

b Samy Sir. PH-7639147727 Bet	2
By Samy Sir, PH:7639147727 Page 2	2

- 7. If z = x + iy and $\arg\left(\frac{z-i}{z+2}\right) = \frac{\pi}{4}$, then show that $x^2 + y^2 + 3x 3y + 2 = 0$. (EX 2.7 6) June' 23
- 8. Solve the equation $z^3 + 8i = 0$, where $z \in C$. (EG 2.34) March '23
- 9. Solve the equation $z^3 + 27 = 0.$ (EX 2.8 5)
- 10. If $\omega \neq 1$ is a cube root of unity, show that the roots of the equation $(z 1)^3 + 8 = 0$ are -1, 1 1 2ω , $1 - 2\omega^2$. (EX 2.8 - 6)

11. If
$$2 \cos \alpha = x + \frac{1}{x} \operatorname{and} 2 \cos \beta = y + \frac{1}{y} \operatorname{show}$$
 that
(i) $\frac{x}{y} + \frac{y}{x} = 2 \cos(\alpha - \beta)$ (ii) $xy - \frac{1}{xy} = 2i \sin(\alpha + \beta)$
(iii) $\frac{x^m}{y^n} - \frac{y^n}{x^m} = 2i \sin(m\alpha - n\beta)$ (iv) $x^m y^n + \frac{1}{x^m y^n} = 2 \cos(m\alpha + n\beta)$. (EX 2.8 - 4)
12. Show that the points $1, \frac{-1}{2} + i \frac{\sqrt{3}}{2} \operatorname{and} \frac{-1}{2} - i \frac{\sqrt{3}}{2}$ are the vertices of an equilateral triangle. (EG 2.14)

CHAPTER 3 THEORY OF EQUATIONS

- 1. If 2 + *i* and 3 $\sqrt{2}$ are roots of the equation $x^6 13x^5 + 62x^4 126x^3 + 65x^2 + 127x 126x^3 + 65x^2 + 127x^2 + 127x^2$ 140 = 0, find all roots. (EG 3.15)
- 2. Find all zeros of the polynomial $x^6 3x^5 5x^4 + 22x^3 39x^2 39x + 135$, if it is known that 1 + 2i and $\sqrt{3}$ are two of its zeros. (EX 3.3 - 5)
- 3. Solve the equation $6x^4 5x^3 38x^2 5x + 6 = 0$ if it is known that $\frac{1}{3}$ is a solution. (EX 3.5 7)
- 4. Solve the equations (i) $6x^4 35x^3 + 62x^2 35x + 6 = 0$, (EX 3.5 - 5)
- 5. Solve the equations $(ii)x^4 + 3x^3 3x 1 = 0$. (EX 3.5 5)
- 6. Solve the equation $2x^3 + 11x^2 9x 18 = 0$. (EG 3.18) June '23
- 7. Solve the following equation: $x^4 10x^3 + 26x^2 10x + 1 = 0$. (EG 3.28)

INVERSE TRIGONOMETRIC FUNCTIONS

- 1. To draw y sinx and $y = sin^{-1}x$
- 2. To draw $y \cos x$ and $y = \cos^{-1} x$
- 3. To draw $y \tan x$ and $y = \tan^{-1} x$
- 4. Find the domain of (i) $f(x) = \sin^{-1}\left(\frac{|x|-2}{3}\right) + \cos^{-1}\left(\frac{1-|x|}{4}\right)$ EX. 4.2-6(i)
- 5. Find the value of (*iii*) $cos\left(sin^{-1}\left(\frac{4}{5}\right) tan^{-1}\left(\frac{3}{4}\right)\right)$ (EX 4.3 4)
- 6. Find the value of (*ii*) $sin(tan^{-1}(\frac{1}{2}) cos^{-1}(\frac{4}{5}))$.(EX 4.3 4)
- 7. Evaluate $\sin\left[\sin^{-1}\left(\frac{3}{5}\right) + \sec^{-1}\left(\frac{5}{4}\right)\right]$. (EG 4.20) 8. Prove that (*ii*) $\sin^{-1}\frac{3}{5} + \cos^{-1}\frac{12}{13} = \sin^{-1}\frac{16}{65}$ (EX 4.5 4)
- 9. Prove that $\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \tan^{-1} \left[\frac{x + y + z xyz}{1 xy yz zx} \right]$. (EX 4.5 5)
- 10. If $\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \pi$, show that x + y + z = xyz. (EX 4.5 6)
- 11. If $\cos^{-1} x + \cos^{-1} y + \cos^{-1} z = \pi$ and 0 < x, y, z < 1, show that $x^2 + y^2 + z^2 + 2xyz = 1$. (EG 4.22) March '23
- 12. If $a_1, a_2, a_3, \ldots, a_n$ is an arithmetic progression with common difference d, P.T. $\tan\left[\tan^{-1}\left(\frac{d}{1+a_1a_2}\right) + \tan^{-1}\left(\frac{d}{1+a_2a_3}\right) + \ldots + \tan^{-1}\left(\frac{d}{1+a_na_{n-1}}\right)\right] = \frac{a_n - a_1}{1+a_1a_n}$. (EG 4.23)
- 13. Solve $\tan^{-1} 2x + \tan^{-1} 3x = \frac{\pi}{4}$, if $6x^2 < 1$. (EG 4.27)
- 14. Find the number of solution of the equation $\tan^{-1}(x-1) + \tan^{-1}x + \tan^{-1}(x+1) = \tan^{-1}3x$. (EX 4.5 - 10)

By Samy Sir, PH:7639147727

Page 4

CHAPTER 5 - TWO DIMENSIONAL ANALYTICAL GEOMETRY-II1. Find the equation of the circle passing through the points (1,1), (2, -1) and (3,2). Eg.5.10 2. A road bridge over an irrigation canal have two semi circular vents each with a span of 20m and the supporting pillars of width 2m. to write the equations that model the arches. Eg.5.13 3. A semielliptical archway over a one-way road has a height of 3m and a width of 12m. The truck has a width of 3m and a height of 27. m. Will the truck clear the opening of the archway? (*Fig.* 5.6) Eg.5.30 4. A bridge has a parabolic arch that is 10m high in the centre and 30m wide at the bottom. Find the height of the arch 6m from the centre, on either sides. EX. 5.5-1 5. A tunnel through a mountain for a four lane highway is to have a elliptical opening. The total width

- 5. A tunnel through a mountain for a four lane highway is to have a elliptical opening. The total width of the highway (not the opening) is to be 16m, and the height at the edge of the road must be sufficient for a truck 4m high to clear if the highest point of the opening is to be 5m approximately. How wide must the opening be? **EX. 5.5-2**
- 6. Parabolic cable of a 60m portion of the roadbed of a suspension bridge are

positioned as shown below. Vertical Cables are to be spaced

every 6*m* along this portion of the roadbed. Calculate the lengths of first two of these vertical cables from the vertex. **EX. 5.5-5**

7. Cross section of a Nuclear cooling tower is in the shape of a hyperbola with equation $\frac{x^2}{30^2} - \frac{y^2}{44^2} = 1$.

The tower is 150 m tall and the distance from the top of the tower to the centre of the hyperbola is half the distance from the base of the tower to the centre of the hyperbola. Find the diameter of the top and base of the tower. **EX. 5.5-6**

- 8. A rod of length 1.2 m moves with its ends always touching the coordinate axes. The locus of a point P on the rod, which is 0.3 m from the end in contact with x –axis is an ellipse. Find the eccentricity. **EX. 5.5-7**
- 9. Assume that water issuing from the end of a horizontal pipe, 7.5 *m*above the ground, describes a parabolic path. The vertex of the parabolic path is at the end of the pipe. At a position 2.5 *m*below

By Samy Sir, PH:7639147727

Page 5

the line of the pipe, the flow of water has curved outward 3m beyond the vertical line through the end of the pipe. How far beyond this vertical line will the water strike the ground? **Eg.,6.5**

- 10. On lighting a rocket cracker it gets projected in a parabolic path and reaches a maximum height of 4 *m* when it is 6 *m* away from the point of projection. Finally it reaches the ground 12 *m* away from the starting point. Find the angle of projection. **EX. 5.5-9**
- 11. Show that the line x y + 4 = 0 is a tangent to the ellipse $x^2 + 3y^2 = 12$. Also find the coordinates of the point of contact. **EX. 5.4-3**
- 12. Find the equations of the tangent and normal to hyperbola $12x^2 9y^2 = 108$ at $\theta = \frac{\pi}{3}$. (Hint: use parametric form) **(EX 5.4 6)**
- 13. Find the vertex, focus, directrix, and length of the latus rectum of the parabola $x^2 4x 5y 1 = 0$. Eg.5.17
- 14. For the ellipse $4x^2 + y^2 + 24x 2y + 21 = 0$, find the centre, vertices, and the foci. Also prove that the length of latus rectum is 2. **Eg.5.21**
- 15. Find the centre, foci, and eccentricity of the hyperbola $11x^2 25y^2 44x + 50y 256 = 0$. **Eg.5.24**

CHAPTER 6- APPLICATIONS OF VECTOR ALGEBRA

- 1. By vector method, prove that $\cos(\alpha + \beta) = \cos \alpha \cos \beta \sin \alpha \sin \beta$. Eg.,6.3
- 2. Prove by vector method that $\sin(\alpha \beta) = \sin \alpha \cos \beta \cos \alpha \sin \beta$. Eg.,6.5
- 3. Using vector method, prove that $\cos(\alpha \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$. **EX. 6. 1 9**
- 4. Prove by vector method that $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$. **EX. 6. 1 10**
- 5. Prove by vector method that the perpendiculars (attitudes) from the vertices to the opposite sides of a triangle are concurrent. **Eg.,6.7**
- 6. If $\vec{a} = 2\vec{i} \vec{j}$, $\vec{b} = \vec{i} \vec{j} 4\vec{k}$, $\vec{c} = 3\vec{j} \vec{k}$ and $\vec{d} = 2\vec{i} + 5\vec{j} + \vec{k}$, verify that (*i*) $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = [\vec{a}, \vec{b}, \vec{d}]\vec{c} [\vec{a}, \vec{b}, \vec{c}]\vec{d}$ (*ii*) $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = [\vec{a}, \vec{c}, \vec{d}]\vec{b} [\vec{b}, \vec{c}, \vec{d}]\vec{a}$ Eg.,623
- 7. If $\vec{a} = 2\vec{i} + 3\vec{j} \vec{k}$, $\vec{b} = 3\vec{i} + 5\vec{j} + 2\vec{k}$, $\vec{c} = -\vec{i} 2\vec{j} + 3\vec{k}$, verify that $(i)(\vec{a} \times \vec{b}) \times \vec{c} = (\vec{a}.\vec{c})\vec{b} (\vec{b}.\vec{c})\vec{a}$ $(ii)\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a}.\vec{c})\vec{b} (\vec{a}.\vec{b})\vec{c}$. **EX. 6.3** 4
- 8. Show that the lines $\frac{x-3}{3} = \frac{y-3}{-1}$, z-1 = 0 and $\frac{x-6}{2} = \frac{z-1}{3}$, y-2 = 0 intersect. Also find the point of intersection. **EX. 6.5 4**
- 9. Find the non-parametric form of vector equation, and Cartesian equation of the plane passing through the point (0,1,-5) and parallel to the straight lines $\vec{r} = (\vec{i}+2\vec{j}-4\vec{k}) + s(2\vec{i}+3\vec{j}+6\vec{k})$ and $\vec{r} = (\vec{i}-3\vec{j}+5\vec{k}) + t(\vec{i}+\vec{j}-\vec{k})$. Eg. 6. 43
- 10. Find the vector parametric, vector non-parametric and Cartesian formof the equation of the plane passing through the points (-1,2,0), (2,2,-1) and parallel to the straight line $\frac{x-1}{1} = \frac{2y+1}{2} = \frac{z+1}{-1}$. (EG 6.44)
- 11. Find the non-parametric form of vector equation, and cartesian equation of the plane passing through the point (2,3,6) and parallel to the straight lines $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-3}{1}$ and $\frac{x+3}{2} = \frac{y-3}{-5} = \frac{z+1}{-3}$ EX. 6. 7 1
- 12. Find the parametric form of vector equation, and Cartesian equations of the plane passing through the points (2,2,1), (9,3,6) and perpendicular to the plane 2x + 6y + 6z = 9. **EX**. 6.7 2
- 13. Find parametric form of vector equation and Cartesian equations of the plane passing through the points (2, 2, 1), (1, -2, 3) and parallel to the straight line passing through the points (2, 1, -3) and (-1, 5, -8). **EX. 6. 7 3**
- 14. Find the non-parametric form of vector equation of the plane passing through the point (1, -2, 4)and perpendicular to the plane x + 2y - 3z = 11 and parallel to the line $\frac{x+7}{3} = \frac{y+3}{-1} = \frac{z}{1}$. **EX. 6. 7** – **4**
- 15. Find the parametric form of vector equation, and Cartesian equations of the plane containing the line $\vec{z} = (\vec{z} + 2\vec{L}) + t(2\vec{z} \vec{z} + 4\vec{L})$ and name the line $\vec{z} = (\vec{z} + 2\vec{L} + \vec{L}) = 0$ EV ($\vec{z} = \vec{L}$
- $\vec{r} = (\vec{i} \vec{j} + 3\vec{k}) + t(2\vec{i} \vec{j} + 4\vec{k})$ and perpendicular to plane $\vec{r}.(\vec{i} + 2\vec{j} + \vec{k}) = 8$. **EX**. **6**. **7 5** 16. Find the parametric vector, non-parametric vector and Cartesian form of the equations of the plane passing through the points (3,6, -2), (-1, -2,6) and (6, -4, -2). **EX**. **6**. **7** – **6**

