Tirupathur District – halfyearly Examination – Dec - 2024 12th Std – Chemistry – Answer Key

Part – I

15 x 1 = 15

Q. No	Answer	Q. No	Answer
1	a) 5.92BM	9	a) Sn / HCl
2	b) FeO	10	d) $H_3N^+ - CH(R) - COO^-$
3	a) Solubility	11	c) IV II III I
4	c) 1.6x10 ⁻¹¹ M	12	c) basic
5	b) 3F	13	d) Cancer treatment
6	d) Tyndall effect	14	d) potassiumtrioxalatoaluminium(III)
7	a) if both assertion and reason are	15	a) Zero
	true and reason is the correct		
	explanation of assertion		
8	b) Cannizaro reaction		

Part – II

Answer any 6 questions and question No. 24 is compulsory.

6 x 2 = 12

٦

10	ores?	steps involved in extraction o	i pure metals irom their		
	i) Concentration of ores			2	2
	ii) Extraction of crude m	etal			
	iii) Refining of crude me	tal			
17	Aluminium (III) chloride	is more stable whereas thallium	n (III) chloride is highly		
	unstable. Why?				
	Aluminium (III) chloride	is more stable whereas thallium	n (III) chloride is highly		
	unstable and disproport	ionates to thallium(I) chloride a	nd chlorine gas. This shows	2	2
	that in thallium the stab	le lower oxidation state correspo	onds to the loss of np	2	2
	electrons only and not r	ns electrons. Thus, in heavier po	ost-transition metals, the outer		
	s electrons (ns) have a	tendency to remain inert and sh	now reluctance to take part in		
	the bonding, which is kr	nown as inert pair effect.			
18	Explain why [Ti(H ₂ O) ₆] ³	is coloured while [Sc(H ₂ O) ₆] ³	⁺is colourless?		
		[Ti(H ₂ O) ₆] ³⁺	[Sc(H ₂ O) ₆] ³⁺		
	Central metal ion	Ti ³⁺	Sc ³⁺		
	outer electronic	2d1	340		
	configuration	Su	30-	2	2
	number of unpaired	1	0		
	electrons	•			
		Ti ³⁺ has one electron. d-d	no unpaired electron. d-d		
		electron transition occurs.	electron transition does not		
		so, it is coloured	occur. so, it is colourless		
19	Which is more stable	Fe ³⁺ or Fe ²⁺ ? Why? (May-22, M	ar-24)		
	The electronic configuration of Fe ²⁺ ([Ar] 3d ⁶ 4s ⁰) is partially filled whereas the				
	electronic configuration of Fe ³⁺ ([Ar] 3d ⁵ 4s ⁰) is half filled. So, Fe ³⁺ is more stable.			2	2
	(or) only electronic cont	figuration		1	

Prepared by Dr.R.Karthic, PG Assistant (Chemistry), GHSS – Vallipattu

www.Trb Tnpsc.Com

20	What is zwitter ion.	2		
	In aqueous solution the proton from carboxyl group can be transferred to the			
	amino group of an amino acid leaving these groups with opposite charges. Despite		2	
	having both positive and negative charges this molecule is neutral and has		2	
	amphoteric behaviour. These ions are called zwitter ions.			
	(or) Structure only	1		
21	Write a note on catalytic poison (Mar-23)			
	Certain substances when added to a catalysed reaction either decreases or			
	completely destroys the activity of a catalyst and they are often known as catalytic			
	poisons.	2	2	
	(or) Eg: $N_2 + 3H_2 \xrightarrow{1} 2 NH_3$			
	ratalytic poison			
22	Schotten – Baumann reaction			
	0 0			
	Pvridine			
	$C_6H_5 - NH_2 + C_6H_5 - C - C1 \longrightarrow C_6H_5 - NH - C - C_6H_5 + HC1$	2	2	
	Aniline Benzoylchloride N - phenyl benzamide			
	(or) any correct equation	2		
	(or) Explanation only	1		
23	Ethylamine is soluble in water whereas aniline is not. Why?			
	Ethylamine forms hydrogen bond with water. Hence it is soluble in water.	2	2	
	Aniline does not form hydrogen bond with water due to the presence of a large	2	2	
	hydrophobic C_6H_5 - group. Hence it is insoluble in water.			
24	Calculate pH of 10 ⁻⁷ M HCI.			
	$[H_{3}O^{+}] = 10^{-7}$ (from HCl) $+10^{-7}$ (from water)			
	$= 10^{-7} (1+1) = 2 \times 10^{-7}$			
	$pH=-log_{10}[H_{3}O^{*}]$	1		
	$= -\log_{10}(2 \times 10^{-7}) = -\left[\log 2 + \log 10^{-7}\right]$	1⁄2	2	
	$=-\log 2 - (-7) \cdot \log_{10} 10$			
	=7-log2			
	=7-0.3010 = 6.6990			
	= 6.70	1/2		
		1		

