WWW.Padasalai.Net YEAR HALF - YEARLY EXAMINATION - 2024

SUB: CHEMISTRY THOOTHUKUDI DISTRICT MARKS: 70
ANSWER KEY

Part - I

I. CHOOSE THE CORRECT ANSWER: (15 X 1 = 15)

Q.no	options	ANSWERS
1.	А	Al
2.	С	B ₃ N ₃ H ₆
3.	C/D	He / Kr
4.	В	+3
5.	С	Crystal Field Theory
6.	С	6
7.	С	10 t _{1/2}
8.	Α	0.5 X 10 ⁻¹⁵
9.	В	0.002 N
10.	В	Mechanical Dispersion
11.	С	4 – nitro phenol
12.	A/D	but – 3 – enoic acid / but – 3 – ene-1-oic acid
13.	D	triethyl amine
14.	D	Vitamin – B ₂
15.	В	PAN

Part – II

Note: Answer any six questions. Q.No: 24 is compulsory $(6 \times 2 = 12)$

16.	 Uses of Potash Alum Potash alum is used for purification of water It is used for water proofing and textiles 	2	2
	It is used in dyeing and paper industries		
	 It is used as a styptic agent to arrest bleeding. 		
17.	Small size and High electronegativity	1	
	Absence of d-orbitals	1	2
18.	It is the energy difference between the electronic configuration of the ligand	2	2
	field and the isotropic field.	2	2
	CFSE $(\Delta E_O) = (E_{LF}) - (E_{ISO})$		

19.	$n\lambda = 2d \sin \Theta$ www.TrbTnpsc.com				
	 n - order of diffraction λ - wavelength of X-ray d - inter planar distance between two successive planes Θ- angle of diffraction 			2	
20.	Lewis acids	Lewis bases			
	Electron deficient molecules such as BF ₃ ,AlCl ₃ ,BeF ₂ etc Molecules with one (or) more lone pairs of electrons. NH ₃ ,H ₂ O,R-O-H,R-O-R, R - NH ₂				
	All metal ions Examples: Fe ²⁺ ,Fe ³⁺ ,Cr ³⁺ ,Cu ²⁺ etc	All anions F ⁻ ,Cl ⁻ ,CN ⁻ ,SCN ⁻ ,SO ₄ ²⁻ etc	2	2	
	Molecules that contain a polar double bond Examples: SO_2 , CO_2 , SO_3 etc Molecules that contain carbon – carbon multiple bond Examples: $CH_2 = CH_2$, $CH = CH$ etc				
	Molecules in which the central atom can expand its octet due to the availability of empty d – orbitals Example: SiF ₄ ,SF ₄ ,FeCl ₃ etc				
	Carbonium ion (CH ₃) ₃ C ⁺	Carbanion CH ₃			
	any two points – 2 M				
21.	~	down of the sol particles is called	2	2	
	coagulation				
22.		gical anaesthetic agent in surgery.	2	2	
	 It is a good solvent for organi It is used as a volatile starting 				
	 It is used as a volatile starting fluid for diesel and gasoline engine. It is used as a refrigerant. 				
23.	Hoffmann's degradation reaction				
	When Amides are treated with bromine in the presence of aqueous or				
	ethanolic solution of KOH, primary amines with one carbon atom less than the parent amides are obtained.				
	Parent amides are obtained.				
	$\mathbb{R} = \mathbb{C} = \mathbb{N}\mathbb{H}_2 / \mathbb{K}\mathbb{O}$	$H \longrightarrow R - NH_2 + K_2 CO_3 + KBr + H_2O$	2	•	
	amide $R = Alkyl$ (or) Aryl	Primary amine	2	2	
	Correct Equation – 2 M; Explana	tion only – 1 M			

Part – III Note: Answer any six questions. Q.No: 33 is compulsory

(6 X 3 = 18)