By Samy Sir, PH:7639147727

Page 6

17. Find the non-parametric form of vector equation, and Cartesian equations of the plane $\vec{r} =$ $(6\vec{\iota} - \vec{\iota} + \vec{k}) + s(-\vec{\iota} + 2\vec{\iota} + \vec{k}) + t(-5\vec{\iota} - 4\vec{\iota} - 5\vec{k})$ EX. 6. 7 – 7

CHAPTER 7 - DIFFERENTIALS AND PARTIAL DERIVATIVES

- 1. A conical water tank with vertex down of 12 metres height has a radius of 5 metres at the top. If water flows into the tank at a rate 10 *cubic m/min*, how fast is the depth of the water increases when the water is 8 metres deep? (EX. 7.1 - 8)
- 2. Salt is poured from a conveyer belt at a rate of 30 cubic metre per minute forming a conical pile with a circular base whose height and diameter of base are always equal. How fast is the height of the pile increasing when the pile is 10 metre high? (EG 7.9)
- 3. A ladder 17 metre long is leaning against the wall. The base of the ladder is pulled away from the wall at a rate of 5 m/s. When the base of the ladder is 8 metres from the wall. (*i*) How fast is the top of the ladder moving down the wall? (*ii*) At what rate, the area of the triangle formed by the ladder, wall, and the floor, is changing? (EX. 7.1 - 9)
- 4. A police jeep, approaching an orthogonal intersection from the northern direction, is chasing a speeding car that has turned and moving straight east. When the jeep is 0.6 km north of the intersection and the car is 0.8 km to the east. The police determine with a radar that the distance between them and the car is increasing at 20 km/hr. If the jeep is moving at 60 km/hr at the instant of measurement, what is the speed of the car? (EX. 7.1 - 10)
- 5. A road running north to south crosses a road going east to west at the point *P*. Car *A* is driving north along the first road and car *B* is driving east along the second road. At a particular time car *A* is 10 kilometres to the north of *P* and travelling at 80 *km/hr*, while car *B* is 15 kilometres to the east of P and travelling at 100 km/hr. How fast is the distance between the two cars changing? (EG 7.10)

- **CHAPTER 8 DIFFERENTIALS AND PARTIAL DERIVATIVES** 1. If $u = \sin^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$, Show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \frac{1}{2}\tan u$. (EG 8.22) **June '23**

- 2. If $v(x,y) = \log\left(\frac{x^2+y^2}{x=y}\right)$, prove that $x\frac{\partial v}{\partial x} + y\frac{\partial v}{\partial y} = 1$. (EX 8.7 5) 3. If $w(x,y,z) = \log\left(\frac{5x^3y^4+7y^2xz^4-75y^3z^4}{x^2+y^2}\right)$, find $x\frac{\partial w}{\partial x} + y\frac{\partial w}{\partial y} + z\frac{\partial w}{\partial z}$. (EX 8.7 6) 4. Using Euler's theorem $u = tan^{-1}\left(\frac{x^3+y^3}{x-y}\right)$ prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \sin 2u$.(creative)

CHAPTER 10 - ORDINARY DIFFERENTIAL EQUATIONS

- 1. The growth of a population is proportional to the number present. If the population of a colony doubles in 50 years, in how many years will the population become triple? (EG 10.27)
- 2. The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given that the number triples in 5 hours, find how many bacteria will be present after 10 hours? (EX. 10.8 - 1)
- 3. Find the population of a city at any time t, given that the rate of increase of population is proportional to the population at that instant and that in a period of 40 years the population increased from 3,00,000 to 4,00,000. (EX. 10.8 - 2)
- 4. Assume that the rate at which radioactive nuclei decay is proportional to the number of such nuclei that are present in a given sample. In a certain sample 10% of the original number of radioactive nuclei have undergone disintegration in a period of 100 years. What percentage of the original radioactive nuclei will remain after 1000 years? (EX 10.8 - 6)
- 5. Suppose a person deposits 10,000 Indian rupees in a bank account at the rate of 5% per annum compounded continuously. How much money will be in his bank account 18 months later? (EX 10.8 - 5)

By Samy Sir, PH:7639147727

Page 7

CHAPTER 11 - PROBABILITY DISTRIBUTIONS LAPLACE

- 1. A six sided die is marked '1' on one face, '2' on two of its faces, and '3' on remaining three faces. The die is rolled twice. If *X* denotes the total score in two throws. (*i*) Find the probability mass function. (*ii*) Find the cumulative distribution function. (*iii*) Find $P(3 \le X \le 6)(iv)$ Find $P(X \ge 4)$. (EG 11.8)
- 2. A six sided die is marked '1' on one face, '3' on two of its faces, and '5' on remaining three faces. The die is thrown twice. If *X* denotes the total score in two throws, find (*i*) the probability mass function (*ii*) the cumulative distribution function (*iii*) $P(4 \le X < 10)$ (*iv*) $P(X \ge 6)$ (EX 11.2 -2)
- 3. A random variable *X* has the following probability mass function.

		Ľ) I	5		
x	1	2	3	4	5	6
f(x)	k	2 <i>k</i>	6 <i>k</i>	5 <i>k</i>	6k	10 <i>k</i>

Find (i) P(2 < X < 6) (ii) $P(2 \le X \le 5)$ (iii) $P(X \le 4)$ (iv) P(3 < X) (EG 11.10)

4. A random variable X has the following probability mass function.

x	1	2	3	4	5
f(x)	<i>k</i> ²	$2k^{2}$	3k ²	2 <i>k</i>	3k

Find (*i*) the value of *k* (*ii*) $P(2 \le X < 5)$ (*iii*) P(3 < X) (EX 11.2 – 6)

5. Suppose that f(x) given below represents a probability mass function,

ſ	x	1	2	3	4	5	6
	f(x)	<i>c</i> ²	$2c^{2}$	$3c^{2}$	$4c^2$	С	2 <i>c</i>

Find (*i*) the value of *c* (*ii*) Mean and variance. (EG 11.16)

6. If X is the random variable with probability density function f(x) given by,

$$f(x) = \begin{cases} x - 1, \ 1 \le x < 2\\ -x + 3, \ 2 \le x < 3\\ 0. \qquad Otherwise \end{cases}$$

find (*i*) the distribution function F(x) (*ii*) $P(1.5 \le X \le 2.5)$ (EG 11.12)

7. If *X* is the random variable with probability density function f(x) given by,

$$f(x) = \begin{cases} x+1, & -1 \le x < 0\\ -x+1, & 0 \le x < 1\\ 0, & 0 \text{ therwise} \end{cases}$$

then find (*i*) the distribution function F(x) (*ii*) $P(-0.5 \le X \le 0.5)$ (EX 11.3 – 5)

8. The probability density function of random variable *X* is given by

$$f(x) = \begin{cases} k, & 1 \le x \le 5\\ 0, & 0 \text{ therwise} \end{cases}$$
 Find (*i*) Distribution function

(*ii*) P(X < 3) (*iii*) P(2 < X < 4) (*iv*) $P(3 \le X)$ (EG 11.14)

9. Let *X* be a random variable denoting the life time of an electrical equipment having probability density function $f(x) = \begin{cases} ke^{-2x}, & \text{for } x > 0\\ 0, & \text{for } x < 0 \end{cases}$

for $x \leq 0$

Find (*i*) the value of k (*ii*) Distribution function (*iii*) P(X < 2)

(*iv*) calculate the probability that X is at least for four unit of time (v) P(X = 3). (EG 11.15)

- (*iv*) calculate the probability that *X* is at least for four unit of time (*v*). (1) 10. The probability density function of *X* is given by $f(x) = \begin{cases} ke^{\frac{-x}{3}}, & for x > 0 \\ 0, & for x \le 0 \end{cases}$ Find
 - (*i*) the value of k (*ii*) the distribution function (*iii*) P(X < 3) (*iv*) $P(5 \le X)$ (*v*) $P(X \le 4)$. (EX 11.3 - 4)
- 11. If the probability that a fluorescent light has a useful life of at least 600 hours is 0.9, find the probabilities that among 12 such lights

(*i*) exactly 10 will have a useful life of at least 600 hours;

By Samy Sir, PH:7639147727

Page 8

(*ii*) at least 11 will have a useful life of at least 600 hours;

- (*iii*) at least 2 will not have a useful life of at least 600 hours. **(EX 11.5 6)**
- 12. On the average, 20% of the products manufactured by *ABC* Company are found to be defective. If we select 6 of these products at random and *X* denote the number of defective products find the probability that (*i*) two products are defective (*ii*) at most one product is defective (*iii*) at least two products are defective. **(EG 11.22)**

CHAPTER 12 - DISCRETE MATHEMATICS

- 1. Verify (*i*) closure property, (*ii*) commutative property, (*iii*) associative property, (*iv*) existence of identity, and(*v*) existence of inverse for the operation +5 on \mathbb{Z}_5 using table corresponding to addition modulo 5. (Eg. 12.9)
- 2. Verify (*i*) closure property, (*ii*) commutative property, (*iii*) associative property, (*iv*) existence of identity, and(*v*) existence of inverse for the operation X_{11} on a subset $A = \{1,3,4,5,9\}$ of the set of remainders $\{0,1,2,3,4,5,6,7,8,9,10\}$. **(Eg. 12.10)**
- 3. Define an operation * on \mathbb{Q} as follows: $(a * b) = \frac{a+b}{2}$, $a, b \in \mathbb{Q}$. Examine the closure, commutative, and associative properties satisfied by * on \mathbb{Q} . (*ii*) Define an operation * on \mathbb{Q} as follows: $(a * b) = \frac{a+b}{2}$, $a, b \in \mathbb{Q}$. Examine the existence of identity and the existence of inverse for the operation * on \mathbb{Q} . (Ex. 12.1-5)
- 4. Define an operation* on \mathbb{Q} as follows: $(a * b) = \frac{ab}{3}$, $a, b \in \mathbb{Q}$. Examine the closure, commutative, associative , examine the existence of identity and the existence of inverse for the operation * on \mathbb{Q} . (similar creative)
- 5. Let $A = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}, C = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$ be any three Boolean matrices. Find (i) $A \lor B$ (ii) $A \land B$ (iii) $(A \lor B) \land C$ (iv) $(A \land B) \lor C$. (Ex. 12.1-8)
- 6. Let $M = \left\{ \begin{pmatrix} x & x \\ x & x \end{pmatrix} : x \in \mathbb{R} \{0\} \right\}$ and let * be the matrix multiplication. Determine whether *M* is closed under *. If so, examine commutative and associative and examine the existence of identity, existence of inverse properties for the operation * on *M* . (Ex. 12.1-9)
- 7. Let $M = \left\{ \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} : a \in \mathbb{R} \{0\} \right\}$ and let * be the matrix multiplication. Determine whether M

closed under *. If so, examine commutative and associative ,examine the existence of identity, existence of inverse properties for the operation * on M. (similar creative)

- 8. Let *A* be $\mathbb{Q}\setminus\{1\}$. Define * on *A* by x * y = x + y xy. Is * binary on *A*? If so, examine the commutative and associative properties satisfied by * on *A*. (*ii*) Let *A* be $\mathbb{Q}\setminus\{1\}$. Define * on *A* by x * y = x + y xy. Is * binary on *A*? If so, examine the existence of identity, existence of inverse properties for the operation * on *A*. (Ex. 12.1-10)
- 9. Let *A* be $\mathbb{Q}\setminus\{-1\}$. Define * on *A* by a * b = a + b + ab. Is * binary on *A*? If so, examine the Commutative, examine the existence of identity, existence of inverse properties for the operation * on *A*. (similar creative))
- 10. Verify (*i*) closure property, (*ii*) commutative property, (*iii*) associative property, (*iv*) existence of identity, and(*v*) existence of inverse for following operation on the given set. m * n = m + n mn; $m, n \in \mathbb{Z}$. (EG 12.7)
- 11. Prove that $p \rightarrow (\neg q \lor r) \equiv \neg p \lor (\neg q \lor r)$ using truth table. **(Ex. 12.2-15)**

By Samy Sir, PH:7639147727

Page 9

2 MARKS

CHAPTER 1

- 1. If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is non-singular, find A^{-1} . (EG 1.2)
- 2. If A is a non-singular matrix of odd order, prove that |adj A| is positive. (EG 1.4)
- 3. If *A* is symmetric, prove that then *adj A* is also symmetric. (EG 1.7)
- 4. Prove that $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ is orthogonal. (EG 1.11) 5. If $adjA = \begin{bmatrix} -1 & 2 & 2 \\ 1 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$, find A^{-1} . (EG 1.6) 6. If $adj(A) = \begin{bmatrix} 0 & -2 & 0 \\ 6 & 2 & -6 \\ -3 & 0 & 6 \end{bmatrix}$ find A^{-1} . (EX 1.1-9) June '23
- 7. Verify the property $(A^T)^{-1} = (A^{-1})^T$ with $A = \begin{bmatrix} 2 & 9 \\ 1 & 7 \end{bmatrix}$. (EG 1.8)

