DIRECTORATE OF GOVERNMENT EXAMINATION, CHENNAI-6 CHENGALPATTU DISTRICT HALFYEARLY EXAMINATION. DEC-2024 BIOLOGY

XII

PART- I. BIO- BOTANY – KEY ANSWER

Max. Marks: 35

SECTION - 1

Note: - Answer all the questions.

8 X 1 = 8

Q. No	Option	Answer
1.BB	В	Embryo sac
2.B.IN	D	Acclimatization.
3.BB	С	The Law of Segregation
4.BB	В	Callus undergoes differentiation and produces somatic embryoids
5. BB	С	1-(ii), 2-(iii), 3-(i), 4-(iv)
6. BB	D	Confer resistance to antibiotics
7. BB	D	Pusa Komal - Brassica
8. B.IN	Α	Predation

	SECTION – 2			
Note :- Answer any 4 questions:				
Q. No	Answers	Ma	rks	
9.	Emasculation:			
B.IN		2	2	
	Process of removal of anthers to prevent self-pollination before dehiscence of			
	anther			
10.	Dobson unit:			
B.IN		1	2	
	Unit of measurement for total ozone	1		
	One dobson unit is 0.001 atm. Cm.			
11.	Significance of Ploidy:			
B.IN	(any two)			
	Many polyploids are more vigorous and more adaptable than diploids.			
	Many ornamental plants are autotetraploids and have larger flowers and			
	longer flowering duration than diploids.		2	
	Autopolyploids usually have higher in fresh weight due to more water content.	2 X 1		
	Aneuploids are useful to determine the phenotypic effects of loss or gain of			
	different chromosomes.			
	Many angiosperms are allopolyploids and they play a role in the evolution of			
	plants.			
12.	Productivity of profundal zone:			
BB		1	2	
	Deeper region of a pond below the limnetic zone.	1		
	Productivity of this zone will be low due to less penetration of light.			