Part	- 111

A	\ns ^v	wer any 6 questions and question No. 33 is compulsory.	6 x 3 = 18	8
	25	What are interhalogen compounds? Give examples. (Aug-21, Mar, Jun-22)		
		Each halogen combines with other halogens to form a series of compounds	1	
		called interhalogen compounds.		
		Properties of of inter halogen compounds: (any two)		
		 The central atom will be the larger one. It can be formed only between two halogens. Fluorine can't act as central metal atom due to smaller size. Due to high electronegativity and smaller size chlorine helps the central atom to attain high coordination number. 	2	3
		5. They can undergo auto ionisation.		
		6. They are strong oxidizing agents.		

Prepared by Dr.R.Karthic, PG Assistant (Chemistry), GHSS – Vallipattu

26	How will you identify barata radical? (Ethyl Barata test) (Mar 22)		
20	Con H ₂ SO ₄		
	$H_3BO_3 + 3C_2H_5OH \longrightarrow B(OC_2H_5)_3 + 3H_2O$	3	2
	The vapour of this Ester burns with green edged flame.		3
	(or) unbalanced equation (or) if Con. H_2SO_4 is not mentioned	2	
	(or) Explanation only	1	
27	Explain why d block elements form complexes?		
	 Transition metal ions are small and highly charged 	3	3
	 They have vacant low energy d-orbitals to accept an electron pair donated by other groups. 		
28	Write Arrhenius equation and explain the terms involved in it.		
	$K = \Delta \rho^2 Ea / RT$	1	_
	k = Pate constant $A = Frequency factor$	2	3
	K = Kale constant, A = Frequency factor, E = Activation operator = R = Cas constant = T = Absolute temperature in K	2	
20	$E_a = Activation energy;$ $R = Gas constant, T = Absolute temperature in R.$		
19	At infinite dilution, the limiting melar conductivity of an electrolyte is equal to the	2	
	sum of the limiting molar conductivities of its constituent ions	2	
	Sum of the limiting molar conductivities of its constituent ions.		
	1 Calculation of molar conductance at infinite dilution of a weak electrolyte		3
	 Calculation of degree of dissociation of weak electrolytes 	1	
	3 Calculation of solubility of sparingly soluble salts		
	(or) explanation of any uses	1	
30	Define Helmholtz electrical double laver?		
	The surface of colloidal particle adsorbs one type of ion due to preferential adsorption. This layer attracts the oppositely charged ions in the medium and hence at the boundary separating the two electrical double layers are setup. This is called as	3	3
	Helmholtz electrical double laver		
	(or) Diagram only	1	
31	What is Baever's reagent? How it is useful to prepare glycol?		
<i>,</i> ,	Cold alkaline solution of potassium permanganate is called as Baever's reagent	1	
	Cold alkalina		
	KMnO ₄		
	$CH_2 = CH_2 + H_2O$ \longrightarrow $CH_2 - CH_2$	2	3
	ethene [O] I I OH OH	2	
	ethane-1 2-diol		
	(or) Explanation only	1	
32	Stephen's reaction		
	$SnCl_2/HCl$ H_3O^+	_	
	$CH_{3}CN \longrightarrow CH_{3}CH=NH \longrightarrow CH_{3}CHO + NH_{3}$	3	3
	(or) Explanation only	1	
2	A hydride of 2 nd period alkali metal (A) on reaction with compound of Boron (B)	1	
55	to give a reducing agent (C) Identify A B and C (Sep-20 Compulsory)		
	Ether	1	
	$2\text{LiH} + \text{B}_2\text{H}_6 \longrightarrow 2\text{LiBH}_4$	2	2
	(A) (B) (C) (or)	5	5
	A = Litnium nyariae (or) LiH		
	$B = DIDORANE (Or) B_2 H_6$		
	C = Litnium borohydride (or) LiBH4		

