HALF YEARLY EXAMINA - 2024

CLASS:XII

MATHEMATICS

Reg.No

Time: 3.00 Hours

MARKS: 90

PART - I

Answer all the questions.

 $20 \times 1 = 20$

1. If
$$A = \begin{pmatrix} 7 & 3 \\ 4 & 2 \end{pmatrix}$$
, then $9I_2 - A =$

1) A^{-1}

2) $\frac{A^{-1}}{2}$

3) $3A^{-1}$

2. In the non-homogenous system of equations with 3 unknowns if $\rho(A) = \rho([A/B]) = 2$ then the system has

1) unique solution

2) one parameter family of solutions

3) two parameter family of solutions

4) no solution

3. If |z| = 1, then the value of $\frac{1+z}{1+\overline{z}}$ is

1) z

4. The solution of the equation |z| - z = 1 + 2i is

1) $\frac{3}{2}$ - 2*i*

2) $-\frac{3}{2} + 2i$ 3) $2 - \frac{3}{2}i$ 4) $2 + \frac{3}{2}i$

5. The number of real numbers in $[0,2\pi]$ satisfying $\sin^4 x - 2\sin^2 x + 1$ is

1) 2

6. If $\cot^{-1} x = \frac{2\pi}{5}$ for some $x \in R$, then value of $\tan^{-1} x$ is

7. The radius of the circle $3x^2 + by^2 + 4bx - 6by + b^2 = 0$ is

1) 1

3) $\sqrt{10}$ 4) $\sqrt{11}$

8. If the parabola $y^2 = 4ax$ passes through the point (3,2) then the length of its latus rectum is

 $(1)^{\frac{2}{2}}$

 $(3)^{\frac{1}{2}}$

9. If \vec{a} and \vec{b} are unit vectors such that $[\vec{a}, \vec{b}, \vec{a} \times \vec{b}] = \frac{1}{4}$, then the angle between \vec{a} and \vec{b} is

 $1)\frac{\pi}{\epsilon}$

 $(4)^{\frac{\pi}{2}}$

10. The coordinates of the point where the line $\vec{r} = (6\hat{\imath} - \hat{\jmath} - 3\hat{k}) + t(-\hat{\imath} + 4\hat{k})$ meets the plane $\vec{r} \cdot (\vec{\imath} + \vec{\jmath} - \vec{k}) = 3$ are

1) (2,1,0)

2) (7,-1,-7) 3) (1,2,-6)

4) (5,-1,1)

M Poovarasan M.Sc., B.Ed PG Asst in chemistry Dharmapuri district

11. The value of the limit $\lim_{x\to 0} \left(\cot x - \frac{1}{x}\right)$

1).0

2) 1

3)2

4) -1

	,			
12. The point of it	inflection of the curve $y =$	$(x-1)^3$ is		
1) (0,0)	2) (0,1)	3) (1,0)	4) (1,1)	
13. If $f(x,y) = e$	$\frac{\partial^2 f}{\partial x \partial y}$, then $\frac{\partial^2 f}{\partial x \partial y}$ is equal to		•	
1) xye ^{xy}	$2) (1 + xy)e^{xy}$	$3) (1+y)e^{xy}$	$4) (1+x)e^{xy}$	
14. The value of J	$\int_{-1}^{2} x dx$ is			. 1
$1)\frac{1}{2}$	$2)\frac{3}{2}$	$3)\frac{5}{2}$	4) $\frac{7}{2}$	
15. The value of J	$\int_0^1 x^2 (1-x)^3 dx$ is			
$1)\frac{1}{30}$	$2)\frac{1}{20}$	$3)\frac{1}{60}$	$4)\frac{1}{2}$	
16. The order and	degree of the differential	equation $\sqrt{\sin x}$ (dx	$(x+dy) = \sqrt{\cos x} (dx - dy)$	y.
1) 1,2	2) 2,2	3) 1,1	4) 2,1	•
17. Integrating fac	ctor of the differential equa	$ation x \frac{dy}{dx} - y = 2x^2$	is	
1) e^{-x}	2) x	$3)\frac{1}{x}$	4) e ^{-y} .	
18. Let X have a	Bernoulli distribution with	mean 0.4, then the v	ariance of (2X-3) is	
1) 0.24	2) 0.48	3) 0.6	4) 0.96	
19. The value of	Var(3X-5) is			
1) 2Var(Y)	2) 5	3) 25 Var(Y)	A) 9Var(Y)	

- 20. The operation * defined by $a * b = \frac{ab}{7}$ is not a binary operation on
 - 1) Q+

PART - II

Answer any seven questions. Question No.30 is compulsory.

21. If
$$adj(A) = \begin{bmatrix} 0 & -2 & 0 \\ .6 & 2 & -6 \\ -3 & 0 & 6 \end{bmatrix}$$
 find A^{-1} .

- 22. Find the square root of 6 8i.
- 23. If α and β are the roots of the quadratic equation $2x^2 7x + 13 = 0$, construct a quadratic equation whose roots are α^2 and β^2 .
- 24. Find centre and radius of the circle $x^2 + y^2 + 6x 4y + 4 = 0$.
- 25. Explain why Lagrange's mean value theorem is not applicable to the function in the respective intervals $f(x) = |3x + 1|, x \in [-1,3]$.
- 26. Let $g(x) = x^2 + \sin x$. Calculate the differential dg.
- 27. Evaluate $\int_0^\infty x^5 e^{-3x} dx$.

