SIR CV RAMAN COACHING CENTRE- IDAPPADI,

PREPARED BY DR.G.THIRUMOORTHI, GOVT ARTS COLLEGE (A) SALEM -7

XII- MATHS EXCERISE 3.1,3.2,3.3. SLIP TEST QUESTION PAPER - 2024

SECTION - A (
$$10 \times 5 = 50 \text{ M}$$
)

ANSWER ANY TEN QUESTIONS

1. If the sides of a cubic box are increased by 1, 2, 3 units respectively to form a cuboid, then the volume is increased by 52 cubic units. Find the volume of the cuboid.

If α , β and γ are the roots of the cubic equation $x^3 + 2x^2 + 3x + 4 = 0$, form a cubic equation whose roots are

(i)
$$2\alpha$$
, 2β , 2γ (ii) $\frac{1}{\alpha}$, $\frac{1}{\beta}$, $\frac{1}{\gamma}$ (iii) $-\alpha$, $-\beta$, $-\gamma$

If α , β , and γ are the roots of the equation $x^3 + px^2 + qx + r = 0$, find the value of $\sum \frac{1}{\beta \gamma}$ in terms of the coefficients.

4.

3.

If p and q are the roots of the equation $lx^2 + nx + n = 0$, show that $\sqrt{\frac{p}{q}} + \sqrt{\frac{q}{p}} + \sqrt{\frac{n}{l}} = 0$.

If the equations $x^2 + px + q = 0$ and $x^2 + p'x + q' = 0$ have a common root, show that it must be equal to $\frac{pq' - p'q}{q - q'}$ or $\frac{q - q'}{p' - p}$.

- 6. Form a polynomial equation with integer coefficients with $\sqrt{\frac{\sqrt{2}}{\sqrt{3}}}$ as a root
- 7. Prove that a line cannot intersect a circle at more than two points.

 If k is real, discuss the nature of the roots of the polynomial equation $2x^2 + kx + k = 0$, in 8. terms of k.
- 9. Prove that a straight line and parabola cannot intersect at more than two points.
- 10. Solve the cubic equation: $2x^3 x^2 18x + 9 = 01$ if sum of two of its roots vanishes.
- Solve the equation : $x^4 14x^2 + 45 = 0$.

Determine k and solve the equation $2x^3 - 6x^2 + 3x + k = 0$ if one of its roots is twice the sum 12.

If the roots of $x^3 + px^2 + qx + r = 0$ are in H.P., prove that $9pqr = 27r^2 + 2q^3$. Assume $p, q, r \neq 0$

Find the condition that the roots of $ax^3 + bx^2 + cx + d = 0$ are in geometric progression. Assume $a,b,c,d \neq 0$

Solve the equation $x^4 - 9x^2 + 20 = 0$.

PREPARED BY

Dr.G.THIRUMOORTHI ,M.Sc,B.Ed.,Ph.D GOVT ARTS COLLEGE (A) SALEM -7

Thiruphysics 1994 @gmail.com

8610560810