Prepared by Dr.R.Karthic, PG Assistant (Chemistry), GHSS – Vallipattu

Part - IV

	a) i) Define a method for refining Nickel by	/ Mond process? (2)			
		Ni (s) + 4CO (a) $\xrightarrow{350K}$ Ni(CO)4 (a) $\xrightarrow{46}$	$\stackrel{\text{OK}}{\longrightarrow}$ Ni (s) + 4CO (g)	2		
	(or) if temperature not mentioned (or) Explanation only					
	ii) Explain zone refining process? (3)					
	Principle: Fractional crystallization					
	Eg: Germanium, Silicon, Gallium					
	•	When an impure metal is melted and allow	wed to solidify, the impurities will prefer			
		to be in the molten region.				
	Impure metal is taken in the form of rod					
	•	Process: one end of the rod is heated us	ing a mobile induction heater. when the	1		
		heater is moved to the other end, pure me	etal crystallizes while the impurities will			
		move on to the adjacent molten zone. The	e process is repeated several times by			
		moving the heater in the same direction a	gain and again to achieve the desired			
		purity level.				
	(or)) b) i) Write the preparation of Alum? (2				
34	K28	SO4.Al2(SO4)3.4Al(OH)3 + 6H2SO4	► K ₂ SO ₄ + 3Al ₂ (SO4) ₃ + 12H ₂ O	1	5	
		K2SO4 + Al2(SO4)3 + 24H2O	K₂SO₄.Al₂(SO₄)₃ 24H₂O	1		
	(or	Explanation only	112004.1 120	1		
	ii) \	What are the differences between Grap	hite & Diamond (3) (any three)			
		Granhite	Diamond			
	1	It is soft	It is hard			
	2	It Conducts Electricity	It will not conduct electricity			
	3	an ² Llubridiantian	an ³ Hybridiantian			
		sp ² Hydnaisalion	spenyonoisation			
	4	Flat hexagonal sheets of carbon	Tetrahedral arrangement			
	4	Flat hexagonal sheets of carbon atoms	Tetrahedral arrangement	3		
	4 5	Flat hexagonal sheets of carbon atoms Successive carbon sheets held	Tetrahedral arrangement Covalent bonds	3		
	4 5	Flat hexagonal sheets of carbon atoms Successive carbon sheets held together by weak Vander Waals forces	Tetrahedral arrangement Covalent bonds	3		
	4 5 6	Flat hexagonal sheets of carbon atoms Successive carbon sheets held together by weak Vander Waals forces Used as Lubricant	Tetrahedral arrangement Covalent bonds Used for cutting glasses and rock drilling	3		
	4 5 6 7	 Sp² Hybridisation Flat hexagonal sheets of carbon atoms Successive carbon sheets held together by weak Vander Waals forces Used as Lubricant Using carbons 4 valence electrons, 3e⁻ 	Tetrahedral arrangement Covalent bonds Used for cutting glasses and rock drilling There is no free electron for	3		
	4 5 6 7	 Sp² Hybridisation Flat hexagonal sheets of carbon atoms Successive carbon sheets held together by weak Vander Waals forces Used as Lubricant Using carbons 4 valence electrons, 3e⁻ forms 3σ bonds, 1e⁻ forms 1π bond. 	Tetrahedral arrangement Covalent bonds Used for cutting glasses and rock drilling There is no free electron for conductivity	3		
	4 5 6 7	Flat hexagonal sheets of carbon atoms Successive carbon sheets held together by weak Vander Waals forces Used as Lubricant Using carbons 4 valence electrons, $3e^{-}$ forms 3σ bonds, $1e^{-}$ forms 1π bond. This π e ⁻ delocalised over entire sheet and responsible for its conductivity	Tetrahedral arrangement Covalent bonds Used for cutting glasses and rock drilling There is no free electron for conductivity	3		
	4 5 6 7 a) i	Flat hexagonal sheets of carbon atoms Successive carbon sheets held together by weak Vander Waals forces Used as Lubricant Using carbons 4 valence electrons, $3e^{-}$ forms 3σ bonds, $1e^{-}$ forms 1π bond. This π e ⁻ delocalised over entire sheet and responsible for its conductivity.	Tetrahedral arrangement Covalent bonds Used for cutting glasses and rock drilling There is no free electron for conductivity 2) (any two)	3		
	4 5 6 7 a) i	Flat hexagonal sheets of carbon atoms Successive carbon sheets held together by weak Vander Waals forces Used as Lubricant Using carbons 4 valence electrons, $3e^{-}$ forms 3σ bonds, $1e^{-}$ forms 1π bond. This π e ⁻ delocalised over entire sheet and responsible for its conductivity.) Compare lanthanides and actinides. (Tetrahedral arrangement Covalent bonds Used for cutting glasses and rock drilling There is no free electron for conductivity 2) (any two) Actinoids	3		
	4 5 6 7 a) i	Flat hexagonal sheets of carbon atoms Successive carbon sheets held together by weak Vander Waals forces Used as Lubricant Using carbons 4 valence electrons, $3e^{-}$ forms 3σ bonds, $1e^{-}$ forms 1π bond. This π e ⁻ delocalised over entire sheet and responsible for its conductivity.) Compare lanthanides and actinides. (Lanthanoids	Tetrahedral arrangement Covalent bonds Used for cutting glasses and rock drilling There is no free electron for conductivity 2) (any two) Actinoids Differentiating electrons enters in 5f	3		
