masses of particles

c)

HALF YEARLY EXAMINATION -2024

CLASS:11

PHYSICS

Reg.No 1/ B ib

Time : 3.00 Hours				1111	TITISIOS			MARKS: 70		
	, , , , , , , , , , , , , , , , , , ,	•			RT – I			$15 \times 1 = 15$		
N	lote:	(i) Answer all (ii) Choose the code and the c	most a	ppropriate ansv	ver from tl	ne given four alte	rnatives :	and write the option		
1.	If the	e masses of the Earth remain the same	and Su	ın suddenly doub		itational force bet increase 4 times	ween ther d)	n will decrease 2 times		
2.	Whie					ot have same dimensional formula? Angular momentum and Planck's constant Impulse and linear momentum				
3.		und wave whose freq ater and air is 4.30	uency is	5000 Hz travels i	n air and th	en hits the water su 5.30	rface. The	e ratio of its wavelengths		
4.		ace tension of water 0°C			c)	100°C	d)	374°C		
5.		ch one of the followin			not be repre	sented by a scalar? Momentum	d)	Magnitude of acceleration		
6.	A hoperica)	ollow sphere is filled od of oscillation will first increase and the increase continuou	nen dec		b) d)	first decrease and then increase decrease continuously				
7.	The a)	ratio of the distance 1:3:5:7:9	travelle b)	ed in successive e 2:4:6:8:10	qual interv	als of time by a bo 1:4:7:10:13	dy falling d)	from rest are 1:4:9:16:25		
8.	If th	e temperature and pr remains same	ressure (of a gas is double doubled	d the mean c)	free path of the g	as molecu d)	iles quadrapoled		
9.	a)	kinetic energy of a bo 4.5 J	b)	2.5 J	(c)	5.5 J	ਹੈ)	3.5 J		
10.	the l	oop?				· <u> </u>	oop of radi	us R so that it can complete		
	a)	$\sqrt{2gR}$	b)	√3gR	c)	√5gR	. ,	\sqrt{gR}		
11.	Whe	en a uniform rod is h mass	eated, v b)	which of the follo weight	wing quant c)	center of mass	increase d)	moment of inertia		
12.	The	phase difference bet	ween d	isplacement and	acceleration	n of a particle in a	simple ha	armonic motion is		
	a)	$\frac{3\pi}{2}$	b)	$\frac{\pi}{2}$	0)	zero	d)	$\tilde{\beta}_{i}\pi$		
13.	Force a) c)	te acting on the parti always zero always non zero	cle mov	ing with constan	t speed is b) d)	need not be zero cannot be conclu	ide d			
14.		stars A and B radia ace temperature of A			e waveleng	gth of 360 nm and 4:3	480 nm r d)	espectively. The ratio of t		
15.		center of mass of a sposition of particle	system							

d)

force acting on particle

11-Physics-Page-1

Answer any six questions. Question no. 18 is compulsory:

- State Newton's first law.
- 17. Define torque.
- 18. Suppose an object is thrown with initial speed 10 m s⁻¹ at an angle $\pi/4$ with the horizontal, what is the range covered?
- 19. What is Reynolds number? Give its significance.
- 20. Why is the energy of a satellite negative?
- 21. What are conservative forces?
- 22. 500 g of water is heated from 30°C to 60°C. Ignoring the slight expansion of water, calculate the change in internal energy of the water? (specific heat of water 4184 J kg⁻¹ K⁻¹)
- 23. Write the expression for rms speed, average speed, and most probable speed of a gas molecule.
- 24. What is meant by maintained oscillation? Give an example.

PART - III

 $6 \times 3 = 18$

Answer any six questions. Question no. 30 is compulsory:

- 25. List the rules for determining significant figures.
- 26. What are the various types of friction? Suggest a few methods to reduce friction.
- 27. A force of $(4\hat{i} 3\hat{j} + 5\hat{k})$ N is applied at a point whose position vector is $(7\hat{i} + 4\hat{j} 2\hat{k})$ m. Find the torque of force about the origin.
- 28. Write the characteristics of stationary waves.
- 29. Draw PV diagram for (i) isothermal process (ii) isobaric process.
- Water rises in a capillary tube to a height of 2.0 cm. How much will the water rise through another capillary tube whose radius is one-third of the first tube?
- 31. State Kepler's three laws.
- 32. Derive the expression for centripetal acceleration.
- 33. Compare elastic collision and inelastic collision.

PART - IV

 $5 \times 5 = 25$

Answer all the questions:

b)

- 34. a) Explain variation of g with altitude.
 - Derive the ratio of molar specific heat capacities of mono atomic, diatomic and triatomic molecules.
- 35. a) Assuming that the frequency γ of a vibrating string may depend upon i) applied force (F) ii) length (l) iii) mass per unit length (m), prove that $\gamma \propto \frac{1}{l} \sqrt{\frac{F}{m}}$ using dimensional analysis.

(or)

(or)

- b) Derive the expression for terminal velocity of a sphere moving in a high viscous fluid using Stoke's formula
- 36. a) State and prove perpendicular axes theorem.

(or)

- b) How will you determine the velocity of sound using resonance air column apparatus?
- 37. a) Explain the heat engine and obtain its efficiency.

(or)

- b) Explain in detail the triangle law of vector addition:
- 38. a) Discuss the energy in simple harmonic motion.

(or)

b) Explain the motion of blocks connected by a string in horizontal motion.