.3. E INI	Differe	Differentiate secretary and invasive tapetum:					
		Secreto	ry tapetum	Invasive tapetum	1	ן ור	
	1	The tap	etum retains the orig	inal The cells lose the	ir inner tangential and		
		position	n and cellular integrity	radial walls		1	
		Collular	intogrity and nourish	os Protoplast of all t	anotal colls coaloscos		2
	2	the dev	voloning microsporos	to form a norinlar	apetal tells toalestes	1	
		the dev	eloping microspores.				
4. P	Chemic	als used	in gene transfer:			2114	
D	\succ	i). Polyet	hylene glycol (PEG)			28172	5
	\succ	ii). Dextr	an sulphate				
	Noto	· 10000	SEC	TION - 3 No. 19 is compulsory		272-0	
5.	Import	ance of C	rossing Over:		(any three)	572-9	
.IN					(any three)		
	\succ	Exchange	e of segments leads to	new gene combinations	which plays an		
		importar	nt role in evolution.				
	\succ	Studies o	of crossing over reveal	that genes are arranged	linearly on the	3 X 1	3
		chromos	omes.				
	\succ	~	mane are made baced	on the frequency of crea	cing over		
	í.	Genetici	haps are made based	on the nequency of clos	sing over.		
		Crossing	over helps to underst	and the nature and mech	nanism of gene action.		
		Genetic i Crossing If a usefu	over helps to underst I new combination is	and the nature and mech formed it can be used in	nanism of gene action. plant breeding.		
6	Variou	Genetic i Crossing If a usefu	over helps to underst Il new combination is	and the nature and mech formed it can be used in	plant breeding.		
6. B	> > Various	Genetic i Crossing If a usefu	over helps to underst il new combination is f blotting techniques:	and the nature and mech formed it can be used in	plant breeding.		
6. B	Various	Genetic i Crossing If a usefu	over helps to underst al new combination is f blotting techniques: Southern blotting	and the nature and mech formed it can be used in Northern blotting	anism of gene action. plant breeding. (any three) Western blotting		
6. B	Various Name	Genetic i Crossing If a usefu	f blotting techniques: Southern name of	A northern blotting Northern a misnomer	(any three) Western blotting Western a		
6. B	Various	Genetic i Crossing If a usefu	over helps to underst al new combination is f blotting techniques: Southern blotting Southern name of the inventor	and the nature and mech formed it can be used in Northern blotting Northern a misnomer	(any three) Western blotting Western a misnomer		
б. В	Various Name Separa	Genetic i Crossing If a usefu s types of ation of	over helps to underst I new combination is f blotting techniques: Southern blotting Southern name of the inventor DNA	A solution of the network of the solution of the nature and mech formed it can be used in Northern blotting Northern a misnomer RNA	 (any three) Western blotting Western a misnomer Protein 	3 X 1	3
6. 8B	Various Name Separa Denat	Genetic i Crossing If a usefu s types of ation of uration	over helps to underst al new combination is f blotting techniques: Southern blotting Southern name of the inventor DNA Needed	Northern blotting Northern a misnomer RNA Not Needed	 (any three) Western blotting Western a misnomer Protein Needed 	3 X 1	3
.6. 8B	Various Name Separa Denat Memb	ation of uration	Naps are made based over helps to underst I new combination is f blotting techniques: Southern blotting Southern name of the inventor DNA Needed Nitrocellulose	Northern blotting Northern a misnomer RNA Not Needed Amino	 Anism of gene action. plant breeding. (any three) Western blotting Western a misnomer Protein Needed Nitrocellulose 	3 X 1	3
6. B	Various Name Separa Denat Memb	Genetic i Crossing If a usefu s types of ation of uration orane	Naps are made based over helps to underst I new combination is f blotting techniques: Southern blotting Southern name of the inventor DNA Needed Nitrocellulose	Northern blotting Northern a misnomer RNA Not Needed Amino benzyloxymethyl	 (any three) Western blotting Western a misnomer Protein Needed Nitrocellulose 	3 X 1	3
б. В	Various Various Name Separa Denat Memb	ation of uration dization	Naps are made based over helps to underst I new combination is f blotting techniques: Southern blotting Southern name of the inventor DNA Needed Nitrocellulose DNA – DNA	Northern blotting Northern blotting Northern a misnomer RNA Not Needed Amino benzyloxymethyl RNA – DNA	Anism of gene action. plant breeding. (any three) Western blotting Western a misnomer Protein Needed Nitrocellulose Protein - antibody	3 X 1	3
.6. 3B	Various Various Name Separa Denat Memb Hybric Visual	ation of uration dization izing	Naps are made based over helps to underst I new combination is f blotting techniques: Southern blotting Southern name of the inventor DNA Needed Nitrocellulose DNA – DNA Autoradiogram	Northern blotting Northern blotting Northern a misnomer RNA Not Needed Amino benzyloxymethyl RNA – DNA Autoradiogram	 Anism of gene action. plant breeding. (any three) Western blotting Western a misnomer Protein Needed Nitrocellulose Protein - antibody Dark room 	3 X 1	3
.6. 3B .7.	Various Various Name Separa Denat Memb Hybric Visual	denetic i Crossing If a usefu s types of ation of uration orane dization izing	Naps are made based over helps to underst I new combination is f blotting techniques: Southern blotting Southern name of the inventor DNA Needed Nitrocellulose DNA – DNA Autoradiogram	Northern blotting Northern blotting Northern a misnomer RNA Not Needed Amino benzyloxymethyl RNA – DNA Autoradiogram	Anism of gene action. plant breeding. (any three) Western blotting Western a misnomer Protein Needed Nitrocellulose Protein - antibody Dark room (any six)	3 X 1	3