CHAPTER 2

- 1. Simplify (i) $\sum_{n=1}^{102} i^n$ (ii) $\sum_{n=1}^{10} i^{n+50}$ (iii) $i^{59} + \frac{1}{i^{59}}$ (EX 2.1 - 6)
- 2. Simplify $\left(\frac{1+i}{1-i}\right)^3 \left(\frac{1-i}{1+i}\right)^3$. (EG 2.4)
- **3.** If $z_1 = 2 + 5i$ find the additive and multiplicative inverse of z_1 . (EX 2.3 3)
- 4. Which one of the points i, -2 + i, and 3 is farthest from the origin? (EG 2.11)
- 5. Find the square root of 6 8i. (EG 2.17)
- 6. Show that |3z 5 + i| represents a circle, and, find its centre and radius. (EG 2.19)
- 7. If $z_1 = 2 + 5i$ find the additive and multiplicative inverse of z_1 . (EX 2.3 3)
- 8. If $\omega \neq 1$ is a cube root of unity, then show that $\frac{a+b\omega+c\omega^2}{b+c\omega+a\omega^2} + \frac{a+b\omega+c\omega^2}{c+a\omega+b\omega^2} = -1$. (EX 2.8 1)
- 9. If $\omega \neq 1$ is a cube root of unity, show that $(i)(1 \omega + \omega^2)^6(1 + \omega \omega^2)^6 = 128$ (EX 2.8 8)

CHAPTER 3

- 1. If α , β and γ are the roots of the equation $x^3 + px^2 + qx + r = 0$, find the value of $\sum \frac{1}{\beta \gamma}$ in terms of the coefficients. (EG 3.3)
- 2. Construct a cubic equation with roots 1,1, and -2 (EX 3.1 2)
- 3. A 12 metre tall tree was broken into two parts. It was found that the height of the part which was left standing was the cube root of the length of the part that was cut away. Formulate this into a mathematical problem to find the height of the part which was cut away. (EX 3.1 - 12)
- 4. Find a polynomial equation of minimum degree with rational coefficients, having $2 + \sqrt{3}ias a$ root. (EX 3.2 - 1)
- 5. Find a polynomial equation of minimum degree with rational coefficients, having 2i + 3 as a root. (EX 3.2 - 3)
- 6. Solve the equation $x^4 9x^2 + 20 = 0$. (EG 3.16)
- 7. Discuss the nature of the roots of polynomials: $(i)x^{2018} + 1947x^{1950} + 15x^8 + 26x^6 + 2019$
- 8. Discuss the maximum possible number of positive and negative roots of the polynomial equation $9x^9 - 4x^8 + 4x^7 - 3x^6 + 2x^5 + x^3 + 7x^2 + 7x + 2 = 0$. (EX 3.6 - 1)
- 9. Show that the equation $x^9 5x^5 + 4x^4 + 2x^2 + 1 = 0$ has at least 6 imaginary solutions. (EX 3.6 - 3)

By Samy Sir, PH:7639147727

Page 10

10. Find the exact number of real roots and imaginary of the equation $x^9 + 9x^7 + 7x^5 + 5x^3 + 3x$. (EX 3.6 - 5)

CHAPTER 4

- 1. Find the principal value of $\sin^{-1}\left(\sin\left(\frac{5\pi}{6}\right)\right)$. (EG 4.3)
- 2. Sketch the graph of $y = sin\left(\frac{1}{3}x\right)$ for $0 \le x < 6\pi$. (EX 4.1 3)
- 3. State the reason for $\cos^{-1}\left(\cos\left(\frac{-\pi}{6}\right)\right) \neq \frac{-\pi}{6}$ (EX 4.2 2)
- 4. Find the principal value of $\sin^{-1}\left(\frac{-1}{2}\right)$ (in radians and degrees). (EG 4.1)
- 5. Find the principal value of $\sin^{-1}(2)$, if it exists(EG 4.2)
- 6. Find (*i*) $\cos^{-1}\left(\frac{-1}{\sqrt{2}}\right)$ (EG 4.6)
- 7. Find the period and amplitude of (*i*) $y = \sin 7x$ (*ii*) $y = -\sin(\frac{1}{3}x)$ (*iii*) $y = 4\sin(-2x)$. (EX 4.1 - 2) 8. For what value of x does $\sin x = \sin^{-1} x$? (EX 4.1 - 5)
- 9. Find the value of $sec^{-1}\left(\frac{-2\sqrt{3}}{3}\right)$. (EG 4.13)

CHAPTER 5

- 1. Find the general equation of a circle with centre (-3, -4) and radius 3 units. (EG 5.1)
- 2. Find the general equation of the circle whose diameter is the line segment joining the points (-4, -2) and (1,1). (EG 5.4)
- 3. Examine the position of the point (2,3) with respect to the circle $x^2 + y^2 6x 8y + 12 = 0$. (EG 5.5)
- 4. If y = 4x + c is a tangent to the circle $x^2 + y^2 = 9$, find c. (EG 5.12)
- 5. If $y = 2\sqrt{2}x + c$ is a tangent to the circle $x^2 + y^2 = 16$, find the value of c. (EX 5.1 8)
- 6. Find the equation of the tangent to the circle $x^2 + y^2 6x + 6y 8 = 0$ at (2,2). (EX 5.1 9)

CHAPTER 6

- 1. If $\vec{a} = -3\vec{\iota} \vec{j} + 5\vec{k}$, $\vec{b} = \vec{\iota} 2\vec{j} + \vec{k}$, $\vec{c} = 4\vec{j} 5\vec{k}$, find $\vec{a} \cdot (\vec{b} \times \vec{c})$. (EG 6.12)
- 2. Find the volume of the parallelepiped whose coterminus edges are given by the vectors $2\vec{i} 3\vec{j} + 3\vec{j}$ $4\vec{k}$, $\vec{i} + 2\vec{j} - \vec{k}$ and $3\vec{i} - \vec{j} + 2\vec{k}$. (EG 6.13)
- 3. Show that the vectors $\vec{i} + 2\vec{j} 3\vec{k}$, $2\vec{i} \vec{j} + 2\vec{k}$ and $3\vec{i} + \vec{j} \vec{k}$ are coplanar. (EG 6.14)
- 4. Show that the points (2,3,4), (-1,4,5) -and (8,1,2) are collinear. (EX 6.4 9)
- 5. For any vector \vec{a} , prove that $\vec{i} \times (\vec{a} \times \vec{i}) + \vec{j} \times (\vec{a} \times \vec{j}) + \vec{k} \times (\vec{a} \times \vec{k}) = 2\vec{a}$. (EX 6.3 2)
- 6. If $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are coplanar vectors, then show that $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = \vec{0}$ (EX 6.3 6)
- 7. Find the distance between the parallel planes x + 2y 2z + 1 = 0 and 2x + 4y 4z + 5 = 0. (EG 6.51)

CHAPTER 7

- 1. The temperature in celsius in a long rod of length 10 *m*, insulated at both ends, is a function of length x given by T = x(10 - x). Prove that the rate of change of temperature at the midpoint of the rod is zero. (Eg. 7.2)
- 2. A person learnt 100 words for an English test. The number of words the person remembers in t days after learning is given by $W(t) = 100 \times (1 - 0.1t^2), 0 \le t \le 10$. What is the rate at which the person forgets the words 2 days after learning? (EG 7.3)
- *3.* If the volume of a cube of side length x is $v = x^3$. Find the rate of change of the volume with respect to x when x = 5 units. (EX. 7.1 - 4)

By Samy Sir, PH:7639147727

Page 11

١ſ

4.	If the mass $m(x)$ (in kilograms) of a thin rod of length x (in metres) is given by, $m(x) = \sqrt{3}x$ then what is the rate of change of mass with respect to the length when it is $x = 3$ and $x = 27$
	metres. (EX 7.1 – 5)
5.	Evaluate the limit $\lim_{x \to 0} \left(\frac{\sin mx}{x} \right)$. (Eg. 7.35)
6.	Evaluate: $\lim_{x\to\infty} \left(\frac{e^x}{x^m}\right)$, $m \in \mathbb{N}$. (Eg. 7.42)
CHAP	TER 8
1.	Find df for $f(x) = x^2 + 3x$ and evaluate it for (i) $x = 2$ and $dx = 0.1$ (ii) $x = 3$ and $dx = 0.02$ (EX 8.2 - 2)
2.	Show that $F(x, y) = \frac{x^2 + 5xy - 10y^2}{3x + 7y}$ is a homogeneous function of degree 1. (EG 8.21)
3.	In each of the following cases, determine whether the following function is homogeneous or not. If it is so, find the degree.
	(i) $f(x,y) = x^2y + 6x^3 + 7$ (ii) $h(x,y) = \frac{6x^2y^3 - \pi y^5 + 9x^4y}{2020x^2 + 2019y^2}$
	(<i>iii</i>) $g(x, y, z) = \frac{\sqrt{3x^2 + 5y^2 + z^2}}{4x + 7y}$ (<i>iv</i>) $U(x, y, z) = xy + \sin\left(\frac{y^2 - 2z^2}{xy}\right)$. (EX 8.7 - 1)
4.	If $u(x, y) = \frac{x^2 + y^2}{\sqrt{x + y}}$, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{3}{2}u$. (EX 8.7 – 4)
CHAP	TER 9
1.	Evaluate: $\int_{0}^{\frac{\pi}{2}} (\sin^2 x + \cos^4 x) dx$ (Eg. 9.37)
2.	Evaluate: $\int_{0}^{\frac{\pi}{2}} \left \cos^{4} x - \frac{7}{2} \right dx.$ (Eg. 9.38)
3.	Evaluate: $\int_{0}^{1} x^{3}(1-x)^{4} dx$. (EG 9.42)
4.	Evaluate: $\int_0^1 x^2 (1-x)^3 dx$ (EX 9.6 – 1)
5.	Evaluate the following: (i) $\int_{0}^{\frac{\pi}{2}} \sin^{10} x dx$ (ii) $\int_{0}^{\frac{\pi}{2}} \cos^7 x dx$ (EX 9.6 – 1)
6.	Evaluate t (i) $\int_0^\infty x^5 e^{-3x} dx$ (EX 9.7 – 1)
СНАР	
	Determine the order and degree (if exists) of the following differential equations:
	(i) $\frac{dy}{dx} = x + y + 5$ (ii) $\left(\frac{d^4y}{dx^4}\right)^3 + 4\left(\frac{dy}{dx}\right)^7 + 6y = 5\cos 3x$ (iii) $\frac{d^2y}{dx^2} + 3\left(\frac{dy}{dx}\right)^2 = x^2\log\left(\frac{d^2y}{dx^2}\right)$
	(<i>iv</i>) $3\left(\frac{d^2y}{dx^2}\right) = \left(4 + \left(\frac{dy}{dx}\right)^2\right)^{\frac{1}{2}}$ (<i>v</i>) $dy + (xy - \cos x)dx = 0$ (EG 10.1)
2.	 Express each of the following physical statements in the form of differential equation. (<i>i</i>) Radium decays at a rate proportional to the amount <i>Q</i> present. (EX 10.2 – 1(i)) (<i>ii</i>) The population <i>P</i> of a city increases at a rate proportional to the product of population and to the difference between 5,00,000 and the population. (EX 10.2 – 1(ii)) (<i>iii</i>) For a certain substance, the rate of change of vapor pressure <i>P</i> with respect to
	 (<i>iv</i>) A saving amount pays 8% interest per year, compounded continuously. In addition, the income from another investment is credited to the amount continuously at the rate of `400 per year. (EX 10.2 – 1(iv))
3.	Assume that a spherical rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop. (EX 10.2 – 2)

By Samy Sir, PH:7639147727

Page 12

- 1. Two fair coins are tossed simultaneously (equivalent to a fair coin istossed twice). Find the probability mass function for number of heads occurred. (EG 11.5)
- Three fair coins are tossed simultaneously. Find the probability mass function for number of 2. heads occurred. (Eg. 11.2 - 1).
- 3. Four fair coins are tossed once. Find the probability mass function, mean and variance for number of heads occurred. (EX 11.4 – 4)

CHAPTER 12

- 1. Let $A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ be any two Boolean matrices of the same type. Find $A \lor B$ and $A \land$ B. (Eg. 12.8)
- 2. Determine whether * is a binary operation on the sets given below. (*ii*) a * b = min (a, b) on $A = \{1, 2, 3, 4, 5\}$ (*iii*) $a * b = a\sqrt{b}$ is binary on \mathbb{R} . (Ex. 12.1-1)
- 3. On \mathbb{Z} , define \otimes by $(m \otimes n) = m^n + n^m$: $m, n \in \mathbb{Z}$. Is \otimes binary on \mathbb{Z} ? (Ex. 12.1-2)
- 4. Let $A = \{a + \sqrt{5}b : a, b \in \mathbb{Z}\}$. Check whether the usual multiplication is a binary operation on A. (Ex. 12.1-4)
- 5. How many rows are needed for following statement formulae? (i) $p \lor \neg t \land (p \lor \neg s)$ $(ii)((p \land q) \lor (\neg r \lor \neg s)) \land (\neg t \land v)$ (Eg. 12.12)
- 6. Establish the equivalence property: $p \rightarrow q \equiv \neg p \lor q$ (Eg. 12.17)
- 7. Using the equivalence property, S.T. $p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$. (Eg. 12.19)
- **8.** Construct the truth table for the following statements. (i) $\neg p \land \neg q$ (ii) $\neg (p \land \neg q)$ (Ex. 12.2-
- 9. Check whether the statement $p \rightarrow (q \rightarrow p)$ is a tautology or a contradiction without using the truth table. (Ex. 12.2-12)
- 10. Verify compound propositions are tautologies or contradictions or contingency $(p \land q) \land$ $\neg(p \lor q)$ (Ex. 12.2-7)

3 MARKS

CHAPTER 1

- 1. Verify $(AB)^{-1} = B^{-1}A^{-1}$ with $A = \begin{bmatrix} 0 & -3 \\ 1 & 4 \end{bmatrix}$, $B = \begin{bmatrix} -2 & -3 \\ 0 & -1 \end{bmatrix}$. (EG 1.9)
- 2. If $A = \begin{bmatrix} 8 & -4 \\ -5 & 3 \end{bmatrix}$, verify that $A(adj A) = (adj A)A = |A|I_2$. (EX 1.1-6) 3. $A = \begin{bmatrix} 1 & \tan x \\ -\tan x & 1 \end{bmatrix}$, show that $A^T A^{-1} = \begin{bmatrix} \cos 2x & -\sin 2x \\ \sin 2x & \cos 2x \end{bmatrix}$. (EX 1.1-11)
- 4. Find the rank of the matrix $\begin{bmatrix} 2 & -2 & 4 & 3 \\ -3 & 4 & -2 1 \\ 6 & 2 & -1 & 7 \end{bmatrix}$ by reducing it to an echelon form. (EG 1.18)

CHAPTER 2

- 1. Find the value of the real numbers x and y, if the complex number (2 + i)x + (1 i)y + 2i 3and x + (-1 + 2i)y + 1 + i are equal. (EG 2.2)
- 2. If |z| = 2 show that $3 \le |z + 3 + 4i| \le 7$. (EG 2.13)
- 3. Show that the equation $z^3 + 2\overline{z} = 0$ has five solutions. (EX 2.5 9)
- 4. Obtain the Cartesian form of the locus of *z* in each of the following cases.