25				
25.	Minerals Ores			
	Naturally occuring substances obtained by mining which contain the metals in free state or in the form of compounds Minerals that contain high percentage of metal			
	2. Metal can not be extracted easily from minerals Metal can be extracted easily from ores		3	3
	3. All the minerals are not ores All the ores are minerals			
	4. Mineral of Al is Bauxite and Clay Ore of Al is Bauxite			
26.				
20.	H_3PO_4 $HO-P-OH$ OH			
	$H_4P_2O_7$ $HO=P=O=P=OH$ $HO=OH$		1 ½	
27.	E ⁰ value for Cr ²⁺ is -0.91 V, E ⁰ Value for Mn ³⁺ is +1.51V		1	
	 If E⁰ of a metal is large and negative, the metal is a powerful re 	educing		
	agent.		1	3
	Hence Cr ²⁺ is strongly reducing agent.		1	
28	Rate of a reaction Rate constant of a reaction			
	It is measured as decrease in the conc. of the reactants or increase in the conc. of products. It is equal to the rate of reaction, when conc. of each of the reactants in unity		1	
	2 It depends on the initial concentration of reactants It does not depend on the initial concentration of reactants		1	3
	It represents the speed at which the reactants are converted into products at any instant It is a proportional constant		1	
	any instant			

20	www.Padasalai.Net www.TrbTnpsc.com		
29.	Concentration of $HNO_3 = 0.04M$		
	$[H_3O^+]=0.04 \text{ mol dm}^{-3}$		
	$pH=-log[H_3O^+]$	1	
	$=-\log(0.04)$		3
	$=-\log(4\times10^{-2})$	1	
	=2-log4		
	=2-0.6021	1	
	=1.3979=1.40		
30.	At infinite dilution, the limiting molar conductivity of an electrolyte is equal to the	•	2
	sum of the limiting molar conductivities of its constituent ions.	3	3
31.	Popoff's rule states that during the oxidation of an unsymmetrical ketone, a		
	(C-CO) bond is cleaved in such a way that the keto group stays with the smaller		
	alkyl group.		
	$CH_3 - CH_2 - CH_2 - C - CH_3 \xrightarrow{(O)} COOH + CH_3 COOH$	3	3
	O CONTINUO3	3	3
	pentan – 2 – one Propanoic acid ethanoic acid		
	Equation only – 3 M; Conc. HNO ₃ is not mentioned – 2 M; Statement		
	only – 1 M		
32.	Hormone is an organic substance that is secreted by one tissue. It limits the	2	
	blood stream and induces a physiological response.		3
	Eg. insulin, epinephrine	1	
33.	Gabriel Phthalimide synthesis:		
	Gabriel synthesis is used for the preparation of Aliphatic primary amines. Phthalimide		
	on treatment with alcoholic KOH forms potassium salt of phthalimide which on heating		
	with alkyl halide followed by alkaline hydrolysis gives primary amine.		
	alcoholic aqueous C OK COH		
	$NH - H_2O$ $NK - NH_2$	3	3
	Phthalimide Potassium phthalimide N - alkyl Potassium pthalat phthalimide		
	Correct Forestian 2 marks Fredometics only 2 marks Alaskalla (COL)		
	Correct Equation – 3 marks; Explanation only – 2 marks; Alcoholic KOH (or) R – X is not mentioned – 2 marks.		

Note: Answer all the questions:

(5 X 5 = 25)

