COMMON HALF YEARLY EXAMINATION - 2024

Standard XII

Reg.No.:

MATHEMATICS

Time: 3.00 hrs.

Answer all the questions.

- 1. If $A = \begin{bmatrix} 3/5 & 4/5 \\ x & 3/5 \end{bmatrix}$ and $A^T = A^{-1}$, then the value of x is
 - a) $-\frac{4}{5}$
- b) $-\frac{3}{5}$

d) 4/5

- 2. If $A = \begin{bmatrix} 2 & 3 \\ 5 & -2 \end{bmatrix}$ be such that $\lambda A^{-1} = A$, then λ is

- d) 14

- Identify the incorrect statement.
 - a) $|z|^2 = 1 \Rightarrow \frac{1}{7} = \overline{z}$ b) $Re(z) \le |z|$ c) $||z_1| |z_2|| \ge |z_1 + z_2|$ d) $|z^n| = |z|^n$

- If z = x + iy is a complex number such that |z+2| = |z-2| then the locus of z is d) circle
- a) real axis 5. A zero of $x^3 + 64$ is
- b) imaginary axis c) elipse
- 6. If $\cot^{-1} x \frac{2\pi}{5}$ for some $x \in \mathbb{R}$, then the value of $\tan^{-1} x$ is

a) 0

- b) $\frac{\pi}{5}$

c) 4i

- The properties closure, associative, identity, inverse and commutative under addition 7. such the set
 - a) R
- b) N
- c) {1, -1, 0}
- The operation * defined by a * b = $\frac{ab}{7}$ is not a binary operation on
 - a) R

- Area of the greatest rectangle inscribed in the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is
 - a) √ab
- b) 2ab
- c) a/h
- 10. The equation of the circle passing through the foci of the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ having centre at (0,3) is
 - a) $x^2 + y^2 6y 7 = 0$ c) $x^2 + y^2 6y 5 = 0$

b) $x^2 + y^2 - 6y + 7 = 0$ d) $x^2 + y^2 - 6y + 5 = 0$

- 11. The volume of the parallelepiped with its edges represented by the vectors $\hat{i} + \hat{j}$, $\hat{i} + 2\hat{j}$, $\hat{i} + \hat{j} + \pi \hat{k}$ is
- b) $\frac{\pi}{2}$ c) $\frac{\pi}{4}$

12. The co-ordinates of the point where the line $\vec{r} = (6\hat{i} - \hat{j} - 3\hat{k}) + t(-\hat{i} + 4\hat{k})$ meet the plane $\vec{r} \cdot (\hat{i} + \hat{j} - \hat{k}) = 3$ are

(2)

a) (2,1,0)

b) (7,-1,-7)

c) (1,2,-6)

d) (5,-1,1)

13. The position of a particle moving along a horizontal line of any time t is given by $s(t) = 3t^2 - 2t - 8$. The time at which the particle is at rest is

a) t=3

b) t=0

d) t = 1

14. The maximum value of the function $x^2 e^{-2x}$, x > 0 is

b) 1/e

c) 4/4

d) $\frac{1}{2e}$

15. If $w(x,y) = x^y$, x > 0 then $\frac{\partial w}{\partial x}$ is equal to

a) $x^y \log x$ b) $y \log x$ c) $y x^{y-1}$

d) x log y

16. The value of $\int_{-1}^{\infty} |x| dx$ is

a) $\frac{1}{2}$ b) $\frac{3}{2}$

c) $\frac{5}{2}$

d) 7/2

17. The value of $\int_{0}^{1} x(1-x)^{99} dx$ is

a) $\frac{1}{10010}$ b) $\frac{1}{11000}$

c) $\frac{1}{10001}$

d) $\frac{1}{10100}$

18. The solution of differential equation $\frac{dy}{dx} = \frac{y}{x} + \frac{\phi(\frac{y}{x})}{\phi'(y)}$ is

a) $x \phi \left(\frac{y}{x}\right) = k$ b) $\phi \left(\frac{y}{x}\right) = kx$ c) $y \phi \left(\frac{y}{x}\right) = k$ d) $\phi \left(\frac{y}{x}\right) = ky$

19. The general solution of the differential equation $\frac{dy}{dx} = \frac{y}{x}$ is

a) y = kx

b) xy = k

dc) $\log y = kx$ d) $y = k \log x$

20. A random variable X has a binomial distribution with n = 25 and p = 0.8, then the standard deviation of X is

Part - II

a) 2

d) 3

Answer any 7 questions. (Q.No.30 is compulsory)

 $7 \times 2 = 14$

21. Fnd the least positive integer n such that $\left(\frac{1+i}{1-i}\right)^n = 1$

22. Find the principal value of $tan^{-1}(\sqrt{3})$

23. If p and q are the roots of the equation $lx^2 + nx + n = 0$, show that $\sqrt{\frac{p}{q}} + \sqrt{\frac{q}{p}} + \sqrt{\frac{n}{l}} = 0$

24. If Y = 4x + c is tangent to the circle $x^2 + y^2 = 9$, find c.

- 25. Find the acute angle between the straight lines $\frac{x-4}{2} = \frac{y}{1} = \frac{z+1}{2}$ and $\frac{x-1}{4} = \frac{y+1}{2} = \frac{z-2}{2}$.
- 26. Find the value in the interval $(\frac{1}{2}, 2)$ satisfied by the Rolle's theorem for the function $f(x) = x + \frac{1}{x}, x \in [\frac{1}{2}, 2]$
- 27. Find df for $f(x) = x^2 + 3x$ and evaluate it for x = 2 and dx = 0.1
- 28. Evaluate: $\int_0^{x^5} e^{-3x} dx$
- 29. How many rows are needed for following statement formulae?