.6. 3B 7.	Various Various Name Separa Denat Memb Hybric Visual	denetic i Crossing If a usefu s types of ation of uration orane dization izing phic Info	Naps are made based over helps to underst I new combination is f blotting techniques: Southern blotting Southern name of the inventor DNA Needed Nitrocellulose DNA – DNA Autoradiogram	Northern blotting Northern blotting Northern a misnomer RNA Not Needed Amino benzyloxymethyl RNA – DNA Autoradiogram	Anism of gene action. plant breeding. (any three) Western blotting Western a misnomer Protein Needed Nitrocellulose Protein - antibody Dark room (any six)	3 X 1	3
6. B 7.	Various Various Name Separa Denat Memb Hybric Visual Geogra	Genetic i Crossing If a usefu s types of ation of uration orane dization izing phic Info Environn	Naps are made based over helps to underst I new combination is f blotting techniques: Southern blotting Southern name of the inventor DNA Needed Nitrocellulose DNA – DNA Autoradiogram	Northern blotting Northern blotting Northern a misnomer RNA Not Needed Amino benzyloxymethyl RNA – DNA Autoradiogram	Anism of gene action. plant breeding. (any three) Western blotting Western a misnomer Protein Needed Nitrocellulose Protein - antibody Dark room (any six)	3 X 1	3
6. B 7. .IN	Various Various Name Separa Denat Memb Visual Geogra	denetic i Crossing If a usefu s types of ation of uration orane dization izing phic Info Environn Disaster	Naps are made based over helps to underst I new combination is f blotting techniques: Southern blotting Southern name of the inventor DNA Needed Nitrocellulose DNA – DNA Autoradiogram antion System (GIS) mental impact assess management	Northern blotting Northern blotting Northern a misnomer RNA Not Needed Amino benzyloxymethyl RNA – DNA Autoradiogram	Anism of gene action. plant breeding. (any three) Western blotting Western a misnomer Protein Needed Nitrocellulose Protein - antibody Dark room (any six)	3 X 1	3
6. B 7. 7.	Various Various Name Separa Denat Memb Hybric Visual Geogra	Genetic i Crossing If a usefu s types of ation of uration orane dization izing phic Info Environn Disaster Zoning o	Naps are made based over helps to underst I new combination is f blotting techniques: Southern blotting Southern name of the inventor DNA Needed Nitrocellulose DNA – DNA Autoradiogram armation System (GIS) nental impact assessment f landslide hazard	Northern blotting Northern blotting Northern a misnomer RNA Not Needed Amino benzyloxymethyl RNA – DNA Autoradiogram	Anism of gene action. plant breeding. (any three) Western blotting Western a misnomer Protein Needed Nitrocellulose Protein - antibody Dark room (any six)	3 X 1	3
6. B 7.	Various Name Separa Denat Memb Visual Geogra	denetic i Crossing If a usefu s types of ation of uration orane dization izing phic Info Environn Disaster Zoning o Estimatio	Naps are made based over helps to underst I new combination is f blotting techniques: Southern blotting Southern name of the inventor DNA Needed Nitrocellulose DNA – DNA Autoradiogram ormation System (GIS) mental impact assess management f landslide hazard on of flood damage	Northern blotting Northern blotting Northern a misnomer RNA Not Needed Amino benzyloxymethyl RNA – DNA Autoradiogram	Anism of gene action. plant breeding. (any three) Western blotting Western a misnomer Protein Needed Nitrocellulose Protein - antibody Dark room (any six)	3 X 1 6 X ½	3
6. B 7. .IN	Various Various Name Separa Denat Memb Visual Geogra	Genetic i Crossing If a usefu s types of ation of uration orane dization izing phic Info Environn Disaster Zoning o Estimatio Manager	Naps are made based over helps to underst I new combination is f blotting techniques: Southern blotting Southern name of the inventor DNA Needed Nitrocellulose DNA – DNA Autoradiogram armation System (GIS) nental impact assessment f landslide hazard on of flood damage ment of natural resou	Northern blotting Northern blotting Northern a misnomer RNA Not Needed Amino benzyloxymethyl RNA – DNA Autoradiogram	Anism of gene action. plant breeding. (any three) Western blotting Western a misnomer Protein Needed Nitrocellulose Protein - antibody Dark room (any six)	3 X 1 6 X ½	3
6. B 7.	Various Name Separa Denat Memb Visual Geogra	ation of uration dization dization brane dization izing phic Info Environn Disaster Zoning o Estimatio Manager Soil map	Naps are made based over helps to underst I new combination is F blotting techniques: Southern blotting Southern name of the inventor DNA Needed Nitrocellulose DNA – DNA Autoradiogram armation System (GIS) nental impact assessment f landslide hazard on of flood damage ment of natural resou ping	Northern blotting Northern blotting Northern a misnomer RNA Not Needed Amino benzyloxymethyl RNA – DNA Autoradiogram : nent	Anism of gene action. plant breeding. (any three) Western blotting Western a misnomer Protein Needed Nitrocellulose Protein - antibody Dark room (any six)	3 X 1 6 X ½	3
6. B 7. .IN	Various Various Name Separa Denat Memb Visual Geogra	deneticin Crossing If a usefu s types of ation of uration orane dization izing phic Info Environn Disaster Zoning o Estimatic Manager Soil map Wetland	Southern blotting Southern blotting Southern name of the inventor DNA Needed Nitrocellulose DNA – DNA Autoradiogram	Northern blotting Northern blotting Northern a misnomer RNA Not Needed Amino benzyloxymethyl RNA – DNA Autoradiogram	Anism of gene action. plant breeding. (any three) Western blotting Western a misnomer Protein Needed Nitrocellulose Protein - antibody Dark room (any six)	3 X 1 6 X ½	3
6. B 7.	Various Name Separa Denat Memb Visual Geogra	deneticing Crossing If a usefu s types of ation of uration orane dization izing phic Info Environn Disaster Zoning o Estimation Manager Soil map Wetland Irrigatior	Southern blotting Southern blotting Southern name of the inventor DNA Needed Nitrocellulose DNA – DNA Autoradiogram	Northern blotting Northern blotting Northern a misnomer RNA Not Needed Amino benzyloxymethyl RNA – DNA Autoradiogram	Anism of gene action. plant breeding. (any three) Western blotting Western a misnomer Protein Needed Nitrocellulose Protein - antibody Dark room (any six)	3 X 1 6 X ½	3