(*i*)
$$|z| = |z - i|$$
 (*ii*) ($|2z - 3 - i| = 3$ (Eg 2.21)

5. If z = x + iyis a complex number such that $\left|\frac{z-4i}{z+4i}\right| = 1$. Show that locus of z real axis(EX 2.6 - 1)

By Samy Sir, PH:7639147727

Page 13

- 1. If pand q are the roots of equation $lx^2 + nx + n = 0$, show that $\sqrt{\frac{p}{q}} + \sqrt{\frac{q}{p}} + \sqrt{\frac{n}{l}} = 0$. (EX 3.1 9)
- 2. If the equations $x^2 + px + q = 0$, and $x^2 + p'x + q' = 0$, have a common root, show that it must be equal to $\frac{pq'-p'q}{q-q'}$ or $\frac{q-q'}{n'-n}$. (EX 3.1 - 10)
- 3. Form a polynomial equation with integer coefficients with $\sqrt{\frac{\sqrt{2}}{\sqrt{3}}}$ as a root. (Eg.3.10)
- 4. If α , β , γ and δ are the roots of the polynomial equation $2x^4 + 5x^3 7x^2 + 8 = 0$, find a quadratic equation with integer coefficients whose roots $\alpha + \beta + \gamma + \delta$ and $\alpha\beta\gamma\delta$. (EX 3.1 - 8)

CHAPTER 4

- 1. Find the value of $\sin^{-1}\left(\sin\frac{5\pi}{9}\cos\frac{\pi}{9} + \cos\frac{5\pi}{9}\sin\frac{\pi}{9}\right)$. (EX 4.1 7) 2. For what value of x, the inequality $\frac{\pi}{2} < \cos^{-1}(3x 1) < \pi$ holds? (EX 4.2 7)
- 3. Prove that $\tan(\sin^{-1} x) = \frac{x}{\sqrt{1-x^2}}$, -1 < x < 1. (EG 4.11)
- 4. Find the value of (*iii*) $cot^{-1}(1) + sin^{-1}\left(\frac{-\sqrt{3}}{2}\right) sec^{-1}\left(-\sqrt{2}\right)$ (EX 4.4 2)
- 5. Find the value of $tan^{-1}(-1) + cos^{-1}\left(\frac{1}{2}\right) + sin^{-1}\left(\frac{-1}{2}\right)$ (EG 4.10)

CHAPTER 5

- 1. Find the centre and radius of the circle $3x^{2} + (a + 1)y^{2} + 6x 9y + a + 4 = 0$. (EG 5.9)
- 2. If the equation $3x^2 + (3 p)xy + qy^2 2px = 8pq$ represents a circle, Find p and q. Also determine the centre and radius of the circle. (EX 5.1 - 12)

CHAPTER 6

- 1. With usual notations, in any triangle ABC, prove by vector method that $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$. (EG 6.4)
- 2. Prove by vector method that an angle in a semi-circle is a right angle. (EX 6.1 3)
- 3. Prove by vector method that the area of the quadrilateral ABCD having diagonals AC and BD is $\frac{1}{2} |\overrightarrow{AC} \times \overrightarrow{BD}|$. (EX 6.1 - 6)
- 4. Forces of magnitudes $5\sqrt{2}$ and $10\sqrt{2}$ units acting in the directions $3\vec{i} + 4\vec{j} + 5\vec{k}$ and $10\vec{i} + 6\vec{j} 8\vec{k}$ respectively, act on a particle which is displaced from the point with position vector $4\vec{i} - 3\vec{j} - 2\vec{k}$ to
- the point with position vector $6\vec{i} + \vec{j} 3\vec{k}$. Find the work done by the forces. **(EX 6.1 12)** 5. If the straight lines $\frac{x-1}{2} = \frac{y+1}{\lambda} = \frac{z}{2}$ and $\frac{x+1}{5} = \frac{y+1}{2} = \frac{z}{\lambda}$ are coplanar, find λ and equations of the planes containing these two lines. (EX 6.8 - 4)

CHAPTER 7

- 1. If we blow air into a balloon of spherical shape at a rate of 1000 cm^3 per second. At what rate the radius of the balloon changes when the radius is 7*cm*? Also compute the rate at which the surface area changes. Eg. 7.7
- 2. Find the acute angle between the curves $y = x^2$ and $x = y^2$ at their points of intersection (0,0), (1,1). (EG 7.15)
- 3. Show that the two curves $x^2 y^2 = r^2$ and $xy = c^2$ where *c*, *r* are constants, cut orthogonally. (EX. 7.2 - 10)
- 4. Prove that among all the rectangles of the given area square has the least perimeter. (Eg. 7.65)
- 5. Find two positive numbers whose product is 20 and their sum is minimum. Ex. 7.8 2

CHAPTER 8

By Samy Sir, PH:7639147727

Page 14

- 1. Assuming $\log_{10} e = 0.4343$, find an approximate value of $\log_{10} 1003$. (EX. 8.2 4)
- 2. The trunk of a tree has diameter 30 *cm*. During the following year, the circumference grew 6 *cm*. (*i*) Approximately, how much did the tree's diameter grow?
 (*ii*) What is the percentage increase in area of the tree's cross-section? (EX. 8.2 5)
- 3. The time *T* , taken for a complete oscillation of a single pendulum with length l, is given by the equation $T = 2\pi \sqrt{\frac{l}{g}}$, where *g* is a constant. Find the approximate percentage error in the calculated value of *T* corresponding to an error of 2 percent in the value of *l*. (EX 8.1 6)
- 4. Show that the percentage error in the n^{th} root of a number is approximately $\frac{1}{n}$ times the percentage error in the number. (EX 8.1 7)

- Two balls are chosen randomly from an urn containing 6 white and 4 black balls. Suppose that we win `30 for each black ball selected and we lose `20 for each white ball selected. If *X* denotes the winning amount, then find the values of *X* and number of points in its inverse images. (EG 11.4)
- 2. The cumulative distribution function of a discrete random variable is given by

$$F(x) = \begin{cases} 0, -\infty < x < -1\\ 0.15, -1 \le x < 0\\ 0.35, \quad 0 \le x < 1\\ 0.60, \ 1 \le x < 2\\ 0.85, \ 2 \le x < 3\\ 1, \qquad 3 \le x < \infty \end{cases}$$
. Find (*i*) the probability mass function

(*ii*) P(X < 1) and (*iii*) $P(X \ge 2)$. (Eg. 11.9)

13. If μ and σ^2 are the mean and variance of the discrete random variable *X*, and E(X + 3) = 10and $E(X + 3)^2 = 116$, find μ and σ^2 . **(EX 11.4 – 3)**

CHAPTER 12

- 1. Verify the (*i*) closure property, (*ii*) commutative property, (*iii*) associative property (*iv*) existence of identity and (*v*) existence of inverse for the arithmetic operation + on \mathbb{Z}_e = the set of all even integers. (Eg. 12.4)
- 2. Construct the truth table for $(p \nabla q) \land (p \nabla \neg q)$. (Eg. 12.16)
- 3. Show that (i) $\neg (p \land q) \equiv \neg p \lor \neg q$ (ii) $\neg (p \rightarrow q) \equiv p \land \neg q$. (Ex. 12.2-8)
- 4. Prove that $q \rightarrow p \equiv \neg p \rightarrow \neg q(\text{Ex. } 12.2 9)$

By Samy Sir, PH:7639147727

Page 15

	$(a)\left(\cos^{2}\frac{\theta}{2}\right)A \qquad (b)\left(\cos^{2}\frac{\theta}{2}\right)A^{T} \qquad (c)\left(\cos^{2}\theta\right)I \qquad (d)\left(\sin^{2}\frac{\theta}{2}\right)A$
15.	If $A = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$ and $A(adj A) = \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$, then $k = \begin{bmatrix} a & 0 \\ 0 & k \end{bmatrix}$, then $k = \begin{bmatrix} a & 0 \\ 0 & k \end{bmatrix}$ in θ .
16	$If A = \begin{bmatrix} 2 & 3 \end{bmatrix} \text{ be such that } \lambda A^{-1} = A \text{ then } \lambda \text{ is}$
101	(a) 17 (b) 14 (c) 19 (d) 21
17.	If $adjA = \begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix}$ and $adjB = \begin{bmatrix} 1 & -2 \\ -2 & 1 \end{bmatrix}$, then $adj(AB)$ is
	$(a)\begin{bmatrix} -7 & -1\\ 7 & -9 \end{bmatrix} \qquad (b)\begin{bmatrix} -6 & 5\\ -2 & -10 \end{bmatrix} \qquad (c)\begin{bmatrix} -7 & 7\\ -1 & -9 \end{bmatrix} \qquad (d)\begin{bmatrix} -6 & -2\\ 5 & -10 \end{bmatrix}$
18.	The rank of the matrix $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \end{bmatrix}$ is
	$\begin{bmatrix} -1 & -2 & -3-4 \end{bmatrix}$
19.	If $x^a v^b = e^m$, $x^c v^d = e^n$, $\Delta_1 = \begin{bmatrix} m & b \\ 0 \end{bmatrix}$, $\Delta_2 = \begin{bmatrix} a & m \\ 0 \end{bmatrix}$, $\Delta_2 = \begin{bmatrix} a & b \\ 0 \end{bmatrix}$ then the values of x and y are
	respectively, $n = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$
	(a) $e^{(\Delta_2/\Delta_1)}, e^{(\Delta_3/\Delta_1)}$ (b) $log(\Delta_1/\Delta_3), log(\Delta_2/\Delta_3)$ 3
2.0	(c) $log(\Delta_2/\Delta_1)$, $log(\Delta_3/\Delta_1)$ (d) $e^{(\Delta_1/\Delta_3)}$, $e^{(\Delta_2/\Delta_3)}$ Which of the following is/are correct?
	(<i>i</i>) Adjoint of a symmetric matrix is also a symmetric matrix.
	(<i>ii</i>) Adjoint of a diagonal matrix is also a diagonal matrix. (<i>iii</i>) If Ais a square matrix of order nand λ is a scalar, then $adi(\lambda A) = \lambda^n adi(A)$
	(iv) A(adj A) = A(adj A) = A I
21	(a) Only (i) (b) (ii) and (iii) (c) (iii) and (iv) (d) (i), (ii) and (iv) If $a(A) = a([A B])$ then the system $AY = B$ of linear equations is
41.	(a) Consistent and has a unique solution (b) consistent
22	(c) Consistent and has infinitely many solution (d) inconsistent If $0 < 0 < \pi$ and the gratem of equations is to find the formula of the f
22.	$0 \le \theta \le \pi$ and the system of equations $x + (\sin \theta)y - (\cos \theta)z = 0$, $(\cos \theta)x - y + z = 0$, $(\sin \theta)x - y + z = 0$ has a non-trivial solution then θ is
	(a) $\frac{2\pi}{3}$ (b) $\frac{3\pi}{4}$ (c) $\frac{5\pi}{6}$ (d) $\frac{\pi}{4}$
22	The sugmented matrix of a system of linear equations is $\begin{bmatrix} 1 & 2 & 7 & 3 \\ 0 & 1 & 4 & 6 \end{bmatrix}$. The system has
23.	The augmented matrix of a system of mean equations is $\begin{bmatrix} 0 & 1 & 4 & 0 \\ 0 & 0 & \lambda - 7\mu + 5 \end{bmatrix}$. The system has
	infinitely many solutions if (a) $\lambda = 7$ $\mu = 5$ (b) $\lambda = -7$ $\mu = 5$ (c) $\lambda = 7$ $\mu = -5$ (d) $\lambda = 7$ $\mu = -5$
	$ \begin{bmatrix} (u) & \lambda - 7, \mu \neq -5 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 0 & \lambda7, \mu = 5 \\ 3 & 1 & -1 \end{bmatrix} $
24.	Let $A = \begin{bmatrix} -1 & 2 & -1 \\ 1 & 1 & 2 \end{bmatrix}$ and $4B = \begin{bmatrix} 1 & 3 & x \\ 1 & 1 & 2 \end{bmatrix}$. If <i>B</i> is the inverse of <i>A</i> , then the value of <i>x</i> is
	$(a) 2 \qquad (b) 4 \qquad (c) 3 \qquad (d) 1$
25.	If $A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \end{bmatrix}$ then $adj(adjA)$ is
	$\begin{bmatrix} 3 & -3 & 4 \\ 3 & -3 & 4 \end{bmatrix} (b) \begin{bmatrix} 6 & -6 & 8 \\ 4 & -6 & 8 \end{bmatrix} (c) \begin{bmatrix} -3 & 3 & -4 \\ -3 & 2 & -4 \end{bmatrix} (d) \begin{bmatrix} 3 & -3 & 4 \\ -3 & -4 \end{bmatrix}$
	$ \begin{pmatrix} a \\ b \\ c \\ -1 \\ 1 \end{bmatrix} \begin{pmatrix} b \\ c \\ 0 \\ -2 \\ 2 \end{bmatrix} \begin{pmatrix} c \\ c \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -$
By S	Samy Sir, PH:7639147727 Page 17