	4 5 6 7 a) i	Flat hexagonal sheets of carbon atoms Successive carbon sheets held together by weak Vander Waals forces Used as Lubricant Using carbons 4 valence electrons, $3e^{-}$ forms 3σ bonds, $1e^{-}$ forms 1π bond. This π e ⁻ delocalised over entire sheet and responsible for its conductivity.) Compare lanthanides and actinides. (Lanthanoids Differentiating electrons enters in 4f orbital.	Tetrahedral arrangement Covalent bonds Used for cutting glasses and rock drilling There is no free electron for conductivity 2) (any two) Actinoids Differentiating electrons enters in 5f orbital.	3		
35	4 5 6 7 a) i 1. 2.	Flat hexagonal sheets of carbon atoms Successive carbon sheets held together by weak Vander Waals forces Used as Lubricant Using carbons 4 valence electrons, $3e^{-}$ forms 3σ bonds, $1e^{-}$ forms 1π bond. This π e ⁻ delocalised over entire sheet and responsible for its conductivity.) Compare lanthanides and actinides. (Lanthanoids Differentiating electrons enters in 4f orbital. Binding energy of 4f orbitals are higher.	Tetrahedral arrangement Covalent bonds Used for cutting glasses and rock drilling There is no free electron for conductivity 2) (any two) Actinoids Differentiating electrons enters in 5f orbital. Binding energy of 5f orbitals are lower.	3	5	
35	4 5 6 7 a) i 1. 2.	Flat hexagonal sheets of carbon atoms Successive carbon sheets held together by weak Vander Waals forces Used as Lubricant Using carbons 4 valence electrons, $3e^{-}$ forms 3σ bonds, $1e^{-}$ forms 1π bond. This π e ⁻ delocalised over entire sheet and responsible for its conductivity.) Compare lanthanides and actinides. (Lanthanoids Differentiating electrons enters in 4f orbital. Binding energy of 4f orbitals are higher. They show less tendency to form	Tetrahedral arrangement Covalent bonds Used for cutting glasses and rock drilling There is no free electron for conductivity 2) (any two) Actinoids Differentiating electrons enters in 5f orbital. Binding energy of 5f orbitals are lower. They show greater tendency to form	2	5	
35	4 5 6 7 a) i 1. 2. 3.	Flat hexagonal sheets of carbon atoms Successive carbon sheets held together by weak Vander Waals forces Used as Lubricant Using carbons 4 valence electrons, $3e^{-}$ forms 3σ bonds, $1e^{-}$ forms 1π bond. This π e ⁻ delocalised over entire sheet and responsible for its conductivity.) Compare lanthanides and actinides. (Lanthanoids Differentiating electrons enters in 4f orbital. Binding energy of 4f orbitals are higher. They show less tendency to form Complexes.	Tetrahedral arrangement Covalent bonds Used for cutting glasses and rock drilling There is no free electron for conductivity 2) (any two) Actinoids Differentiating electrons enters in 5f orbital. Binding energy of 5f orbitals are lower. They show greater tendency to form complexes.	2	5	
35	4 5 6 7 a) i 1. 2. 3.	Flat hexagonal sheets of carbon atoms Successive carbon sheets held together by weak Vander Waals forces Used as Lubricant Using carbons 4 valence electrons, $3e^{-}$ forms 3σ bonds, $1e^{-}$ forms 1π bond. This π e ⁻ delocalised over entire sheet and responsible for its conductivity.) Compare lanthanides and actinides. (Lanthanoids Differentiating electrons enters in 4f orbital. Binding energy of 4f orbitals are higher. They show less tendency to form Complexes.	Spering problemation Tetrahedral arrangement Covalent bonds Used for cutting glasses and rock drilling There is no free electron for conductivity 2) (any two) Actinoids Differentiating electrons enters in 5f orbital. Binding energy of 5f orbitals are lower. They show greater tendency to form complexes. Most of the actinoids are coloured. For	2	5	
35	4 5 6 7 a) i 1. 2. 3. 4.	Flat hexagonal sheets of carbon atoms Successive carbon sheets held together by weak Vander Waals forces Used as Lubricant Using carbons 4 valence electrons, 3e ⁻ forms 3σ bonds, 1e ⁻ forms 1π bond. This π e ⁻ delocalised over entire sheet and responsible for its conductivity.) Compare lanthanides and actinides. (Lanthanoids Differentiating electrons enters in 4f orbital. Binding energy of 4f orbitals are higher. They show less tendency to form Complexes. Most of the lanthanoids are colourless	Sperifybridisation Tetrahedral arrangement Covalent bonds Used for cutting glasses and rock drilling There is no free electron for conductivity 2) (any two) Actinoids Differentiating electrons enters in 5f orbital. Binding energy of 5f orbitals are lower. They show greater tendency to form complexes. Most of the actinoids are coloured. For Eg.	2	5	