www.Trb Tnpsc.Com

	to protect ecosystem:	(any six)	
RR P	Buy and use only ecofriendly products and recycle them.		
	Grow more trees		
	Choose sustained farm products	6 X ½	3
	Reduce the use of natural resources		
	Recycle the waste and reduce the amount of waste you pro	oduce.	
\succ	Reduce consumption of water and electricity.		
\succ	Reduce or eliminate the use of house-hold chemicals and r	pesticides.	
	Maintain your cars and vehicles properly.		
	Create awareness and educate about ecosystem protection	n among vour	
	friends and family members.		
19. Mone	acot seed:		
3.IN			
	Endosperm Scutellum Coleoptile Shoot apex		3
	Radicle	2 +1	
	Coleorhiza	2 +1	
Draw	& Label		
	SECTION - 4		
Note:	- Answer all questions.	2X5=10	
20. Prepa	aration of Organic Pesticide:		
a)			
BB >	Mix 120g of hot chillies with 110 g of garlic or onion. Chop	them thoroughly.	
\succ	Blend the vegetables together manually or using a grinder	until it forms a thick	
	paste.		
	Add the vegetable paste to 500 ml of warm water and stir	them thoroughly.	
	Pour the solution into a glass container and leave it undistu	urbed for 24 hours.	
	It possible, keep the container in a sunny location. If not, al	t least keep the	
*	mixture in a warm place.		
	Strain the mixture. This filtrate is the pesticide.		
	Either discard the vegetables or use it as a compost.		
	Pour the pesticide into a squirt bottle. Make sure that the s	spray bottle has first	
	been cleaned with warm water and soap to get rid it of any	y potential	
	contaminants.		
	Spray your plants with the pesticide.		
	After 2 or 4 treatments the cost of 5 days with the solution	n.	
1	After 3 or 4 treatments, the pest will be eliminated.		
	(OR)		