- 28. Show that $y = e^{-x} + mx + n$ is a solution of the differential equation $e^{x} \left(\frac{d^{2}y}{dx^{2}} \right) 1 = 0$.
- 29. The probability that a certain kind of component will survive a electrical test is $\frac{3}{4}$. Find the probability that exactly 3 of the 5 components tested survive.
- 30. Find the angle between the following lines. x = y + 2 = z and x + 2 = 2y = 2z.

PART - III

Answer any Seven questions. Question No.40 is compulsory.

 $7 \times 3 = 21$

- 31. Solve the systems of linear equations by Cramer's rule: 5x 2y + 16 = 0, x + 3y 7 = 0.
- 32. If z = x + iy is a complex number such that $\left| \frac{z-4i}{z+4i} \right| = 1$ show that the locus of z is real axis.
- 33. Show that the polynomial $9x^9 + 2x^5 x^4 7x^2 + 2$ has at least six imaginary roots.
- 34. Find the value of $\tan^{-1}(\sqrt{3}) \sec^{-1}(-2)$.
- 35. Let, \vec{a} , \vec{b} , \vec{c} be three non-zero vectors such that \vec{c} is a unit vector perpendicular to both \vec{a} and \vec{b} . If the angle between \vec{a} and \vec{b} is $\frac{\pi}{6}$, show that $[\vec{a}, \vec{b}, \vec{c}]^2 = \frac{1}{4} |\vec{a}|^2 |\vec{b}|^2$.
- 36. Find the equations of tangent and normal to the curve $y = x^2 + 3x 2$ at the point (1,2).
- 37. Show that the percentage error in the n^{th} root of a number is approximately $\frac{1}{n}$ times the percentage error in the number.
- 38. Evaluate: $\int_{2}^{3} \frac{\sqrt{x}}{\sqrt{5-x}+\sqrt{x}} dx$
- 39. Establish the equivalence property: $p \rightarrow q \equiv \neg p \lor q$
- 40. Solve: $\frac{dy}{dx} = xy 1 + x y$; y(0) = 0.

PART - IV

Answer all the questions.

 $7 \times 5 = 35$

41. (a) Investigate the values of λ and μ the system of linear equations $2x + 3y + 5z = 9.7x + 3y - 5z = 8.2x + 3y + \lambda z = \mu$, have (i)no solution (ii) a unique solution (iii) an infinite number of solutions.

(or)

- (b) Show that the line x y + 4 = 0 is a tangent to the ellipse $x^2 + 3y^2 = 12$. Also find the coordinates of the point of contact.
- 42. (a) If $\omega \neq 1$ is a cube root of unity, show that the roots of the equation $(z-1)^3 + 8 = 0$ are $-1,1-2\omega,1-2\omega^2$.

(or)

(b) Prove that $\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \tan^{-1} \left[\frac{x + y + z - xyz}{1 - xy - yz - zx} \right]$.

43. (a) A bridge has a parabolic arch that is 10m high in the centre and 30m wide at the bottom. Find the height of the arch 6m from the centre, on either sides.

- (b) Prove that $f(x,y) = x^3 2x^2y + 3xy^2 + y^3$ is homogeneous; what is the degree? Verify Euler's Theorem for f.
- 44. (a) Prove by vector method that the perpendiculars (attitudes) from the vertices to the opposite sides of a triangle are concurrent.

(b) A random variable X has the following probability mass function.

x	1	2	3	4	5	6
f(x)	k	· 2k	6k .	5 <i>k</i>	6 <i>k</i>	10k

Find (i)P(2 < X < 6) (ii) $P(2 \le X < 5)$

- (iii) $P(X \le 4)$
- (iv)P(3 > X).
- 45. (a) Find the non-parametric form of vector equation, and Cartesian equation of the plane passing through the point (0,1,-5) and parallel to the straight lines

$$\vec{r} = (\hat{\imath} + 2\hat{\jmath} - 4\hat{k}) + s(2\hat{\imath} + 3\hat{\jmath} + 6\hat{k}) \text{ and } \vec{r} = (\hat{\imath} - 3\hat{\jmath} + 5\hat{k}) + t(\hat{\imath} + \hat{\jmath} - \hat{k}).$$

(or)

- (b) A ladder 17 metre long is leaning against the wall. The base of the ladder is pulled away from the wall at a rate of 5 m/s. When the base of the ladder is 8 metres from the wall,
- (i) how fast is the top of the ladder moving down the wall?
- (ii) at what rate, the area of the triangle formed by the ladder, wall, and the floor, is changing?
- 46. (a) A rectangular page is to contain 24 cm² of print. The margins at the top and bottom of the page are 1.5 cm and the margins at other sides of the page is 1 cm. What should be the dimensions of the page so that the area of the paper used is minimum.

- (b) Find the area of the region enclosed by the parabolas $y = x^2 5x$ and $y = 7x x^2$.
- 47. (a) The growth of a population is proportional to the number present. If the population of a colony doubles in 50 years, in how many years will the population become triple? (or)
 - (b) Verify (i) closure property, (ii) commutative property, (iii) associative property, (iv) existence of identity, and (v) existence of inverse for the operation $+_5$ on Z_5 using table corresponding to addition modulo 5.