COMPLEX NUMBERS

1.	$i^n + i^{n+1} + i^{n+2} + i^n$	⁺³ is			
	(a) 0	(b) 1	(c) - 1	(d) i	
Z.	The value of $\sum_{i=1}^{15} (i^n \cdot i)$	$+ l^{n-1}$) IS	(a) 1		
2	$(\boldsymbol{u}) \mathbf{I} + \boldsymbol{i}$ The area of the triane	(D) l do formod by the com	(\mathcal{C}) I ploy numbers z <i>iz</i> ar	(a) 0 od $z \pm izin the Argand's dia$	aram
J.	is	gie for med by the com	ipiex inullibers 2, 12 al	10.2 ± 12111 the Algaliu S ula	gram
	$(a) \frac{1}{2} z ^2$	$(h) z ^2$	$(a)^{\frac{3}{2}} z ^{2}$	(d) $2 z ^2$	
	$(\boldsymbol{u})_{2} \boldsymbol{z} $	(b) 2	$(c)_{2}^{2}$	(u) 2 2	
4.	The conjugate of a con	mplex number is $\frac{1}{i-2}$.	I'hen, the complex nu	mber is	
	(a) $\frac{1}{i+2}$	$(b) \frac{-1}{i+2}$	(c) $\frac{-1}{i-2}$	$(d) \frac{1}{i-2}$	
	If $z = (\sqrt{3}+i)^3(3i+4)^2$ th	on Izlic oqual to			
] 5.	$112 = \frac{1}{(8+6i)^2}$, th				
6	(a) 0	(b) I	(C) Z at $2i\pi^2 - \bar{\sigma}$ thon Izlia	(a) 3	
0.	11 215 a 11011 2010 comp	(k) 1	$\frac{1}{2} \frac{1}{2} = 2 \text{ then } \frac{1}{2} \frac{1}{15}$		
	$(a) \frac{1}{2}$	(D) 1	$(\mathcal{C}) \mathcal{L}$	(a) 3	
7.	If $ z - 2 + i \le 2$, then	the greatest value of $(1)\sqrt{2}$	Z is		
	$(a)\sqrt{3} - 2$	$(b)\sqrt{3+2}$	$(c) \sqrt{5-2}$	$(a)\sqrt{5}+2$	
8.	If $\left z - \frac{1}{z}\right = 2$, then the	e least value of z is			
	(<i>a</i>) 1	$(b) 2_{1+7}$	(<i>c</i>) 3	(<i>d</i>) 5	
9.	If $ z = 1$, then the val	ue of $\frac{1+z}{1+\bar{z}}$ is			
	(a) z	(<i>b</i>) <i>z</i>	$(c) \frac{1}{c}$	(<i>d</i>) 1	
10.	The solution of the eq	uation z - z = 1 +	2 <i>i</i> is		
	$(a)\frac{3}{2}-2i$	$(b)\frac{-3}{2}+2i$	$(c) 2 - \frac{3}{2}i$	$(d) 2 + \frac{3}{2}i$	
11.	If $ z_1 = 1, z_2 = 2, z_1 = 1$	$ z_3 = 3$ and $ 9z_1z_2 + 4$	$ z_1 z_3 + z_2 z_3 = 12$,the	n the value of $ z_1 + z_2 + z_3 $	is
	(a) 1	(b) 2	(<i>c</i>) 3	(<i>d</i>) 4	
12.	If zis a complex numb	ber such that $z \in C \setminus R$	and $z + \frac{1}{z} \in R$, then	z is	
	(<i>a</i>) 0	(b) 1	(c) 2 ²	(<i>d</i>) 3	
13.	Let z_1 , z_2 and z_3 be com	plex numbers such t	$hat z_1 + z_2 + z_3 = 0ar$	$ z_1 = z_2 = z_3 = 1, the$	en
	$z_1^2 + z_2^2 + z_3^2$ is				
	(a) 3	(<i>b</i>) 2	(<i>c</i>) 1	$(\boldsymbol{d}) 0$	
14.	If $\frac{1}{z+1}$ is purely imagin	hary, then $ z $ is			
	$(a) \frac{1}{2}$	(b) 1	(<i>c</i>) 2	(<i>d</i>) 3	
15.	If $z = x + iy$ is a comp	olex number such tha	z + 2 = z - 2 , th	en the locus of zis	
	(a)real axis	(b) imaginary axis	(<i>c</i>) ellipse	(d) circle	
16.	The principal argume	ent of $\frac{3}{-1+i}$ is			
	$(a) \frac{-5\pi}{6}$	$(b) \frac{-2\pi}{2}$	$(c) \frac{-3\pi}{4}$	$(d) \frac{-\pi}{2}$	
17.	The principal argume	ent of $(\sin 40^\circ + i \cos 40^\circ)$	40°)is	2	
	$(1) - 110^{\circ}$	$(b) - 70^{\circ}$	(<i>c</i>) 70°	(<i>d</i>) 110°	
18.	If $(1 + i)(1 + 2i)(1 + 2i$	$3i) \dots (1+ni) = x$	+ iy, then 2.5.10 (2)	$(1+n^2)$ is	
	(<i>a</i>) 1	(b) i	$(c) x^2 + y^2$	$(d) 1 + n^2$	
19.	If $\omega \neq 1$ is a cubic roo	ot of unity and $(1 + \omega)$	$(A)' = A + B\omega$, then (A)	, B)equals	
Bur C.	my Sir DU.7620147777	7			Dago 10
	aniy 311, P ft:/03914//2/			1	rage 18

r							
	(a) (1,0)	(b) (-1,1)	(c) (0,1)	(<i>d</i>) (1, 1)			
20.	The principal argument of the complex number $\frac{(1+i\sqrt{3})^2}{4i(1-i\sqrt{3})}$ is						
	(a) $\frac{2\pi}{2}$	(b) $\frac{\pi}{\epsilon}$	$(c) \frac{5\pi}{\epsilon}$	$(d) \frac{\pi}{2}$			
21.	If α and β are the roo	ots of $x^2 + x + 1 = 0$,	then $\alpha^{2020} + \beta^{2020}$ is	2			
	(a) - 2	(b) - 1	(c) 1	(<i>d</i>) 2			
22.	The product of all fou	ar values of $\left(\cos\frac{\pi}{3} + \sin^2\theta\right)$	$\sin\frac{\pi}{3}^4$ is				
	(a) - 2	(b) - 1 11	(c) 1	(<i>d</i>) 2			
23.	If $\omega \neq 1$ is a cubic roo	ot of unity and $\begin{vmatrix} 1 \\ 1 \end{vmatrix}$	$\begin{vmatrix} \omega^2 - 1 & \omega^2 \\ \omega^2 & \omega^7 \end{vmatrix} = 3k$, th	en <i>k</i> is equal to			
	(a) 1	(b) - 1	$(c)\sqrt{3}i$	$(d) - \sqrt{3}i$			
24.	The value of $\left(\frac{1+\sqrt{3}i}{1-\sqrt{3}i}\right)^2$	is					
	(<i>a</i>) $cis\frac{2\pi}{3}$	(b) $cis \frac{4\pi}{3}$	$(c) - cis \frac{2\pi}{3}$	$(d) - cis \frac{4\pi}{3}$			
25.	If $\omega = \operatorname{cis} \frac{2\pi}{2}$, then the	e number of distinct r	oots of $\begin{vmatrix} z+1 & \omega \\ \omega & z+\omega \end{vmatrix}$	$2 \qquad \frac{\omega^2}{1} = 0$			
	(a) 1	(h) 2	ω^2 1	$z + \omega$			
	(\boldsymbol{u}) I	(D) Z	(\mathcal{C}) 3	(a) 4			
		CH	IAPTER 3				
		THEORY	OF EQUATIONS				
1.	A zero of x^3 + 64 is						
	(<i>a</i>) 0	(<i>b</i>) 4	(c) 4i	(d) - 4			
2.	If <i>f</i> and <i>g</i> are polynon degree of <i>h</i> is	nials of degrees mand	l nrespectively, and if	$h(x) = (f \circ g)(x)$, then the			
2	(a) mn A polynomial equation	(b) $m + n$	(c) m^n	$(d) n^m$			
5.	(<i>a</i>) <i>n</i> distinct roots	(b) n real roots	(c) n imaginary roo	ts (d) at most one root.			
4.	If α , β and γ are the r	roots of $x^3 + px^2 + qx^2$	$x + r = 0$, then $\sum \frac{1}{\alpha}$ is				
	$(a) \frac{-q}{r}$	(b) $\frac{-p}{r}$	(c) $\frac{q}{r}$	$(d) \frac{-q}{p}$			
5.	According to the ratio $2x^4 - 10x^3 - 5?$	onal root theorem, w	hich number is not po	ssible rational root of $4x^7$ +			
	(a) - 1	(<i>b</i>) 54	(<i>c</i>) 45	(<i>d</i>) 5			
6.	The polynomial $x^3 - (a) k \leq 6$	$kx^2 + 9x$ has three re	eal roots if and only if,	ksatisfies $(d) k > 6$			
7.	The number of real n	numbers in $[0,2\pi]$ satis	sfying $\sin^4 x - 2\sin^2 x$	$(u) n \ge 0$ x + 1 is			
	(a) 2	(<i>b</i>) 4	(c)1	$(d) \infty$			
8.	If $x^3 + 12x^2 + 10ax$	+ 1999 definitely has (b) $a > 0$	a positive root, if and $(c) a < 0$	only if $(d) a < 0$			
9.	The polynomial x^3 +	2x + 3has	(c) u < 0	(1) 11 _ 0			
	(a) one negative and (a) three real (a)	two real roots	(b) one positive and (d) no column	l two imaginary roots			
10.	(c) three real roots The number of positi	ive roots of the polvno	(a) no solution omial $\sum_{i=0}^{n} {}^{n}C_{r}(-1)^{r}$	κ ^r is			
	(a) 0	(b) n	(c) < n	(<i>d</i>) <i>r</i>			
By Sa	amy Sir, PH:7639147727	7		Page 19			

CHAPTER 4 INVERSE TRIGONOMETRIC FUNCTIONS The value of $\sin^{-1}(\cos x)$, $0 \le x \le \pi$ is 1. (2) $x - \frac{\pi}{2}$ (3) $\frac{\pi}{2} - x$ (4) $x - \pi$ (*a*) $\pi - x$ If $\sin^{-1} x + \sin^{-1} y = \frac{2\pi}{3}$ then $\cos^{-1} x + \cos^{-1} y$ is equal to 2. (a) $\frac{2\pi}{3}$ (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{6}$ $\sin^{-1}\frac{3}{5} - \cos^{-1}\frac{12}{13} + \sec^{-1}\frac{5}{3} - \csc^{-1}\frac{13}{12}$ is equal to $(d) \pi$ 3. (d) $\tan^{-1}\frac{12}{65}$ (c) 0(*a*) 2π *(b)* π If $\sin^{-1} x = 2 \sin^{-1} \alpha$ has a solution, then 4. $(a) |\alpha| \leq \frac{1}{\sqrt{2}}$ (b) $|\alpha| \ge \frac{1}{\sqrt{2}}$ (c) $|\alpha| < \frac{1}{\sqrt{2}}$ (d) $|\alpha| > \frac{1}{\sqrt{2}}$ $\sin^{-1}(\cos x) = \frac{\pi}{2} - x$ is valid for 5. $(a) - \pi \le x \le \overset{2}{0} (b) \ \mathbf{0} \le x \le \pi (c) \ \frac{-\pi}{2} \le x \le \frac{\pi}{2} (d) \ \frac{-\pi}{4} \le x \le \frac{3\pi}{4}$ If $\sin^{-1}x + \sin^{-1}y + \sin^{-1}z = \frac{3\pi}{2}$, the value of $x^{2017} + y^{2018} + z^{2019} - \frac{9}{x^{101} + y^{101} + z^{101}}$ (a) $\mathbf{0} (b) \ 1 (c) \ 2 (d) \ 3$ 6. If $\cot^{-1} x = \frac{2\pi}{5}$ for some $x \in R$, the value of $\tan^{-1} x$ is 7. $(c) \frac{\pi}{10}$ $(d) \frac{-\pi}{r}$ $(b) \frac{\pi}{r}$ (a) $\frac{-\pi}{10}$ The domain of the function defined by $f(x) = \sin^{-1} \sqrt{x-1}$ is 8. (b)[-1,1](d) [-1,0](c)[0,1](a) |1,2|If $x = \frac{1}{5}$, the value of $\cos(\cos^{-1} x + 2\sin^{-1} x)$ is 9. $(b) \sqrt{\frac{24}{25}}$ $(c) \frac{1}{5}$ $(a) - \sqrt{\frac{24}{25}}$ $(d) \frac{-1}{5}$ $\tan^{-1}\left(\frac{1}{4}\right) + \tan^{-1}\left(\frac{2}{9}\right)$ is equal to 10. (a) $\frac{1}{2}\cos^{-1}\left(\frac{3}{5}\right)$ (b) $\frac{1}{2}\sin^{-1}\left(\frac{3}{5}\right)$ (c) $\frac{1}{2}\tan^{-1}\left(\frac{3}{5}\right)$ (d) $\cos^{-1}\left(\frac{1}{2}\right)$ If the function $f(x) = \sin^{-1}(x^2 - 3)$, then x belongs to 11. (a)[-1,1](b) $\sqrt{2}, 2$ $(c)\left[-2,-\sqrt{2}\right]\cup\left[\sqrt{2},2\right]$ $(d) \left[-2, -\sqrt{2}\right] \cap \left[\sqrt{2}, 2\right]$ If cot⁻¹ 2 and cot⁻¹ 3 are two angles of a triangle, then the third angle is 12. $(b) \frac{3\pi}{4}$ $(C)\frac{\pi}{c}$ (a) $\frac{\pi}{4}$ $(d) \frac{\pi}{2}$ **13.** $\sin^{-1}\left(\tan\frac{\pi}{4}\right) - \sin^{-1}\left(\sqrt{\frac{3}{x}}\right) = \frac{\pi}{6}$. Then x is a root of the equation (a) $x^2 - x - 6 = 0$ (b) $x^2 - x - 12 = 0$ $(c)x^2 + x - 12 = 0$ $(d)x^2 + x - 6 = 0$ $\sin^{-1}(2\cos^2 x - 1) + \cos^{-1}(1 - 2\sin^2 x) =$ 14. $(b) \frac{\pi}{2}$ (C) $\frac{\pi}{4}$ $(a) \frac{\pi}{2}$ $(d) \frac{\pi}{6}$ If $\cot^{-1}(\sqrt{\sin \alpha}) + \tan^{-1}(\sqrt{\sin \alpha})$, then $\cos 2u$ is equal to 15. (1) $\tan^2 \alpha$ (c) - 1(*b*) 0 (d) $\tan 2\alpha$ **16.** If $|x| \le 1$, then $2 \tan^{-1} x - \sin^{-1} \frac{2x}{1+x^2}$ is equal to (a) $\tan^{-1} x$ (b) $\sin^{-1} x$ (c) (c) 0 $(d) \pi$ The equation $\tan^{-1} x - \cot^{-1} x = \tan^{-1} \left(\frac{1}{\sqrt{3}}\right) x$ has 17. By Samy Sir, PH:7639147727 Page 20