Prepared by Dr.R.Karthic, PG Assistant (Chemistry), GHSS - Vallipattu

E	They do not form avagations	They do form oxocations such as	
э.	They do not form oxocations	U02 ²⁺ , NpO2 ²⁺	
		Besides +3 oxidation states actinoids	
	Besides +3 oxidation states lanthanoids	show	
6.	show +2 and +4 oxidation states in few	higher oxidation states such as +4,	
	cases.	+5, +6 and +7.	
ii) V	Vrite the postulates of werner's theory.	. (3)	
1. N	lost of the element's exhibit, two types of	valences.	
	Primary valence		
	Secondary valence		K
	Primary valence	Secondary valence	
	It denotes oxidation state of the metal		
2	atom.	It denotes the coordination number.	
	It is positive in most of the cases and	It is satisfied by negative ions, neutral	
3	zero in certain cases. They are always	molecules, positive ions or the	
	satisfied by negative ions.	combination of these.	3 x
4	It is non directional	It is directional	1
5. A	According to Werner, there are two sphere	s of attraction around a metal atom/ion	
in a	complex. The inner sphere is know	vn as coordination sphere.	
	The outer sphere is calle	d ionisation sphere.	
6. T	he geometry of the complex is determine	d by the spacial arrangement of the	
grou	ups which satisfy the secondary valence.	If the secondary valency is,	
•	Six - octahedral geometry		
	Four -either tetrahedral or squa	re planar geometry.	
Lim	Four -either tetrahedral or squa	re planar geometry. Ind the magnetic properties.	
Lim (or)	Four -either tetrahedral or squa itation: it does not explain their colour ar b) i) Calculate the percentage efficient	re planar geometry. Ind the magnetic properties. cy of packing in case of body	
Lim (or) cen	Four -either tetrahedral or squa itation: it does not explain their colour ar b) i) Calculate the percentage efficien itered cubic crystal? (3)	re planar geometry. Ind the magnetic properties. cy of packing in case of body	
Lim (or) cen	Four -either tetrahedral or squa itation: it does not explain their colour ar b) i) Calculate the percentage efficient itered cubic crystal? (3) total volume occupied l	re planar geometry. Ind the magnetic properties. cy of packing in case of body by spheres in a unit cell	
Lim (or) cen Pac	Four -either tetrahedral or squa itation: it does not explain their colour ar b) i) Calculate the percentage efficient itered cubic crystal? (3) Eking efficiency = $\frac{\text{total volume occupied I}}{\text{volume of t}}$	re planar geometry. Ind the magnetic properties. cy of packing in case of body by spheres in a unit cell the unit cell x 100	1/
Lim (or) cen Pac Volu	Four -either tetrahedral or squa itation: it does not explain their colour ar b) i) Calculate the percentage efficient itered cubic crystal? (3) Eking efficiency = $\frac{\text{total volume occupied I}}{\text{volume of t}}$	re planar geometry. nd the magnetic properties. cy of packing in case of body by spheres in a unit cell the unit cell	1/2
Lim (or) cen Pac Volu In Δ	Four -either tetrahedral or squa itation: it does not explain their colour ar b) i) Calculate the percentage efficient itered cubic crystal? (3) Exing efficiency = $\frac{\text{total volume occupied I}}{\text{volume of t}}$ wolume of the state of the second state of	re planar geometry. Ind the magnetic properties. cy of packing in case of body by spheres in a unit cell the unit cell x 100	1/2
Lim (or) cen Pac Volu In Δ AC ²	Four -either tetrahedral or squa itation: it does not explain their colour ar b) i) Calculate the percentage efficient tered cubic crystal? (3) eking efficiency = $\frac{\text{total volume occupied I}}{\text{volume of t}}$ wolume of the state of the st	re planar geometry. Ind the magnetic properties. cy of packing in case of body by spheres in a unit cell the unit cell x 100	1/2
