

12. The value of $\int_{0}^{1} x(1-x)^{99} dx$ is a) $\frac{1}{11000}$ b) $\frac{1}{10100}$ c) $\frac{1}{10010}$ d) $\frac{1}{10001}$ 13. The solution of $\frac{dy}{dx} + p(x)y = 0$ is a) $y = ce^{\int pdx}$ b) $y = ce^{-\int pdx}$ c) $x = ce^{-\int pdy}$ d) $x = ce^{\int pdy}$ 14. If P(X = 0) = 1 - P(X = 1). If E[X] = 3 Var(X), then P(X = 0) is a) $\frac{2}{3}$ b) $\frac{2}{5}$ c) $\frac{1}{5}$ d) $\frac{1}{3}$ 15. The operation * defined by $a^* b = \frac{ab}{7}$ is not a binary operation on a) Q⁺ b) Z c) R d) C 16. $sin(sin^{-1}x) = x$ if a) |x|≤1 b) |x| ≥ 1 c) |x| < 1 d) $|\mathbf{x}| \leq \frac{\pi}{2}$ 17. The non parametric form of a vector equation passing through two points whose position vectors are \vec{a} and \vec{b} and parallel to \vec{u} is a) $\left[\vec{r}-\vec{u},\vec{b}-\vec{a},\vec{u}\right]=0$ b) $\left[\vec{r}-\vec{a},\vec{u}-\vec{a},\vec{u}\right]=0$ c) $\left[\vec{r}-\vec{u},\vec{a}-\vec{b},\vec{u}\right]=0$ d) $\left[\vec{r}-\vec{a},\vec{b}-\vec{a},\vec{u}\right]=0$ 18. If f(x) is continuous on [a, b] then f has both absolute maximum and absolute minimum in [a, b]. This statement is a) Extreme value theorem b) Intermediate value theorem c) Lagrange mean value theorem d) Taylors theorem 19. If X ~ B (n, p) then a) $\mu = np, \sigma^2 = np(1-p)$ b) $\mu = nq, \sigma^2 = np(1-p)$ d) $\mu = np, \sigma^2 = nq(1-p)$ c) $\mu = nq, \sigma^2 = np(1-q)$ 20. y = mx + c is a tangent to the parabola $y^2 = 4ax$ then a) $c = \frac{a}{m}$ b) $c = \frac{m}{a}$ c) $c^2 = a^2m^2 + b^2$ d) m = c Part - II Answer any 7 questions. (Q.No.30 is compulsory) $7 \times 2 = 14$ II. 21. If $adjA = \begin{vmatrix} -1 & 2 & 2 \\ 1 & 1 & 2 \\ 2 & 2 & 1 \end{vmatrix}$, find A⁻¹ 22. Show that the following equations represent a circle, and find its center and radius. |z-2-i| = 323. Find a polynomial equation of minimum degree with rational coefficients, having 2i + 3as a root. 24. Find the general equation of the circle whose diameter is the line segment joining the points (-4,-2) and (1,1).

www.Trb Tnpsc.Com

www.Padasalai.Net

XII - Maths - 2

www.Padasalai.Net

www.Trb Tnpsc.Com

- 25. Find the angle between the line $\vec{r} = (2\hat{i} \hat{j} + \hat{k}) + t(\hat{i} + 2\hat{j} 2\hat{k})$ and the plane $\vec{r} \cdot (6\hat{i} + 3\hat{j} + 2\hat{k}) = 8$
- 26. Evaluate the following: $\int_{0}^{\frac{\pi}{2}} \sin^{10} x \, dx$
- 27. Find the differential equation for the family of all straight lines passing through the origin.
- 28. Suppose X is the number of tails occurred when three fair coins are tossed once simultaneously. Find the values of the random variable X and number of points in its inverse images.

29. Let $A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ be any two boolean matrices of the same type. Find $A \lor B$ and $A \land B$.

30. Evaluate $\lim_{x \to \infty} \left(\frac{e^x}{x^m} \right)$, $m \in N$

Part - III

III. Answer any 7 questions. (Q.No.40 is compulsory)

7 x 3 = 21

	2	-2	4	3]		
31. Find the rank of the matrix	-3	4	-2	-1	by reducing it to an echelon form.	
	6	2	-1	7	·,·····	

32. The complex numbers u, v and w are related by $\frac{1}{u} = \frac{1}{v} + \frac{1}{w}$. If v = 3 - 4i and

w = 4 + 3i, find u in rectangular form.