 - i) $p \vee \neg t \wedge (p \vee \neg s)$ (ii) $(p \wedge q) \vee (\neg r \vee \neg s) \wedge (\neg t \wedge v)$
- 30. If $adj A = \begin{bmatrix} -1 & 2 & 2 \\ 1 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$, find A^{-1}

III. Answer any 7 questions. (Q.No.40 is compulsory)

 $7 \times 3 = 21$

- 31. Find the rank of the matrix $\begin{vmatrix} 1 & -2 & 3 \\ 2 & 4 & -6 \\ 5 & 1 & -1 \end{vmatrix}$
- 32. Find z^{-1} , if z = (3 + 2i)(1 i)
- 33. Prove that the point of intersection of the tangents at t1 and t2 on the parabola $y^2 = 4ax$ is $[a t_1t_2, a(t_1 + t_2)]$
- 34. Find two positive numbers whose sum is 12 and their product is maximum.
- 35. If $z = ye^{x^2}$, x = 2t and y = 1 t then find $\frac{dz}{dt}$
- 36. Prove that $\int_{0}^{\frac{\pi}{3}} \frac{\sec x \tan x}{1+\sec^{2} x} dx = \tan^{-1}(2) = \frac{-\pi}{4}$
- 37. Let X be a continuous random variable and f(x) is defined as $f(x) = \begin{cases} kx(1-x)^{10} & 0 < x < 1 \\ 0 & \text{otherwise} \end{cases}$ Find the value of k

38. Show that $p \rightarrow q$ and $q \rightarrow p$ are not equivalent.

- 39. A particle acted on by constant forces $8\hat{i} + 2\hat{j} 6\hat{k}$ and $6\hat{i} + 2\hat{j} 2\hat{k}$ is displaced from the point (1,2,3) to the point (5,4,1). Find the total work done by the forces.
- 40. If a + b + c = 0 and a, b, c are rational numbers then, prove that the roots of the equation $(b + c - a) x^2 + (c + a - b) x + (a + b - c) = 0$ are rational numbers.

(4)

XII Maths

Part - IV

IV. Answer all the questions.

 $7 \times 5 = 35$

- 41. a) Solve the equation $z^3 + 8i = 0$ where $z \in C$
 - b) If $u = \sin^{-1} \left(\frac{x+y}{\sqrt{x} + \sqrt{y}} \right)$, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{1}{2}$
- 42. a) Using vector method, prove that $sin(\alpha \beta) = sin \alpha cos \beta cos \alpha sin \beta$ (OR)
 - Suppose the amount of milk sold daily at a milk booth is distributed with a minimum 200 litres and a maximum of 600 litres with probability density function
 - $f(x) = \begin{cases} k & 200 \le x \le 600 \\ 0 & \text{otherwise} \end{cases}$ Find (i) the value of k (ii) the distribution function
 - (iii) the probability that daily sales will full between 300 litres and 500 litres.
- 43. a) On lighting a rocket cracker it gets projected in a parabolic path and reaches a maximum height of 4 m when it is 6 m away from the point of projection. Finally it reaches the ground 12 m away from the starting point. Find the angle of projection.

(OR

- b) Solve: $\tan^{-1}(\frac{x-1}{x-2}) + \tan^{-1}(\frac{x+1}{x+2}) = \frac{\pi}{4}$
- 44. a) Solve by cramer's rule, the system of equations 3x + 3y z = 11, 2x y + 2z = 9, 4x + 3y + 2z = 25 (OR)
 - b) Find the dimensions of the largest rectangle that can be inscribed in a semi circle of radius r cm.
- 45. a) Find the parametric form of vector equation and cartesian equation of the plane passing through the points (2,2,1), (9,3,6) and perpendicular to the plane 2x + 6y + 6z = 9

(OR)

- b) Solve the equation : $2x^3 + 11x^2 9x 18 = 0$
- 46. a) Prove that $p \to (\neg q \lor r) \equiv \neg p \lor (\neg q \lor r)$ using truth table. (OR)
 - b) The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given that the number triples in 5 hours, Find how many bacteria will be present after 10 hours?
- 47. a) Prove that the ellipse $x^2 + 4y^2 = 8$ and hyperbola $x^2 2y^2 = 4$ intersect orthogonally.

(OR)

b) Evaluate: $\int_{-\pi}^{\pi} \frac{\cos^2 x}{1+a^x} dx$

BHARATHIRAJA A
M.Sc., M.Ed., M.Phil., D.O.A
P.G.T in Zoology
De Britto Hr. Sec. School.
Devakottai.