Lim (or) cen Pac Volu In Δ AC ²	Four -either tetrahedral or squa itation: it does not explain their colour ar b) i) Calculate the percentage efficient itered cubic crystal? (3) Exception of the second seco	re planar geometry. nd the magnetic properties. cy of packing in case of body by spheres in a unit cell the unit cell x 100	1/2
Lim (or) cen Pac Volu In Δ AC ² AC	Four -either tetrahedral or squa itation: it does not explain their colour ar b) i) Calculate the percentage efficient tered cubic crystal? (3) Exing efficiency = $\frac{\text{total volume occupied I}}{\text{volume of t}}$ ume of cube = a x a x a = a ³ ABC, $e^2 = AB^2 + BC^2$ $= \sqrt{AB^2 + BC^2} = \sqrt{a^2 + a^2} = \sqrt{2}a$ AGC,	re planar geometry. Ind the magnetic properties. cy of packing in case of body by spheres in a unit cell the unit cell x 100	1/2
Lim (or) cen Pac Volu In Δ AC ² AC In Δ	Four -either tetrahedral or squa itation: it does not explain their colour ar b) i) Calculate the percentage efficient itered cubic crystal? (3) Excertised the percentage efficient tered cubic crystal? (3) Excertised to be a constrained of the second of t	re planar geometry. nd the magnetic properties. cy of packing in case of body by spheres in a unit cell the unit cell x 100	1/2 1/2
Lim (or) cen Pac Volu In Δ AC ² AC In Δ	Four -either tetrahedral or squa itation: it does not explain their colour ar b) i) Calculate the percentage efficient itered cubic crystal? (3) Exing efficiency = $\frac{\text{total volume occupied I}}{\text{volume of t}}$ ume of cube = a x a x a = a ³ ABC, $e^2 = AB^2 + BC^2$ $= \sqrt{AB^2 + BC^2} = \sqrt{a^2 + a^2} = \sqrt{2}a$ AGC, $e^2 = AC^2 + CG^2$	re planar geometry. Ind the magnetic properties. cy of packing in case of body by spheres in a unit cell the unit cell x 100	1/2 1/2
Lim (or) cen Pac Volu In Δ AC ² AC In Δ AG ²	Four -either tetrahedral or squa itation: it does not explain their colour ar b) i) Calculate the percentage efficient tered cubic crystal? (3) teking efficiency = $\frac{\text{total volume occupied I}}{\text{volume of t}}$ ume of cube = a x a x a = a ³ ABC, ² = AB ² + BC ² = $\sqrt{AB^2 + BC^2} = \sqrt{a^2 + a^2} = \sqrt{2}a$ AGC, ² = AC ² + CG ² = $\sqrt{AC^2 + CG^2} = \sqrt{(\sqrt{2}a)^2 + a^2} = \sqrt{3}a$	re planar geometry. Ind the magnetic properties. cy of packing in case of body by spheres in a unit cell the unit cell x 100	1/2 1/2 1/2
Lim (or) cen Pac Volu In Δ AC ² AC In Δ AG ²	Four -either tetrahedral or squa b) i) Calculate the percentage efficient b) i) Calculate the percentage efficient atered cubic crystal? (3) Excerne of cube = $a \times a \times a = a^3$ ABC, $a^2 = AB^2 + BC^2$ $= \sqrt{AB^2 + BC^2} = \sqrt{a^2 + a^2} = \sqrt{2}a$ AGC, $a^2 = AC^2 + CG^2$ $= \sqrt{AC^2 + CG^2} = \sqrt{(\sqrt{2}a)^2 + a^2} = \sqrt{3}a$ in figure, AG = 4r	re planar geometry. Ind the magnetic properties. cy of packing in case of body by spheres in a unit cell the unit cell x 100	1/2 1/2 1/2
Lim (or) cen Pac Volu In Δ AC ² AC In Δ AG ² AG	Four -either tetrahedral or squa itation: it does not explain their colour ar b) i) Calculate the percentage efficient tered cubic crystal? (3) teking efficiency = $\frac{\text{total volume occupied I}}{\text{volume of t}}$ ume of cube = a x a x a = a ³ ABC, ² = AB ² + BC ² = $\sqrt{AB^2 + BC^2} = \sqrt{a^2 + a^2} = \sqrt{2}a$ AGC, ² = AC ² + CG ² = $\sqrt{AC^2 + CG^2} = \sqrt{(\sqrt{2}a)^2 + a^2} = \sqrt{3}a$ in figure, AG = 4r $\sqrt{3}a = 4r$	re planar geometry. Ind the magnetic properties. cy of packing in case of body by spheres in a unit cell the unit cell x 100	1/2 1/2 1/2