 presence of unpaired electrons electrons d - d transition occurs no unpaired electrons present. no d - d transition takes place 	34. a	I. (i) Roasting of some ores give the metal even in the absence of a reducing agent.								
Ortho silicates Ortho silicates SiQ4 ⁴⁻ Phenacite, Olivine Silicate units. No sharing of oxygen atom They are formed by joining two [SiQ4] ⁴⁻ tetrahedral units by sharing one oxygen atom at one corner 1½ 1½		(ii)	HgS	$(s) + O_2($	(g) _		$+$ Hg (l) + SO ₂ \uparrow		2	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				SiO ₄ ⁴ -		,	silicate units. No sha		1 ½	5
Chlorine with Hot Conc. NaOH: $Cl_{2} + 2NaOH \longrightarrow \underset{sodium hypo chlorite}{NaOCl} + NaCl + H_{2}O$ $Cl_{2} + 2NaOH \longrightarrow \underset{sodium hypo chlorite}{NaOCl} + NaCl + H_{2}O$ (ii) Transition metal has energetically available d orbitals that can accept electrons from reactant molecule or metal can form bond with reactant molecule using its d electrons. $ Ni = \frac{ Ni (H_{2}O)_{6} ^{2+}}{ Ni ^{2}} = \frac{ Ni (CN)_{4} ^{2-}}{ Ni ^{2}}$ • Ni - $\frac{3d^{8}4s^{2}}{ Ni ^{2}}$ • Ni - $\frac{3d^{8}}{ Ni ^{2}}$ • Ni				Si ₂ O ₇ ⁶⁻	Thor	tvetite	They are formed joining two [Si tetrahedral units sharing one oxygen a	O ₄] ⁴⁻ by	1 1/2	
$ \begin{array}{c} \text{Cl}_2 + 2 \text{NaOH} \longrightarrow \underset{\text{sodium hypo chlorite}}{\text{NaOCl}} + \text{NaCl} + \text{H}_2\text{O} \\ \hline \\ \text{Chlorine with Hot Conc. NaOH:} \\ \hline \\ \text{Cl}_2 + 2 \text{NaOH} \longrightarrow \underset{\text{sodium hypo chlorite}}{\text{NaOCl}} + \text{NaCl} + \text{H}_2\text{O} \\ \hline \\ \text{(ii) Transition metal has energetically available d orbitals that can accept electrons from reactant molecule or metal can form bond with reactant molecule using its d electrons.} \\ \hline \\ 35. \\ \text{a} \\ \hline \\ \text{Ni} - 3\text{d}^8 \text{4s}^2 \\ \text{Ni}^2 + 3\text{d}^8 \\ \text{H}_2\text{O is a weak field ligand} \\ \text{d electrons is not paired.} \\ \text{presence of unpaired} \\ \text{electrons} \\ \text{electrons} \\ \text{on unpaired electrons} \\ \text{electrons} \\ \text{on od - d transition takes place} \\ \hline \\ \hline \\ 1 \frac{1}{2} \\ \hline \\ 5 \\ \hline \\ 1 \frac{1}{2} \\ \hline \\ 2 \frac{1}{2} \\ \hline \\ 5 \\ \hline \\ 5 \\ \hline \\ 6 \\ \hline \\ 7 \\ \hline \\ 7 \\ \hline \\ 7 \\ \hline \\ 7 \\ \hline \\ 8 \\ \hline \\ $		(i) (Chlorine with	Cold dilute	NaOH:					
(ii) Transition metal has energetically available d orbitals that can accept electrons from reactant molecule or metal can form bond with reactant molecule using its d electrons. 2 Ini(CN)4 ^2-	b		$Cl_2 + 2$	NaOH —	\rightarrow N sodium	aOCl	+ NaCl + H ₂ O		1 ½	
(ii) Transition metal has energetically available d orbitals that can accept electrons from reactant molecule or metal can form bond with reactant molecule using its d electrons. 2 Ini(H2O)6 ²⁺		Chlorine with Hot Conc. NaOH:							5	
electrons from reactant molecule or metal can form bond with reactant molecule using its d electrons. Ini(H2O)6]^2+		$Cl_2 + 2NaOH \longrightarrow NaOC1 + NaC1 + H_2O$						1 ½		
a Ini(H2O)6] ²⁺ Ini(CN)4] ²⁻ Ni - 3d ⁸ 4s ² Ni ²⁺ - 3d ⁸ H2O is a weak field ligand delectrons is not paired. presence of unpaired electrons electrons electrons electrons is not delectrons electrons electrons electrons electrons electrons electrons electrons electrons electrons electrons electrons ele		(ii) Transition metal has energetically available d orbitals that can accept								
35. a Ini(H2O)6] ²⁺ Ini(CN)4] ²⁻ Ni - 3d ⁸ 4s ² Ni - 3d ⁸ 4s ² Ni ²⁺ - 3d ⁸ Ni ²⁺ - 3d ⁸ H ₂ O is a weak field ligand CN ⁻ is a strong field ligand d electrons is not paired. d electrons pairs up. presence of unpaired no unpaired electrons electrons present. d - d transition occurs no d - d transition takes place		electrons from reactant molecule or metal can form bond with reactant						2		
 Ni - 3d⁸4s² Ni²⁺ - 3d⁸ H₂O is a weak field ligand d electrons is not paired. presence of unpaired electrons electrons d - d transition occurs Ni - 3d⁸4s² Ni - 3d⁸4s² Ni²⁺ - 3d⁸ CN⁻ is a strong field ligand d electrons pairs up. no unpaired electrons present. no d - d transition takes place 			molecule usir	ng its d electr	ons.					
 Ni – 3d⁸4s² Ni²⁺ - 3d⁸ H₂O is a weak field ligand d electrons is not paired. presence of unpaired electrons d - d transition occurs Ni – 3d⁸4s² Ni²⁺ - 3d⁸ CN⁻ is a strong field ligand d electrons pairs up. no unpaired electrons present. no d - d transition takes place 			[Ni(H ₂ O) ₆] ²⁺			[Ni(CN) ₄] ²⁻			
 H₂O is a weak field ligand d electrons is not paired. presence of unpaired electrons electrons d - d transition occurs CN⁻ is a strong field ligand d electrons pairs up. no unpaired electrons present. no d - d transition takes place 	а				7/	• 1	li - 3d ⁸ 4s ²			
 H₂O is a weak field ligand d electrons is not paired. presence of unpaired electrons d - d transition occurs CN⁻ is a strong field ligand d electrons pairs up. no unpaired electrons present. no d - d transition takes place 			• Ni ²⁺ - 3d ⁸			• 1	li ²⁺ - 3d ⁸		2 1/2	
 d electrons is not paired. presence of unpaired no unpaired electrons present. d - d transition occurs no d - d transition takes place 			• H ₂ O is a v	weak field lig	and	• (CN ⁻ is a strong field liga	ınd	_ /2	
electrons present. • d - d transition occurs • no d - d transition takes place			• d electron	ns is not paire	ed.	• 0	electrons pairs up.		+	5
d - d transition occurs no d - d transition takes place			 presence 	of unpaired		• r	o unpaired electrons		2 ½	
			electrons			p	resent.			
Hence, it is green colour Hence, it is colourless			• d - d trans	sition occurs		• r	o d - d transition takes	place		
1.3.133, 1.13 3.133.			 Hence, it 	is green colo	our	• 1	lence, it is colourless			

