KK/12/Che/1

Class: 12

Register		7		
Number	1 1			- 1
ALTERNATION OF THE PERSON OF T				

COMMON HALF YEARLY EXAMINATION 2024-25

COMME			
Time Allowed: 3.00 Hours	CHEMIST:	RY	Max. Marks : 70
L. Choose the correct answer.			. 15x1=15
 Choose the correct answer. Flux is a substance which is use 	d to convert		
a) Mineral into Silicate	b)	Infusible impuritie	es to soluble impurties
c) Soluable imputies to infusible	le impurites d)	All of these	
2. In Diborane, the number of elect			
		Four	d) Three
		,	7 A 7
		Cu [No ₃], and N ₂ C	in the
a) Cu [NO ₃] ₂ , NO and NO ₂			
c) Cu [NO ₃] ₂ and NO ₂		Cu [No ₃] ₂ and NO	
4. ——— is used for the treatment			
a) Potassium dichromate	b)		nate
c). Potassium Permanganate	d)	Chromium	
 IUPAC name of [Ag(NH₃)_z*] is 	1. (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c		
a) Di ammine Silver (ii) ion	b)	Di ammine Silver	(i) ion
c) Di ammine Argentate (i) ion	d)	Di ammine Argen	tate (ii) ion
CsCl has bcc arrangement, its u	nit cell edge length	is 400pm, its inter	atomic distance is
. 1		4.400	d) $\frac{\sqrt{3}}{2}$ x 400 pm
a) 400 pm , b) 800) pm c)	√3x100 pm	d) 2 x 400 pm
B. Which of the following Compoun a) BF ₃ b) PF ₃ b) PF ₃ ln Leclanche cell the hydrogen g a) Zn b) Gra column-I a) I ₂ sol b) Gold Sol c) Hydroxide Sol d) Water insoluble Sol a) a - ii, b - iv, c- i, d - iii c) a - iv, b - iii, c- ii, d - i Clycerol reates with KHSO₄to pro a) Acrolein b) Oxa 12. CH ₃ Br KCN (A) H ₃ O* (B) PCI →	ivation energy c) Id is most likely to b c) It is solidized to wa Iphite c) Column - II i) Hydrolysis ii) Oxidation iii) Double Decon iv) Reduction b) d) oduce alic Acid c) (C) Product (C)	Entropy ahave as a Lewis to CF ₄ ater by MnO ₂ mposition a - i, b - ii, c- iii, do a - iii, b - i, c- iv, do Formaldehyde is	d) Internal Energy base? d) SiF₄ d) NH₄Cl - iv - ii d) Tartaric Acid
a) Acetyl chloride	b)	Chloro acetic Acid	
c) α - Chloro cyano ethanoic aci	id d)	None of these	e per e man
Nitration of Nitro benzene at 473	K results in	or those	
a) O - diNitrobenzene	b)	1,3 Di Nitrobenzer	5 50° 30°
c) 1,3,5 - Tri Nitro benzene	d)		
14. If one stand of the DNA has the S	equences 'ATGCTT	1,4 Di Nitro benze	ne
stand would be	9	or then the seque	nce of of complementary
a) TACGAACT	b)		
C) TACGTACT	-13	TCCGAACT	
io. The Polymer used in walting blan	nkets is	TACGRACT	
a) Polystyrene b) PAN	1 6	Dat	D. Dahdhan

PART - II 6x2=12 Answer any six questions. Question No. 24 is compulsory. 16. Explain Auto Reduction? 17. Give the Uses of Neon? 18. What are the Limitations of VB theory? 19. Define Ionic Product of Water? Give its value at Room Temperature? 20. Why does conductivity of a solution decrease on dilution of the solution? 21. Write any three tests to differentiate Alcohols and Phenols. 22. Write Gomberg Reaction. 24. If the Rate constant of a first order reaction is 1.54x10-3s-1, Calculate its half life Period. 6x3=18 III Answer any six questions. Question No. 33 is compulsory. 25. Give the Structure of CO and CO2? 26. What is Lanthanoid contraction? Explain its consequences? 28. What is meant by the term Co- Ordination Number? What is the coordination number of atoms in a Structure? 29. Give Examples for First order Reaction? 30. Difference between Chemisorption and Physisorption? 31. How will you convert Benzaldehyde into the following Compounds? Malachite green Cinnamic acid ii) 32. How is RNA molecules classified ? Explain their functions? 33. Identify A and B Na(Hg) / C₂H₅OH CH₃ - CH₂- NH₂ Na(Hg) / C₂H₅OH CH₃ - CH₂-NH₂

4 [H] PART - IV ii) 5x5=25 IV. Answer all the questions. 34. (a) Explain Zone Refining Process with an Example? (5) (OR) (b) i) What is mean by burnt Alum? (2) ii) Explain Deacon's process for Manufacture of Chlorine. (3) 35. (a) [Ni(Cn)₄]² is diamagnetic, while [Cr(NH₃)₆]³⁺ is Paramagnetic. Explain (5) (OR) (b) Explain the Schottky defect and Frenkel Defect. (5) 36. (a) Derive an expression for Henderson-Hasselbalch Equation. (OR) (b) i) Write a note on Sacrificial Protection. (3) ii) What is Brownian movement? (2) 37. (a) (i) Write Reimer - Tiemann reaction. (ii) What happens when Diethyl Ether react. with a) Excess HI and (b) Cl₂ / Sun light. (3) (OR) Write the Mechanism for Aldol condensation of Acetaldehyde? (5) (b) i) Write a short note on Peptide Bond. (2) 38. (a) i) ii) How is Buna - S Prepared? (3) (OR) b) Identify Compounds A, B, C, D and E Aromatic Hydrocarbon $\xrightarrow{\text{CH}_3\text{Cl}} \xrightarrow{\text{AnhyAlcl}_3} \xrightarrow{\text{A}} \xrightarrow{\text{N}} \xrightarrow{\text{B}} \xrightarrow{\text{N}} \xrightarrow{\text{N}$ KK/12/Che/2