(b). BB	Dominant epistasis:	
	 It is a gene interaction in which two alleles of a gene at one locus interfere and suppress or mask the phenotypic expression of a different pair of alleles of another gene at another locus. The gene that suppresses or masks the phenotypic expression of a gene at another locus is known as epistatic. The gene whose expression is interfered by non-allelic genes and prevents from exhibiting its character is known as hypostatic. 	
	Example: - (Explanation Or Flow chart)	
	In the summer squash the fruit colour locus has a dominant allele 'W' for white colour and a recessive allele 'w' for coloured fruit. 'W' allele is dominant that masks the expression of any colour. In another locus hypostatic allele 'G' is for yellow fruit and its recessive allele 'g' for green fruit. When the white fruit with genotype WWgg is crossed with yellow fruit with genotype wwGG, The F1 plants have white fruit and are heterozygous (WwGg). When F1 heterozygous plants are crossed they give rise to F2 with the phenotypic ratio of 12 white: 3 yellow: 1 green. Homozygous recessive 'w genotype only can give the coloured fruits (4/16). Double recessive 'wwgg' will give green fruit (1/16). The Plants having only 'G' in its genotype (wwGg or wwGG) will give the yellow fruit (3/16) Parent White fruit Wing Wwgg	

www.Trb Tnpsc.Com

21.	Various types of parasitism:			
(a)	Parasitism is classified into two types			
BB	(i). Holoparasite			
	(ii). Hemiparasite	1		
	1. Holoparasites			
	The organisms which are dependent upon the host plants for their entire			
	nutrition.	1`		
	They are also called total parasites.			
	Examples: (any one)			
	Cuscuta is a total stem parasite of the host plant Acacia, Duranta and many			
	other plants.			
	Balanophora, Orobanche and Rafflesia are the total root parasites found on			
	higher plants.	1	5	
	2. Hemiparasites			
	The organisms which derive only water and minerals from their host plant			
	while synthesizing their own food by photosynthesis.			
	They are also called partial parasites.	1		
	Examples: (any one)			
	Viscum and Loranthus are partial stem parasites.			
	Santalum (Sandal Wood) is a partial root parasite.			
	he parasitic plants produce the haustorial roots inside the host plant to absorb	1		
	nutrients from the vascular tissues of host plants.			
	(OR)			
(b).	Basic concept of plant tissue culture:			
BB	1. Totipotency			
	The property of live plant cells that they have the genetic potential when	1		
	cultured in nutrient medium to give rise to a complete individual plant.			
	2. Differentiation			
	The process of biochemical and structural changes by which cells become	1		
	specialized in form and function.			
	3. Redifferentiation			
	The further differentiation of already differentiated cell into another type of	1	5	
	cell.			
	For example, when the component cells of callus have the ability to form a			
	whole plant in a nutrient medium.	1		
	4. Dedifferentiation			
	The reversion of mature cells to the meristematic state leading to the			
	formation of callus.	1		

B. LOGANATAN GHSS, MAMBAKKAM, CHENGALPATTU DIST.

DIRECTORATE OF GOVERNMENT EXAMINATION, CHENNAI-6 CHENGALPATTU DISTRICT HALFYEARLY EXAMINATION. DEC-2024

PART -II.BIO- ZOOLOGY – KEY ANSWER

Max. Marks: 35

SECTION - 1

8 X 1 = 8

Note: - Answer all the questions.