Lim (or) cen Pac Volu In Δ AC ² AC In Δ AG ²	Four -either tetrahedral or squa b i) Calculate the percentage efficient b i) Calculate the percentage efficient tered cubic crystal? (3) Exing efficiency = $\frac{\text{total volume occupied I}}{\text{volume of t}}$ ume of cube = a x a x a = a ³ ABC, $^2 = AB^2 + BC^2$ $= \sqrt{AB^2 + BC^2} = \sqrt{a^2 + a^2} = \sqrt{2}a$ AGC, $^2 = AC^2 + CG^2$ $= \sqrt{AC^2 + CG^2} = \sqrt{(\sqrt{2}a)^2 + a^2} = \sqrt{3}a$ In figure, AG = 4r $\sqrt{3}a = 4r$ $r = \frac{\sqrt{3}}{2}a$	re planar geometry. d the magnetic properties. cy of packing in case of body by spheres in a unit cell the unit cell x 100	1/2 1/2 1/2 1/2
Lim (or) cen Pac Volu In Δ AC ² AC In Δ AG ² AG	Four -either tetrahedral or squa itation: it does not explain their colour an b) i) Calculate the percentage efficient atered cubic crystal? (3) Exing efficiency = $\frac{\text{total volume occupied I}}{\text{volume of t}}$ ume of cube = a x a x a = a ³ ABC, $e^2 = AB^2 + BC^2$ $= \sqrt{AB^2 + BC^2} = \sqrt{a^2 + a^2} = \sqrt{2}a$ AGC, $e^2 = AC^2 + CG^2$ $= \sqrt{AC^2 + CG^2} = \sqrt{(\sqrt{2}a)^2 + a^2} = \sqrt{3}a$ In figure, AG = 4r $r = \frac{\sqrt{3}}{4}a$	the planar geometry. The the magnetic properties. cy of packing in case of body by spheres in a unit cell the unit cell 4 $(\sqrt{3})^3 \sqrt{3} = 3$	1/2 1/2 1/2 1/2 1/2
Lim (or) cen Pac Volu AC ² AC In Δ AG ² AG fron	Four -either tetrahedral or squa itation: it does not explain their colour ar b) i) Calculate the percentage efficient itered cubic crystal? (3) Exing efficiency = $\frac{\text{total volume occupied I}}{\text{volume of tr}}$ ume of cube = a x a x a = a ³ ABC, ² = AB ² + BC ² = $\sqrt{AB^2 + BC^2} = \sqrt{a^2 + a^2} = \sqrt{2}a$ AGC, ² = AC ² + CG ² = $\sqrt{AC^2 + CG^2} = \sqrt{(\sqrt{2}a)^2 + a^2} = \sqrt{3}a$ In figure, AG = 4r $r = \frac{\sqrt{3}}{4}a$ ume of the sphere with radius 'r' = $\frac{4}{3}\pi r^3$	The planar geometry. The magnetic properties. cy of packing in case of body by spheres in a unit cell the unit cell $x \ 100$ $= \frac{4}{3}\pi \left(\frac{\sqrt{3}}{4}a\right)^3 = \frac{\sqrt{3}}{16}\pi a^3$	1/2 1/2 1/2 1/2 1/2
Lim (or) cen Pac Volu In Δ AC ² AC In Δ AG ² AG fron	Four -either tetrahedral or squa itation: it does not explain their colour ar b) i) Calculate the percentage efficient itered cubic crystal? (3) Exing efficiency = $\frac{\text{total volume occupied I}}{\text{volume of the sphere with radius 'r'} = \frac{4}{3}\pi r^3$ aABC, $e^2 = AB^2 + BC^2$ $= \sqrt{AB^2 + BC^2} = \sqrt{a^2 + a^2} = \sqrt{2}a$ aAGC, $e^2 = AC^2 + CG^2$ $= \sqrt{AC^2 + CG^2} = \sqrt{(\sqrt{2}a)^2 + a^2} = \sqrt{3}a$ In figure, AG = 4r $r = \frac{\sqrt{3}}{4}a$ une of the sphere with radius 'r' = $\frac{4}{3}\pi r^3$ e number of spheres belongs to a unit cell	The planar geometry. The magnetic properties. cy of packing in case of body by spheres in a unit cell the unit cell $x \ 100$ $= \frac{4}{3}\pi \left(\frac{\sqrt{3}}{4}a\right)^3 = \frac{\sqrt{3}}{16}\pi a^3$ in bcc arrangement is 2.	1/2 1/2 1/2 1/2 1/2
Lim (or) cen Pac Volu AC ² AC In Δ AG ² AG fron Volu The	Four -either tetrahedral or squa itation: it does not explain their colour ar b) i) Calculate the percentage efficient intered cubic crystal? (3) Exing efficiency = $\frac{\text{total volume occupied I}}{\text{volume of the sphere with radius 'r'}} = \sqrt{3a}$ ABC, $2^2 = AB^2 + BC^2$ $= \sqrt{AB^2 + BC^2} = \sqrt{a^2 + a^2} = \sqrt{2a}$ AGC, $2^2 = AC^2 + CG^2$ $= \sqrt{AC^2 + CG^2} = \sqrt{(\sqrt{2a})^2 + a^2} = \sqrt{3a}$ In figure, AG = 4r $r = \frac{\sqrt{3}}{4}a$ unume of the sphere with radius 'r' = $\frac{4}{3}\pi r^3$ enumber of spheres belongs to a unit cell $2 \times \frac{\sqrt{3}}{4}\pi a^3$	The planar geometry. Ind the magnetic properties. cy of packing in case of body $\frac{by \text{ spheres in a unit cell}}{he unit cell} \times 100$ $= \frac{4}{3}\pi \left(\frac{\sqrt{3}}{4}a\right)^3 = \frac{\sqrt{3}}{16}\pi a^3$ in bcc arrangement is 2.	1/2 1/2 1/2 1/2 1/2