(a) no solution (**b**) unique solution (c) two solutions (*d*) infinite number of solutions If $\sin^{-1} x + \cot^{-1} \left(\frac{1}{2}\right) = \frac{\pi}{2}$, then x is equal to 18. (a) $\frac{1}{2}$ (b) $\frac{1}{\sqrt{5}}$ (c) $\frac{2}{\sqrt{5}}$ **19.** If $\sin^{-1}\frac{x}{5} + \csc^{-1}\left(\frac{5}{4}\right) = \frac{\pi}{2}$, then the value of x is $(d) \frac{\sqrt{3}}{2}$ (*c*) 2 (d) 3 $\sin(\tan^{-1} x)$, |x| < 1 is equal to 20. $(c) \ \frac{1}{\sqrt{1+x^2}}$ (a) $\frac{x}{\sqrt{1-x^2}}$ (b) $\frac{1}{\sqrt{1-x^2}}$ $(d) \frac{x}{\sqrt{1+x^2}}$ **CHAPTER 5** TWO DIMENSIONAL ANALYTICAL GEOMETRY-II The equation of the circle passing through (1,5) and (4,1) and touching y - axis is $x^2 + y^2 - ax^2 + y^2 + y^2 - ax^2 + y^2 + y^2$ 1. $5x - 6y + 9 + \lambda(4x + 3y - 19) = 0$ where λ is equal to $(a) 0, \frac{-40}{9}$ $(C) \frac{40}{9}$ $(d) \frac{-40}{9}$ (b) 0 The eccentricity of the hyperbola whose latus rectum is 8 and conjugate axis is equal to half the 2. distance between the foci is $(b) \frac{4}{\sqrt{3}}$ $(c) \frac{2}{\sqrt{3}}$ $(a) \frac{4}{3}$ $(d) \frac{3}{2}$ The circle $x^2 + y^2 = 4x + 8y + 5$ intersects the line 3x - 4y = m at two distinct points if 3. (a) 15 < m < 65(b) 35 < m < 85(c) - 85 < m < -35(d) - 35 < m < -15The length of the diameter of the circle which touches the x –axis at the point (1,0) and passes 4. through the point (2,3). (a) $\frac{6}{5}$ (b) $\frac{5}{3}$ (c) $\frac{10}{3}$ The radius of the circle $3x^2 + by^2 + 4bx - 6by + b^2 = 0$ is $(d) \frac{3}{r}$ 5. $(c)\sqrt{10}$ $(d)\sqrt{11}$ (a) 1(b) 3 The centre of the circle inscribed in a square formed by the lines $x^2 - 8 - 12 = 0$ and $y^2 - 14y + 10^{-1}$ 6. 45 = 0 is (*a*) (4,7) (*b*) (7,4) (*c*) (9,4) (*d*) (4,9) The equation of the normal to the circle $x^2 + y^2 - 2x - 2y + 1 = 0$ which is parallel to the line (a)(4,7)(b)(7,4)7. 2x + 4y = 3 is (1) x + 2y = 3 $(2) x + 2y + 3 = 0 \quad (3)2x + 4y + 3 = 0 \quad (4)x - 2y + 3 = 0$ If P(x, y) be any point on $16x^2 + 25y^2 = 400$ with foci $F_1(3,0)$ and $F_2(-3,0)$ then $PF_1 + PF_2$ is 8. (*d*) 12 (a) 8(b) 6(c) 10 9. The radius of the circle passing through the point (6,2) two of whose diameter are x + y = 6 and x + 2y = 4 is (*b*) $2\sqrt{5}$ (a) 10 (*c*) 6 The area of quadrilateral formed with foci of the hyperbolas $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ and $\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$ is 10. $(b) 2(a^2 + b^2)$ $(c) a^2 + b^2$ $(d) \frac{1}{2}(a^2 + b^2)$ (a) $4(a^2 + b^2)$ **11.** If the normals of the parabola $y^2 = 4x$ drawn at the end points of its latus rectum are tangents to the circle $(x - 3)^2 + (y + 2)^2 = r^2$, then the value of r^2 is (a) 2(b) 3 (d) 4(c) 1 If x + y = k is a normal to the parabola $y^2 = 12x$, then the value of k is 12. By Samy Sir, PH:7639147727 Page 21

	(a) 3	(b) - 1	(<i>c</i>) 1	(<i>d</i>) 9	
13.	The ellipse $E_1:\frac{x}{y}$	$\frac{1}{2} + \frac{y}{4} = 1$ is inscribed	l in a rectangle <i>R</i> wh	ose sides are parallel to	the coordinate
	axes. Another el eccentricity of tl	lipse E_2 passing throu he ellipse is	gh the point (0,4) ci	rcumscribes the rectang	gle <i>R</i> . The
	(a) $\frac{\sqrt{2}}{2}$	$(b) \frac{\sqrt{3}}{2}$	$(c) \frac{1}{2}$	$(d) \frac{3}{4}$	
14.	Tangents are dr	awn to the hyperbola	$\frac{x^2}{x} - \frac{y^2}{x} = 1$ parallel	to the straight line $2x - $	y = 1.0ne of
	the points of cor	ntact of tangents on th	e hyperbola is		
	(a) $\left(\frac{9}{2\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)$	$(b)\left(\frac{-9}{2\sqrt{2}},\frac{1}{\sqrt{2}}\right)$	$(c) \left(\frac{9}{2\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$	$(d)\left(3\sqrt{3},2\sqrt{2}\right)$	
15.	The equation of	the circle passing thro	ough the foci of the e	ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ havin	g centre at
	(0,3) is				
	(a) $x^2 + y^2 - 6$	y - 7 = 0	(b) $x^2 + y^2 - (x^2) + (x^2 + y^2)$	6y + 7 = 0	
16	$(c) x^2 + y^2 - 6$	y - 5 = 0	$(a) x^2 + y^2 -$	60y + 5 = 0	
10.	(0, y) 0 y passing	g through the origin a	nd touching the circl	e <i>C</i> externally, then the	radius of T is
	equal to	_	-		
	(a) $\frac{\sqrt{3}}{\sqrt{2}}$	$(b) \frac{\sqrt{3}}{2}$	$(c) \frac{1}{2}$	$(d) \frac{1}{4}$	
17.	Consider an elli	pse whose centre is of	the origin and its m	ajor axis is along x –axi	s. If
	itseccentrcity is	35 and the distance b	etween its foci is 6, t	then the area of the qua	drilateral
	inscribed in the (a) 8	ellipse with diagonals	as major and minor	axis of the ellipse is	
10	(u) o	(<i>V</i>) 32	(c) 80	y^2 1:-	
18.	Area of the grea	test rectangle inscribe	ed in the enlipse $\frac{1}{a^2}$ +	$\frac{1}{b^2} = 11S$	
10	(a) 2ab	(<i>b</i>) <i>ab</i>	$(c) \sqrt{ab}$	$(d) - \frac{b}{b}$	
19.	An ellipse has <i>O</i> the eccentricity	<i>B</i> as semi minor axes, of the ellipse is	F and F' its foci and	I the angle <i>FBF</i> ' is a righ	it angle. Then
	$(a) \frac{1}{\sqrt{2}}$	$(b)\frac{1}{2}$	(c) $\frac{1}{4}$	$(d) \frac{1}{\sqrt{3}}$	
20.	The eccentricity	of the ellipse $(x - 3)^2$	$(y-4)^2 = \frac{y^2}{9}$ is		
	(a) $\frac{\sqrt{3}}{2}$	$(b) \frac{1}{3}$	(c) $\frac{1}{3\sqrt{2}}$	$(d) \frac{1}{\sqrt{3}}$	
21.	If the two tange	nts drawn from a poin	t P to the parabola y	$y^2 = 4x$ are at right angle	les then the
	(a) 2x + 1 = 0	(b) x = -1	(c)2x - 1 = 0	(d)x = 1	
22.	The circle passi	ng through $(1, -2)$ and	d touching the axis o	of x at (3,0) passing thro	ugh the point
	(<i>a</i>) (-5,2)	(<i>b</i>) (2, -5)	(c)(5,-2)	(d)(-2,5)	-0
23.	The locus of a po	oint whose distance fr	om $(-2,0)$ is $\frac{2}{3}$ times	s its distance from the lin	ne $x = \frac{-9}{2}$ is
	(<i>a</i>) a parabola	(b) a hyperbola	(c) an ellipse	(<i>d</i>) a circle	2
24.	The values of m	for which the line $y =$	$mx + 2\sqrt{5}$ touches	the hyperbola $16x^2 - 9$	$y^2 = 144$ are
	the roots of x^2 - (a) 2	-(a+b)x - 4 = 0 the (b) 4	en the value of $(a + b)$	(d) - 2	
25.	If the coordinate	es at one end of a diam	neter of the circle x^2	$+y^2 - 8x - 4y + c = 0$) are (11,2)
	the coordinates	of the other end are			
	(a)(-5,2)	(b)(2,-5)	(c)(5, -2)	(d)(-2,5)	
By C	2000 Sir DU.76201	4.7727			Dago 22
Dy S	amy 511, FH:/03914	T////			rage 22

CHAPTER 6 APPLICATIONS OF VECTOR ALGEBRA If \vec{a} and \vec{b} are parallel vectors, then $[\vec{a}, \vec{c}, \vec{b}]$ is equal to 1. (*a*) 2 (b) - 1(c) 1 (d) 0If a vector $\vec{\alpha}$ lies in the plane of $\vec{\beta}$ and $\vec{\gamma}$, then 2. (a) $\left[\vec{\alpha}, \vec{\beta}, \vec{\gamma}\right] = 1$ (b) $\left[\vec{\alpha}, \vec{\beta}, \vec{\gamma}\right] = -1$ (c) $\left[\vec{\alpha}, \vec{\beta}, \vec{\gamma}\right] = \mathbf{0}$ (d) $\left[\vec{\alpha}, \vec{\beta}, \vec{\gamma}\right] = 2$ If $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 0$, then the value of $[\vec{a}, \vec{b}, \vec{c}]$ is 3. $(b) \frac{1}{2} |\vec{a}| |\vec{b}| |\vec{c}|$ $(a) |\vec{a}| |\vec{b}| |\vec{c}|$ (c) 1 (d) - 1If \vec{a} , \vec{b} , \vec{c} are three unit vectors such that \vec{a} is perpendicular to \vec{b} , and is parallel to \vec{c} then $\vec{a} \times \vec{c}$ 4. $(\vec{b} \times \vec{c})$ is equal to $(\boldsymbol{b})\vec{\boldsymbol{b}}$ (a) \vec{a} (b) b (c) \vec{c} If $[\vec{a}, \vec{b}, \vec{c}] = 1$, then the value of $\frac{\vec{a}.(\vec{b}\times\vec{c})}{(\vec{c}\times\vec{a}).\vec{b}} + \frac{\vec{b}.(\vec{c}\times\vec{a})}{(\vec{a}\times\vec{b}).\vec{c}} + \frac{\vec{c}.(\vec{a}\times\vec{b})}{(\vec{c}\times\vec{b}).\vec{a}}$ is (a) *a* $(d)\vec{0}$ 5. (d) 3 (a) 1(*b*) – 1 The volume of the parallelepiped with its edges represented by the vectors $\vec{i} + \vec{j}$, $\vec{i} + 2\vec{j}$, $\vec{i} + \vec{j} + \vec{j}$ 6. $\pi \vec{k}$ is (a) $\frac{\pi}{2}$ $(b) \frac{\pi}{3}$ $(d) \frac{\pi}{4}$ $(c) \pi$ If \vec{a} and \vec{b} are unit vectors such that $[\vec{a}, \vec{b}, \vec{a} \times \vec{b}] = \frac{\pi}{4}$, then the angle between \vec{a} and \vec{b} is 7. (a) $\frac{\pi}{6}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{2}$ If $\vec{a} = \vec{i} + \vec{j} + \vec{k}$, $\vec{b} = \vec{i} + \vec{j}$, $\vec{c} = \vec{i}$ and $(\vec{a} \times \vec{b}) \times \vec{c} = \lambda \vec{a} \times \mu \vec{b}$, then the value of $\lambda + \mu$ is 8. (a) 0(b) 1 (c) 6(d) 3If \vec{a} , \vec{b} , \vec{c} are non-coplanar, non-zero vectors such that $[\vec{a}, \vec{b}, \vec{c}] = 3$, then $\{[\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}]\}^2$ is 9. equal to (b) 9 (a) 81 (c) 27(d)18If \vec{a} , \vec{b} , \vec{c} are three non-coplanar vectors such that $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{\vec{b} + \vec{c}}{\sqrt{2}}$, then the angle between \vec{a} 10. and \vec{b} is $(b) \frac{3\pi}{4}$ (a) $\frac{\pi}{2}$ $(C) \frac{\pi}{4}$ $(d) \pi$ **11.** If the volume of the parallelepiped with $\vec{a} \times \vec{b}$, $\vec{b} \times \vec{c}$, $\vec{c} \times \vec{a}$ as coterminous edges is 8 cubic units, then the volume of the parallelepiped with $(\vec{a} \times \vec{b}) \times (\vec{b} \times \vec{c}), (\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a})$ and $(\vec{c} \times \vec{a})(\vec{a} \times \vec{c})$ \vec{b}) as coterminous edges is, (b) 512 cubic units (c) 64 cubic units (a) 8 cubic units (*d*) 24 cubic units Consider the vectors $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ such that $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = \vec{0}$ Let P_1 and P_2 be the planes 12. determined by the pairs of vectors \vec{a}, \vec{b} and \vec{c}, \vec{d} respectively. Then the angle between P_1 and P_2 is (*b*) 45° (c) 60° $(d) 90^{\circ}$ $(a) 0^{\circ}$ If $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \times \vec{c}$, where $\vec{a}, \vec{b}, \vec{c}$ are any three vectors such that $\vec{b}, \vec{c} \neq 0$ and $\vec{a}, \vec{b} \neq 0$, 13. then \vec{a} and \vec{c} are (a) perpendicular (**b**) parallel (c) inclined at an angle $\frac{\pi}{2}$ (*d*) inclined at an angle $\frac{\pi}{c}$ By Samy Sir, PH:7639147727 Page 23

