.

- 46. a) A function f is defined as follows: $f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } 0 \le x < 1 \\ -x^2 + 4x 2 & \text{for } 1 \le x < 3 \\ 4 x & \text{for } x \ge 3 \end{cases}$ is the function continuous? (OR)
 - b) Find all the values of x for which $\frac{x^3(x-1)}{x-2} > 0$
- 47. a) Evaluate: $\int \frac{3x+5}{x^2+4x+7} dx$
- (OR)
 A factory has two machines-I and II. Machine-I produces 60% of items and machine-II produces 40% of the items of the total output. Further 2% of the items produced by machine-I are defective where as 4% produced by a machine-II are defective. If an item is drawn at random, what is the probability that it is defective?