	(1)	www.Padasalai.Net	www.TrbTnpsc.com		
35. b	(i)	Cabattle: Defeat	<u> </u>		
		Schottky Defect	Frenkel Defect		
		Arises due to the missing of equal number of cations and anions	Arises due to dislocation of ions	1	
		from the crystal lattice.	from its crystal lattice. The ion which is missing from the lattice		
		,	point occupies an interstitial		
		Size of anion and cation similar	position Size of anion and cation differ	1	
		Size of affior and cation similar	Size of affior and cation differ	1	5
		Lowers its density	Does not affect the density of		
		Ex. NaCl	crystal Ex. AgBr	1	
	(ii)	The colliding molecules must posse energy	ss a minimum energy called activation	2	
36.	Ne	rnst Equation:			
а		$xA + yB \rightleftharpoons lC + mD$		1/2	
		$[C]^t[D]^m$		1/2	
	$Q = \frac{[C]^t [D]^m}{[A]^x [B]^y}$				
	$\Delta G = \Delta G^* + RT \ln Q$				
		$\Delta G = - nFE_{cell}$; $\Delta G^{\circ} = - nFE$	cell	1/2 + 1/2	
		nee nee nee [C]	$I[D]^m$		5
		$- nFE_{cell} = - nFE_{cell}^{o} + RT ln \frac{[C]}{[A]}$	* [B] ^y	1	
	$E_{cell} = E_{cell}^* - \frac{RT}{nF} ln \frac{[C]^l[D]^m}{[A]^x [B]^y} $ (or)				
		$E_{cell} = E_{cell}^* - \frac{2.303RT}{nF} \log \frac{[C]^l}{[A]^x}$	[B] ^y (or)	1	
	$E_{cell} = E_{cell}^{\circ} - \frac{0.0591}{n} \log \frac{[C]V[D]m}{[A]x[B]y}$				
		[4-]4-[-13			
36. b	Catalyst is defined as a substance which alters the rate of chemical reaction				
	without itself undergoing chemical change.				
	Characteristics:				
		Specific in nature			
	Alters the speed of chemical reaction				
	Needed in very small quantity.				
	Does not change the nature of products.			4	5
		 Does not affect the position of ed 	quilibrium		
		, iiiii	•		