14.	If $\vec{a} = 2\vec{i} + 3\vec{j} - \vec{k}$, $\vec{b} = \vec{i} + 2\vec{j} - 5\vec{k}$, $\vec{c} = 3\vec{i} + 5\vec{j} - \vec{k}$, then a vector perpendicular to \vec{a} and lies in
	the plane containing \vec{b} and \vec{c} is
	$(a) - 17\vec{i} + 21\vec{j} - 97\vec{k} \qquad (b)\ 17\vec{i} + 21\vec{j} - 123\vec{k}$
	$(c) - 17\vec{\imath} - 21\vec{\jmath} + 97\vec{k}$ $(d) - 17\vec{\imath} - 21\vec{\jmath} - 97\vec{k}$
15.	The angle between the lines $\frac{x-2}{2} = \frac{y+1}{2}$, $z = 2$ and $\frac{x-1}{1} = \frac{2y+3}{2} = \frac{z+5}{2}$ is
	(a) $\frac{\pi}{2}$ (b) $\frac{\pi}{2}$ (c) $\frac{\pi}{2}$ (c) $\frac{\pi}{2}$ (d) $\frac{\pi}{2}$
16	If the line $\frac{x-2}{2} = \frac{y-1}{2} = \frac{z+2}{2}$ lies in the plane $x + 3y - \alpha z + \beta = 0$ then (α, β) is
10.	(a) (-55) = (b) (-67) = (c) (5-5) = (d) (6-7)
17.	The angle between the line $\vec{r} = (\vec{i} + 2\vec{i} - 3\vec{k}) + t(2\vec{i} + \vec{i} - 2\vec{k})$ and the plane $\vec{r} + (\vec{i} + \vec{i}) + 4 = 0$ is
-/1	(a) 0° (b) 30° (c) 45° (d) 90°
18.	The coordinates of the point where the line $\vec{r} = (6\vec{\iota} - \vec{j} + 3\vec{k}) + t(-\vec{\iota} + 4\vec{k})$ meets the plane
	$\vec{r}.(\vec{i}+\vec{j}-\vec{k})=3$ are
	(a) $(2,1,0)$ (b) $(7,-1,-7)$ (c) $(1,2,-6)$ (d) $(5,-1,1)$
19.	Distance from the origin to the plane $3x - 6y + 2z + 7 = 0$ is
20	(a) 0 (b) 1 (c) 2 (d) 3 The distance between the plane $u + 2u +$
20.	The distance between the planes $x + 2y + 3z + 7 = 0$ and $2x + 4y + 6z + 7 = 0$ is
	(a) $\frac{\sqrt{2}}{2\sqrt{2}}$ (b) $\frac{1}{2}$ (c) $\frac{\sqrt{2}}{2}$ (d) $\frac{1}{2\sqrt{2}}$
21.	If the direction cosines of a line are $\frac{1}{c}$, $\frac{1}{c}$, $\frac{1}{c}$, then
	(a) $c = \pm 3$ (b) $c = \pm \sqrt{3}$ (c) $c > 0$ (d) $0 < c < 1$
22.	The vector equation $\vec{r} = (\vec{\iota} - 2\vec{j} - \vec{k}) + t(6\vec{\iota} - \vec{k})$ represents a straight line passing through the
	points
	$(a)(0,6,-1) \text{ and } (1,-2,-1) \qquad (b)(0,6,-1) \text{ and } (-1,-4,-2) \\ (b)(1,2,-1) \text{ and } (-1,-4,-2) \qquad (b)(1,2,-1) \text{ and } (-1,-4,-2) \\ (b)(1,2,-1) \text{ and } (-1,-4,-2) \qquad (b)(1,2,-1) \text{ and } (-1,-4,-2) \\ (b)(1,2,-1) \text{ and } (-1,-4,-2) \qquad (b)(1,2,-1) \text{ and } (-1,-4,-2) \\ (b)(1,2,-1) \text{ and } (-1,-4,-2) \qquad (b)(1,2,-1) \text{ and } (-1,-4,-2) \\ (b)(1,2,-1) \text{ and } (-1,-4,-2) \qquad (b)(1,2,-1) \text{ and } (-1,-4,-2) \\ (b)(1,2,-1) \text{ and } (-1,-4,-2) \qquad (b)(1,2,-1) \text{ and } (-1,-4,-2) \\ (b)(1,2,-1) \text{ and } (-1,-4,-2) \qquad (b)(1,2,-1) \text{ and } (-1,-4,-2) \\ (b)(1,2,-1) \text{ and } (-1,-4,-2) \qquad (b)(1,2,-1) \text{ and } (-1,-4,-2) \\ (b)(1,2,-1) \text{ and } (-1,-4,-2) \qquad (b)(1,2,-1) \text{ and } (-1,-4,-2) \\ (b)(1,2,-1) \text{ and } (-1,-4,-2) \qquad (b)(1,2,-1) \text{ and } (-1,-4,-2) \\ (b)(1,2,-1) \text{ and } (-1,-4,-2) \qquad (b)(1,2,-1) \text{ and } (-1,-4,-2) \\ (b)(1,2,-1) \text{ and } (-1,-4,-2) \qquad (b)(1,2,-1) \text{ and } (-1,-4,-2) \\ (b)(1,2,-1) \text{ and } (-1,-4,-2) \qquad (b)(1,2,-1) \text{ and } (-1,-4,-2) \\ (b)(1,2,-1) \text{ and } (-1,-4,-2) \qquad (b)(1,2,-1) \text{ and } (-1,-4,-2) \\ (b)(1,2,-1) \text{ and } (-1,-4,-2) \qquad (b)(1,2,-1) \text{ and } (-1,-4,-2) \\ (b)(1,2,-1) \text{ and } (-1,-4,-2) \qquad (b)(1,2,-1) \text{ and } (-1,-4,-2) \\ (b)(1,2,-1) \text{ and } (-1,-4,-2) \qquad (b)(1,2,-1) \text{ and } (-1,-4,-2) \\ (b)(1,2,-1) \text{ and } (-1,-4,-2) \qquad (b)(1,2,-1) \text{ and } (-1,-4,-2) \\ (b)(1,2,-1) \text{ and } (-1,-4,-2) \qquad (b)(1,2,-1) \text{ and } (-1,-4,-2) \\ (b)(1,2,-1) \text{ and } (-1,-4,-2) \qquad (b)(1$
23	(c) $(1, -2, -1)$ and $(1, 4, -2)$ (d) $(1, -2, -1)$ and $(0, -6, 1)$ If the distance of the point $(1, 1, 1)$ from the origin is half of its distance from the plane $x + y + $
23.	z + k = 0 then the values of k are
	(a) ± 3 (b) ± 6 (c) $-3,9$ (d) $3,-9$
24.	If the planes $\vec{r} \cdot (2\vec{\imath} - \lambda\vec{j} + \vec{k}) = 3$ and $\vec{r} \cdot (4\vec{\imath} + \vec{j} - \mu\vec{k}) = 5$ are parallel, then the value of λ and μ
	are
	(a) $\frac{1}{2}, -2$ (b) $\frac{-1}{2}, 2$ (c) $\frac{-1}{2}, -2$ (d) $\frac{1}{2}, 2$
25.	If the length of the perpendicular from the origin to the plane $2x + 3y + \lambda z = 1$, $\lambda > 0$ is $\frac{1}{r}$, then
	the value of λ is
	(a) $2\sqrt{3}$ (b) $3\sqrt{2}$ (c) 0 (d) 1
	CHADTED 7
	CHAFTER /
	APPLICATION OF DIFFERENTIAL CALCULUS
1	The volume of a sphere is increasing in volume at the rate of $2\pi \ cm^3/sac$. The rate of change of
1.	its radius when radius is $\frac{1}{cm}$
	(a) $3 cm/s$ (b) $2 cm/s$ (c) $1 cm/s$ (d) $12 cm/s$
2.	A balloon rises straight up at $10 m/s$. An observer is 40 m away from the spot where the balloon
	left the ground. Find the rate of change of the balloon's angle of elevation in radian per second
	when the balloon is 30 metres above the ground.
D C	Dr 24
DY 38	Ally 511,111.7057147727 Page 24

		
	2	A
	(a) $\frac{3}{25}$ radians/sec	(b) $\frac{4}{25}$ radians/sec
	(c) $\frac{1}{r}$ radians/sec	(d) $\frac{1}{2}$ radians/sec
3.	The position of a particle moving along a l	horizontal line of any time t is given by $s(t) = 3t^2 - 3t^2$
	2t - 8. The time at which the particle is at	t rest is
	(a) $t = 0$ (b) $t = 1$	(c) t = 1 $(d) t = 3$
4.	A stone is thrown up vertically. The heigh $16t^2$ The stone reaches the maximum has	It it reaches at time t seconds is given by $x = 80t - 1000$
	(a) 2 (b) 2.5	(c) 3 (d) 3.5
5.	Find the point on the curve $6y = x^3 + 2$ a	at which y – coordinate changes 8 times as fast as
	x –coordinate is	
	(a) (4, 11) $(b) (4, -11)$	(c) (-4,11) $(d) (-4,-11)$
6.	The abscissa of the point on the curve $f(x = 0.25.2)$	$x = \sqrt{8} - 2x$ at which the slope of the tangent is
	(a) - 8 $(b) - 4$	(c) - 2 (d) 0
7.	The slope of the line normal to the curve	$f(x) = 2\cos 4x$ at $x = \frac{\pi}{10}$ is
	$(a) 4\sqrt{2}$ (b) 4	$(a) \sqrt{3}$ $(d) 4\sqrt{2}$
0	$(a) - 4\sqrt{5}$ $(b) - 4$	$(c) \frac{12}{12}$ (<i>a</i>) 4V5
о.	The tangent to the curve $y^2 + xy + 9 = 0$ (a) $y = 0$ (b) $y = + 3$	$(c) y = 1 \qquad (d) y = +3$
9.	Angle between $y^2 = x$ and $x^2 = y$ at the o	origin is
	(a) $\tan^{-1}\frac{3}{4}$ (b) $\tan^{-1}\frac{4}{3}$	(c) $\frac{\pi}{2}$ (d) $\frac{\pi}{4}$
10.	What is the value of the limit $\lim_{x \to a} \int_{a}^{3} \cot x = 1$	$\left(\frac{1}{2}\right)$ is
	(a) 0 (b) 1	(c) $(d) \propto$
11.	The function $\sin^4 x + \cos^4 x$ is increasing	in the interval
	(a) $\left[\frac{5\pi}{2}, \frac{3\pi}{2}\right]$ (b) $\left[\frac{\pi}{2}, \frac{5\pi}{2}\right]$	$(c) \left[\frac{\pi}{2}, \frac{\pi}{2}\right] \qquad (d) \left[0, \frac{\pi}{2}\right]$
12.	The number given by the Rolle 's Theorem	n for the function $x^3 - 3x^2, x \in [0,3]$ is
	(a) 1 (b) $\sqrt{2}$	$(c) \frac{3}{2}$ (d) 2
13.	The number given by the Mean value theo	prem for the function $\frac{1}{2}$, $x \in [1,9]$ is
	(a) 2 (b) 2.5	(c) 3 (d) 3.5
14.	The minimum value of the function $ 3 - x $	$ \mathbf{r} + 9$ is
	(a) 0 (b) 3	(c) 6 (d) 9
15.	The maximum slope of the tangent to the π	curve $y = e^x \sin x$, $x \in [0, 2\pi]$ is at
	(a) $x = \frac{1}{4}$ (b) $x = \frac{1}{2}$	(c) $x = \pi$ (d) $x = \frac{\pi}{2}$
16.	The maximum value of the function x^2e^{-x}	$2^{2x}, x > 0$ is
. –	$(a) = (b) = \frac{1}{2e}$	$(c) \frac{1}{e^2} \qquad (d) \frac{1}{e^4}$
17.	One of the closest points on the curve x^2 -	$-y^2 = 4$ to the point (6,0) is
10	(a) $(2,0)$ (b) $(\sqrt{5},1)$	(c) $(3,\sqrt{5})$ (d) $(\sqrt{13}, -\sqrt{3})$
10.	(a) 100 (b) $25\sqrt{7}$	$(c) 28 \qquad (d) 24\sqrt{14}$
19.	The curve $y = ax^4 + bx^2$ with $ab > 0$	$(c) 20 \qquad (a) 24714$
	(a) has no horizontal tangent	(b) is concave up
	(c) is concave down	(d) has no points of inflection
20.	The point of inflection of the curve $y = (x + y)$	$(x-1)^{3}$ is $(d)(1,1)$
	$(u) (0,0) \qquad (b) (0,1)$	$(\boldsymbol{\iota}) (\mathbf{I}, \mathbf{U}) \qquad (\boldsymbol{\iota}) (\mathbf{I}, \mathbf{I})$
By Sa	amy Sir, PH:7639147727	Page 25