33. Solve the equation $x^3 - 5x^2 - 4x + 20 = 0$

- 34. Find the domain of $\cos^{-1}\left(\frac{2+\sin x}{3}\right)$
- 35. The maximum and minimum distances of the Earth 'from the Sun respectively are 152×10^6 km and 94.5×10^6 km. The Sun is at one focus of the elliptical orbit. Find the distance from the Sun to the other focus.
- 36. A variable plane moves in such a way that the sum of the reciprocals of its intercepts on the coordinate axes is a constant. Show that the plane passes through a fixed point.
- 37. Write the Maclaurin series expansion of the following function: $tan^{-1}(x)$; $-1 \le x \le 1$
- 38. Suppose the amount of milk sold daily at a milk booth is distributed with a minimum of 200 liters and a maximum of 600 liters with probability density function

 $f(x) = \begin{cases} k , 200 \le x \le 600 \\ 0 , Otherwise \end{cases}$ Find (i) the value of k (ii) the distribution function

(iii) the probability that daily sales will fall between 300 liters and 500 liters?

39. Define an operation* on Q as follows a * b = $\left(\frac{a+b}{3}\right)$, a, b \in Q. Examine the closure, commutative, and associative properties satisfied by * on Q.

40. Evaluate $\int_{2}^{4} \frac{\sqrt{x}}{\sqrt{6-x} + \sqrt{x}} dx$

XII - Maths - 3

7 x 5 = 35

(OR)

(OR)

Part - IV

IV. Answer all the questions.

41 a) Solve the following systems of linear equations by Cramer's rule:

$$\frac{3}{x} - \frac{4}{y} - \frac{2}{z} - 1 = 0, \ \frac{1}{x} + \frac{2}{y} + \frac{1}{z} - 2 = 0 \ \frac{2}{x} - \frac{5}{y} - \frac{4}{z} + 1 = 0$$
(OR)

b) Find the non-parametric form of vector equation, and Cartesian equation of the plane passing through the point (2,3,6) and parallel to the straight lines

$$\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-3}{1}$$
 and $\frac{x+3}{2} = \frac{y-3}{-5} = \frac{z+1}{-3}$

- 42. a) If z = x + iy and $\arg(\frac{z-i}{z+2}) = \frac{\pi}{4}$, show that $x^2 + y^2 + 3x 3y + 2 = 0$
 - b) The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given that the number triples in 5 hours, find how many bacteria will be present after 10 hours?

43. a) If
$$2 + i$$
 and $3 - \sqrt{2}$ are roots of the equation

 $x^{6} - 13x^{5} + 62x^{4} - 126x^{3} + 65x^{2} + 127x - 140 = 0$ find all roots.

b) A conical water tank with vertex down of 12 meters height has a radius of 5 meters at the top. If water flows into the tank at a rate 10 cubic m/min, how fast is the depth of the water increases when the water is 8 meters deep?

44. a) Prove that
$$\tan^{-1}x + \tan^{-1}\frac{2x}{1-x^2} = \tan^{-1}\left(\frac{3x-x^3}{1-3x^2}\right)$$
, $|x| < \frac{1}{\sqrt{3}}$ (OR)

b) If
$$u = \sin^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$$
, show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \frac{1}{2}\tan u$

45. a) A tunnel through a mountain for a four-lane highway is to have a elliptical opening. The total width of the highway (not the opening) is to be 16m, and the height at the edge of the road must be sufficient for a truck 4m high to clear if the highest point of the opening is to be 5m approximately. How wide must the opening be?

1	0	D	۱
æ	J	n,	,

b) A random variable X has the following probability mass function:

X	1	2	3	4	5
f(x)	k ²	2k ²	3k ²	2 k	3k

Find (i) the value of k (ii) $P(2 \le X < 5)$ (iii) P(3 < X)

46. a) By vector method, prove that $\cos(\alpha+\beta) = \cos\alpha \cos\beta - \sin\alpha \sin\beta$

(OR)

- b) Find the area of the region bounded between the parabolas $y^2 = x$ and $x^2 = y$
- 47. a) A rectangular page is to contain 24 cm² of print. The margins at the top and bottom of the page are 1.5 cm and the margins at other sides of the page is 1 cm. What should be the dimensions of the page so that the area of the paper used is minimum?

(OR)

b) Prove that $p \rightarrow (\neg q \lor r) \equiv \neg q \lor (\neg q \lor r)$ using truth table.

XII - Maths - 4