37.	(i)	www.Padasalai.Net www.TrbTnpsc.com Mechanism		
а		The mechanism of aldol condensation of acetaldehyde takes place in three steps.		
		Step 1:		
		The carbanion is formed as the α - hydrogen atom is removed as a proton by the base.	1	
		$HO^{-} + H^{-} CH_{2} - CHO \longrightarrow CH_{2} - CHO + H_{2}O$	•	
		Step 2:		
		The carbanion attacks the carbonyl carbon of another unionized aldehyde to form an alkoxide ion.	1	
		CH ₃ - CH ₂ - CHO CH ₃ - CH- CH ₂ - CHO		
		Step 3:		
		The alkoxide ion formed is protonated by water to form aldol.		
		CH ₃ - CH - CH ₂ - CHO H CH ₃ - CH- CH ₂ - CHO + OH OH		
		OH 3-Hydroxy butanal	1	
	(ii) B	enzene diazonium chloride reacts with benzene in the presence of sodium		
	hy	droxide to give biphenyl. This reaction in known as the Gomberg		
		eaction.		5
		Benzene Biphenyl	2	
	Corre	ect Equation only – 2 M ; NaOH is not mentioned – 1 ½ ; Explanation	_	
	only -	– 1 M		
37	•	Elemental analysis and molecular weight determination show that the		
b.		molecular formula of glucose is C ₆ H ₁₂ O ₆		
	•	Glucose on reduction with P/HI it gives n-hexane. It indicates the	1	
		presence of six carbon atoms are bonded linearly.		
	•	Glucose forms neutral solution with water. It indicate the absence of –		
		COOH group		
		Glucose reacts with acetic anhydride in the presence of pyridine	1	
		to give penta acetate. It indicates the presence of 5-OH groups.		
		give period decided in managed and processing of a city groupe.		
	l			<u> </u>

	www.Padasalai Net www.TrhTnpsc.com	•	
	Www.Padasalai.Net Glucose reacts with hydroxylamine to form oxime and with HCN to		
	form cyanohydrin. It indicates the presence of carbonyl group.		
	Glucose is reduced with Tollens Reagent and Fehlings solution.		
	It indicates the presence of an aldehyde (-CHO) group	- 1	5
	Glucose gets oxidized to gluconic acid with bromine water. It indicates		
	the – CHO group occupies one end of the carbon chain.		
	Glucose gets oxidised to saccharic acid with conc. nitric acid. It		
	indicates the other end is occupied by a primary alcohol group.	1	
	СНО		
	н—*С — ОН		
	но —*С —н	1	
	н—*С—ОН		
	н—*С — Он		
	*I CH₂OH		
00		1/	
38. a	Structure of palmitate ion exhibit dual property	1/2	
	Polar - Carboxyl portion (hydrophilic). It is soluble in water.	1	
	Non polar - Hydrocarbon portion (hydrophobic). It is soluble in	1	
	oils and greases		
		1/2	
	When the soap is added to a grease part of the cloth. The hydrocarbon	1	_
	part dissolve in the grease, leaving the carboxylate end exposed on the		5
	grease surface.		
	At the same time the carboxylate groups are strongly attracted by		
	water, thus leading to the formation of small droplets called micelles		
	 When the water is rinsed away the grease goes with it. 		
	• As a result, the cloth gets free from dirt and the droplets are washed		
	away with water.		

	. www	:Padasalai.Net	www.TrbTnpsc.com		
38. b		C_6H_5OH \longrightarrow C_6H_6 + A Phenol B Benzene	ZnO	1	
	B Benz		+ HC1 C n -propylbenzene	1	
		KMnO ₄ (O)	р	2	5
	n -propy	l b enzene	Benzoic a cid		
	Compound	Molecular Formula / Structure	Name		
	A	C ₆ H ₅ OH /	Phenol	1/2	
	В	C ₆ H ₆ /	Benzene	1/2	
	С	CH ₂ CH ₂ CH ₃ C ₆ H ₅ CH ₂ CH ₂ CH ₃ /	n – Propyl benzene	1/2	
	D	C ₆ H ₅ COOH /	Benzoic acid	1/2	