Q. No	Option		Answer
1.B.IN	С	Spermache	
2.BB	С	lg E	
3.B.IN	Α	Article 21	
4.B.IN	D	Lipase	
5. BB	D	(+ -)	
6. B.IN	С	Glutamic Acid	
7. BB	С	50%	
8. BB	Α	1400 cc	

		SEC	TION – 2			
r	Note:- Answer any 4 questions:					
Q.	Answers				arks	
No						
9. B.IN	Spern	natogenesis and Spermiogenesis: -				
		Spermatogenesis	Spermiogenesis			
	1	The process of formation of male	The spermatids are transformed into			
		gametes in testes	mature spermatozoa (sperms)	1		
	2	LH acts on the Leydig cells and stimulates the synthesis of	FSH stimulates testicular growth and enhances the production of Androgen		2	
		testosterone which in turn stimulates	Binding Protein (ABP) by the Sertoli	1		
		the process of spermatogenesis.	cells and helps in the process of			
			spermiogenesis			
10.	Nonse	ense Codon in Genetic Code				
B.IN				1		
	\succ	Three codons do not code for any amir	no acid and function as stop codon		2	
		(Termination).		1		
	\checkmark	UAA, UAG and UGA				
11.	Haem	atopoiesis:				
B.IN				2	2	
	4	The process of production of blood cell	s in the bone marrow.			
12.	Gene Knock Out: -					
B.IN				1		
		It is a genetically engineered organism.			2	
		Which carries one or more genes in its inoperative.	chromosomes that have been made	1		

13.	Chara	icters of Biome:	(any three)		
BB					
		Location, Geographical position			
		Climate and physiochemical enviror	3 X 1	3	
		Predominant plant and animal life			
		Boundaries between biomes are no	t always sharply defined.		
		Transition or transient zones are see	en as in case of grassland and forest		
		biomes			
L4.	BOD:	-			
BB					
		The amount of the oxygen that would	d be consumed,	3 X 1	3
		If all the organic matter in one litre of	f water were oxidized by bacteria.		
		The greater the BOD of the waste w	vater more is its polluting potential.		
	Nata.	S Anower on three of the following	ECTION - 3	200	•
	Note:-	Answer any three of the following	gs including Q.No.19 is compulsory	3X3	5 = 9
5.	Differentiate Monozygotic and Dizygotic Twins:				
5.1IN			Disusstia turba		
			Dizygotic twins	1	
		It is also called identical twins	It is also called Fraternal twins	T	
	2	Twins are produced when a single	Twins are produced when two separate		2
		fertilized egg splits into two during	eggs are fertilized by two separate	1	3
		the first cleavage.	sperms.	T	
	3	They are of the same sex, look	The twins may be of the same sex or	1	
		alike and share the same genes	different sex and are non-identical	1	
L6. 3B	Sex d	etermination in human beings:	h chromosomal difforences between the	1	
		sex determination is associated with		T	
		22 pairs of human chromosomos in	At males.	1	
		and pair of cov chromosomos (XX or	r VV	1	
		Ecomples are homogramatic producir	a only one type of gamete (egg) each	1/5	
		containing one V chromosome	ig only one type of gamete (egg), each	72	
		While the males are beterogrametic	producing two types of sporms with X and	1/2	
		V chromosomes	producing two types of sperins with A did	, <u>-</u>	
			2)		2
			7		
		Male	Female		
	Parent	s (Heterogametic)	(Homogametic)		
		44AA + XY	44AA + XX	/	
	Game	Sperms Sperms	Ova		
		(22A+X) (22A+Y)	(22A+X) (22A+X)	_	
	0			3	
	Proget	wg× (44AA+XX) (44AA+XX) nv (F ₁) (Female) (Female)	(44AA+XY) (44AA+XY)		
	000	A contract (remark)	(Male) (Male)		