Prepared by Dr.R.Karthic, PG Assistant (Chemistry), GHSS – Vallipattu

www.Trb Tnpsc.Com

Prepared by Dr.R.Karthic, PG Assistant (Chemistry), GHSS – Vallipattu

www.Trb Tnpsc.Com

www.Trb Tnpsc.Com

Prepared by Dr.R.Karthic, PG Assistant (Chemistry), GHSS – Vallipattu

	H-	СНО —С —ОН		
	HO-	С́Н		
	H-	– ^т с —он	1	
	H-	_[—Ç —ОН		
I) (Give any three differences betweer	n DNA and RNA. (2) (any two)	K	
	DNA	RNA		
1	It is mainly present in nucleus,	It is mainly present in cytoplasm,		
1	mitochondria and chloroplast	nucleolus and ribosomes		
2	It contains deoxyribose sugar	It contains ribose sugar		
3	Its life time is high	It is Short lived		
4	It is stable and not hydrolysed	It is unstable and hydrolyzed easily by	2	
4	easily by alkalis	alkalis		
5	Double stranded molecules	Single stranded molecules		
6	Base pair A = T. G ≡ C	Base pair A = U. C ≡ G		
-	It can replicate itself	It cannot replicate itself. It is formed from		
1		DNA.		
			1	1

Prepared by Dr.R.Karthic, PG Assistant (Chemistry), GHSS - Vallipattu