17.	Lymph Node		
B.IN			
	Afferent lymphatic vessel	2+1	3
18.	Advantages of cloning: (any three)		
BB			
	Offers benefits for clinical trials and medical research.	3 X 1	3
	It can help in the production of proteins and drugs in the field of medicine.		
	Aids stem cell research.		
	It helps to save endangered species		
19.	Methods of disposal of radioactive wastes: (any three)		
B.IN			
	> 1. Limit generation - The first and most important consideration in managing		
	radioactive wastes.		
	> 2. Dilute and disperse - For wastes having low radioactivity, dilution and		
	dispersion are adopted.	3 X 1	3
	> 3. Delay and decay – It is frequently an important strategy because much of		
	the radioactivity in nuclear reactors and accelerators is very short lived.		
	> 4. Concentrate and confine process- Concentrating and containing is the		
	objective of treatment activities for longer-lived radioactivity.		
	The waste is contained in corrosion resistant containers and transported to		
	disposal sites. Leaching of heavy metals and radionuclides from these sites is a		
	problem of growing concern.		
	SECTION - 4		
	Note:- Answer in Details	2 X 5= 10	
20.	Describe the structure of Uterus:		
(a)	The uterus or womb is a hollow, thick-walled, muscular, highly vascular and		
B.IN	inverted pear-shaped structure.		
	Its lying in the pelvic cavity between the urinary bladder and rectum.		
	The major portion of the uterus is the body and the rounded region superior		
	to it, is the fundus.		
	The uterus opens into the vagina through a narrow cervix.	4	
	The wall of the uterus has three layers of tissues.		
	The outermost thin membranous serous layer called the perimetrium.		
	The middle thick muscular layer called myometrium		
	The inner glandular layer called endometrium.		
	The endometrium undergoes cyclic changes during the menstrual cycle.		5
	The myometrium exhibits strong contractions during parturition.		

www.Trb Tnpsc.Com

			e		
		Endometrium Myometrium Perimetrium (OR)	Ovary Ovary Cervix Cervical canal Vagina	1	× 7)
(b).	In E. c				
BB	A	1			
		The enzyme permease is needed for	r entry of lactose into the cell.	1	
		p-galactosidase brings about hydrol	ysis of lactose to glucose and galactose.		_
		If lactose is available as an energy so the cell as a result of permease enzy	p from acetyl Co A to p-galactosidase. Durce for the bacteria, then lactose enters /me.		5
		Lactose acts as an inducer and inter	acts with the repressor to inactivate it	1/2	
	À	In the absence of Lactose, the repre	essor protein binds to the operator of the	/1	
		operon and prevents RNA polymera	se from transcribing the operon, as result.	1 ½	
		β -galactosidase is not produced.			
21.	Majo	r threats to Biodiversity caused by hu	iman activities:		
(a).					
BB	\succ	Apart from natural causes, human a	ctivities, both directly and indirectly are		
		today's main reason for habitat loss	and biodiversity loss.		
	\triangleright	Fragmentation and degradation due	e to agricultural practices.	5 X 1	5
	\triangleright	Extraction - mining, fishing, logging,	harvesting		
	\triangleright	Development - settlements, industri	ial and associated infrastructures lead to		
		habitat loss.			
	\succ	Fragmentation leads to formation o	f isolated, small and scattered populations		
		and as endangered species.			
			Or)		
(b). B.IN	Differ	ences between r- selected and K sele	ected species: -		
		r - selected species	k - selected species		
		Smaller sized organisms	Larger sized organisms		
	2	Produce many offspring	Produce few offspring		
	3	Mature early	Late maturity with extended parental		
			care	5 V 1	E
	4	Snort life expectancy	Long life expectancy	2 7 1	5
	5	Each individual reproduces only	Lan reproduce more than once in		
		Once or rew times in their life time	Most individuals reach meximum life		
	b	puniy tew reach adulthood	span		

Q. Type	Bio – Bot	any (55)	Bio -Zoo	logy (55)	
	Book Back	Book In	Book Back	Book In	
1 Marks	6 (6)	2 (2)	4 (4)	4 (4)	
2 Marks	4 (2)	8 (4)	4 (2)	8 (4)	٦.
3 Marks	6 (2)	9 (3)	6 (2)	9 (3)	7
5 Marks	20 (4)	-	10 (2)	10 (2)	
Total	36	19	24	31	
Percentage	65%	35%	44%	56%	
		BB – 55%	& B.IN - 45%		

Question paper - Analysis

B. LOGANATHAN, GHSS, MAMBAKKAM, CHENGALPTTU DIST.