		СН	APTER 8	
	D	IFFERENTIALS AN	D PARTIAL DERIV	ATIVES
1.	A circular template h of $0.02 \ cm$. Then the	as a radius of 10 <i>cm</i> .' percentage error in ca	The measurement of r alculating area of this	radius has an approximate error template is
2.	The percentage error in 31?	r of fifth root of 31 is a	approximately how m	any times the percentage error
	(a) $\frac{1}{31}$	$(b) \frac{1}{5}$	(<i>c</i>) 5	(<i>d</i>) 31
3.	$If u(x,y) = e^{x^2 + y^2}, th$	hen $\frac{\partial u}{\partial x}$ is equal to		
	$(a) e^{x^2 + y^2}$	(b) 2xu	$(c) x^2 u$	$(d) y^2 u$
4.	$\mathrm{lf}v(x,y) = \log(e^x +$	e^{y}), then $\frac{\partial v}{\partial x} + \frac{\partial v}{\partial y}$ is equivalent to the expectation of the expec	jual to	
	(a) $e^x + e^y$	(b) $\frac{1}{e^x + e^y}$	(<i>c</i>) 2	(<i>d</i>) 1
5.	If $(x, y) = x^y, x > 0$,	, then $\frac{\partial w}{\partial x}$ is equal to		
	(a) $x^{y} \log x$	(b) $y \log x$ $\partial^2 f$	$(c) y x^{y-1}$	$(d) x \log y$
6.	If $f(x, y) = e^{xy}$, then	$\frac{\partial f}{\partial x \partial y}$ is equal to		
7.	(a) xye^{xy} If we measure the side	$(b) (1 + xy)e^{xy}$ le of a cube to be 4 <i>cm</i>	(c) $(1 + y)e^{xy}$ with an error of 0.1	$(d)(1+x)e^{xy}$ cm. then the error in our
	calculation of the vol	ume is	NU	
8	(a) 0.4 <i>cu</i> . <i>cm</i> The change in the su	(b) 0.45 cu. cm rface area $S = 6r^2$ of :	(c) 2 cu. cm	(d) 4.8 cu. cm length varies from r_0 to $r_0 + dr$
0.	is		a cube when the cuge	
0	(a) $12x_0 + dx$	(b) $12x_0 dx$	(c) $6x_0 dx$	$(d) 6 x_0 + dx$
5.	by 1% is	inge in the volume v t		ites caused by increasing the side
	(a) $0.3xdx m^3$	(b) $0.3x m^3$	(c) $0.3 x^2 m^3$	$a^{(d)} 0.03 x^3 m^3$
10.	If $g(x, y) = 3x^2 - 5y$	$y + 2y^2, x(t) = e^t$ and	d $y(t) = \cos t$, then $\frac{a}{d}$	$\frac{g}{t}$ is equal to
	(a) $6e^{2t} + 5\sin t - 4$ (c) $3e^{2t} + 5\sin t + 4$	4 cos t sin t	(b) $6e^{2t} - 5\sin t + (d)3e^{2t} - 5\sin t + d$	$4\cos t\sin t$ $4\cos t\sin t$
11.	If $f(x) = \frac{x}{x+1}$, then its	s differential is given l	by	
	(a) $\frac{-1}{(x+1)^2} dx$	$(b) \frac{1}{(x+1)^2} dx$	(c) $\frac{1}{x+1}dx$	$(d) \frac{-1}{x+1} dx$
12.	$\lim_{x \to 1^2} u(x, y) = x^2 + 3xy$	$(x+1)^{2}$ $y + y - 2019$, then $(\frac{\partial^{2}}{\partial x})$	$\frac{u}{2}$ is equal to	<i>x</i> +1
	(a) - 4	(b) - 3	(c) - 7	(<i>d</i>) 13
13.	Linear approximation	n for $g(x) = \cos x$, at	$x = \frac{\pi}{2}$ is	··· /
	(a) $x + \frac{\pi}{2}$	$(b) - x + \frac{\pi}{2}$	$(c) x - \frac{\pi}{2}$	$(d) - x - \frac{\pi}{2}$
14.	If $w(x, y, z) = x^2(y - z)$	$(z) + y^2(z - x) + z^2(z - x)$	(x - y), then is	- 0 (b)
15.	(a) $xy + yz + zx$ If $f(x, y, z) = xy + yz$	(b) $x(y + z)$ $z + zx$, then $f_x - f_z$ is	(c) y(z + x) sequal to	$(a) \mathbf{U}$
	(a) z - x	(b) $y - z$	(c) x - z	(d) y - x
Bv Sa	amy Sir, PH:7639147727	7		Page 26
	,			

Kindly Send Me Your Key Answer to Our email id - Padasalai.net@gmail.com

CHAPTER 9									
APPLICATIONS OF INTEGRATION									
	2								
1.	The value of $\int_0^{\frac{\pi}{3}} \frac{dx}{\sqrt{4-9x^2}}$	is T	π						
	$(a) \frac{\pi}{6}$	(b) $\frac{\pi}{2}$	(c) $\frac{\pi}{4}$	$(d) \pi$					
2.	The value of $\int_{-1}^{2} x dx$	c is	 5 	$(\mathbf{n})^{7}$					
2	$(a) \frac{1}{2}$	$(b) = \frac{\pi}{2}$	$(c) = \frac{1}{2}$	$(d) = \frac{1}{2}$					
э.	(a) $\frac{\pi}{-}$	(b) π	(c) 0	(d) 2					
Δ.	The value of $\int_{-\pi}^{\pi} \sin^2 x$	cos x dx is							
т.	$\int \frac{1}{2} \sin x$	(1) 1		$(1)^2$					
_	$(a) -\frac{1}{2}$	$(b) = \frac{1}{2} = 1 (x^2) = -1 (x^4)$	(c) 0	$(a) \frac{1}{3}$					
5.	The value of $\int_{-4}^{-4} [\tan^{-1}]$	$\left(\frac{1}{x^{4}+1}\right) + \tan^{-1}\left(\frac{\pi}{x^{2}}\right)$	$\left[\int dx \right] dx$ is	$(d) 4\pi$					
6	The value of $\int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \left[\frac{2x^7-1}{2x^7-1}\right]$	$\frac{3x^5+7x^3-x+1}{3x^5+7x^3-x+1}$ dr is	(() 51	(u) 1 n					
0.	(a) 4	$\cos^2 x$ $\int dx h^3$	(c)	(d) 0					
7.	If $f(x) = \int_0^x t \cos t dt$, then $\frac{df}{dt} =$		(u) 0					
_	(a) $\cos x - x \sin x$	(b) $\sin x + x \cos x$	(c) $x \cos x$	(d) $x \sin x$					
8.	The area between y^2	= 4x and its latus re	$(c) \frac{8}{2}$	$(d) \frac{5}{2}$					
9	The value of $\int_{1}^{1} r(1 - 1)$	$(b)_{3}$	3	(u) ₃					
2.	(a) $\frac{1}{a}$	$(b) \frac{1}{1}$	$(c) \frac{1}{\cdots}$	$(d) - \frac{1}{2}$					
10.	The value of $\int_0^1 \frac{dx}{dx}$	$\frac{10100}{r}$ is	10010	\$ 10001					
	$(a) \frac{\pi}{2}$	$(b) \pi$	(c) $\frac{3\pi}{2}$	(<i>d</i>) 2π					
11.	If $\frac{\Gamma(n+2)}{\Gamma(n)} = 90$ then <i>n</i> i	S	2						
	(a) 10	(<i>b</i>) 5	(<i>c</i>) 8	(<i>d</i>) 9					
12.	The value of $\int_0^{\frac{\pi}{6}} \cos^3 3$	Bx dx is	1						
	(a) $\frac{2}{3}$	$(b) \frac{2}{9}$	$(c) \frac{1}{9}$	$(d) \frac{1}{3}$					
13.	The value of $\int_0^{\pi} \sin^4 x$	dx is $(h)^{3\pi}$	$(-)$ 3π	(μ) 3π					
14	(a) $\frac{1}{10}$	$(\mathbf{D}) \frac{1}{8}$	$(C) \frac{1}{4}$	$(a) \frac{1}{2}$					
14.	$(a) \frac{7}{2}$	$(b) \frac{5}{2}$	$(c) \frac{4}{2}$	$(d)^{\frac{2}{2}}$					
15.	If $\int_{a}^{a} \frac{1}{1-a} dx$ then a is	27	27	27					
	(a) 4	(<i>b</i>) 1	(<i>c</i>) 3	(<i>d</i>) 2					
By Samy Sir, PH:7639147727 Page 27									

16. The volume of solid of revolution of the region bounded by $y^2 = x(a - x)$ about x –axis is (a) πa^3 (b) $\frac{\pi a^3}{4}$ (c) $\frac{\pi a^3}{5}$ (d) $\frac{\pi a^3}{6}$ **17.** If $f(x) = \int_1^x \frac{e^{\sin u}}{u} du$, x > 1 and $\int_1^3 \frac{e^{\sin x^2}}{x} dx = \frac{1}{2} [f(a) - f(1)]$, then one of the possible value of a(a) 3 (c) 9 (d) 5(*b*) 6 18. The value of $\int_0^1 (\sin^{-1} x)^2 dx$ is (a) $\frac{\pi^2}{4} - 1$ (b) $\frac{\pi^2}{4} + 2$ (c) $\frac{\pi^2}{4} + 1$ 19. The value of $\int_0^a (\sqrt{a^2 - x^2})^3 dx$ is (a) $\frac{\pi a^3}{16}$ (b) $\frac{3\pi a^4}{16}$ (c) $\frac{3\pi a^2}{8}$ 20. If $\int_0^x f(t) dt = x + \int_x^1 tf(t) dt$, then the value of f(1) is (c) 1 (c) $\frac{\pi^2}{4} + 1$ $(d) \frac{\pi^2}{4} - 2$ $(d) \frac{3\pi a^4}{8}$ $(d) \frac{3}{4}$ (*b*) 2 (c) 1 **CHAPTER 10** ORDINARY DIFFERENTIAL EQUATIONS The order and degree of the differential equation $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^{\frac{1}{3}} + x^{\frac{1}{4}} = 0$ are respectively 1. (a) 2, 3(*b*) 3, 3 (c) 2.6(d) 2.4The differential equation representing the family of curves $y = A \cos(x + B)$, where A and B are 2. parameters, is (a) $\frac{d^2y}{dx^2} - y = 0$ (b) $\frac{d^2y}{dx^2} + y = 0$ (c) $\frac{d^2y}{dx^2} = 0$ (d) $\frac{d^2x}{dy^2} = 0$ The order and degree of the differential equation $\sqrt{\sin x} (dx + dy) = \cos x (dx - dy)$ is 3. (*b*) 2, 2 (c) 1, 1 (a) 1, 2(d) 2, 1The order of the differential equation of all circles with centre at (h, k) and radius 'a' is 4. (a) 2 (b) 3 (c) 4 (d) 1 The differential equation of the family of curves $y = Ae^x + Be^{-x}$, where A and B are arbitrary 5. constants is (a) $\frac{d^2y}{dx^2} + y = 0$ (b) $\frac{d^2y}{dx^2} - y = 0$ (c) $\frac{dy}{dx} + y = 0$ (d) $\frac{dy}{dx} + y = 0$ The general solution of the differential equation $\frac{dy}{dx} = \frac{y}{x}$ is 6. (a) xy = k (b) $y = k \log x$ (c) y = kx (d) $\log y = kx$ The solution of the differential equation $2x \frac{dy}{dx} - y = 3$ represents (a) straight lines (b) circles (c) parabola (d) ellipse 7. (a) straight lines (b) circles (c) parabola (d) ellipse The solution of $\frac{dy}{dx} + p(x)y = 0$ is (a) $y = ce^{\int pdx}$ (b) $y = ce^{-\int pdx}$ (c) $x = ce^{-\int pdy}$ (d) $x = ce^{\int pdy}$ The integrating factor of the differential equation $\frac{dy}{dx} + y = \frac{1+y}{\lambda}$ is 8. 9. (a) $\frac{x}{e^{\lambda}}$ $(\boldsymbol{b}) \frac{e^{\lambda}}{r}$ (c) λe^{x} (d) e^x The integrating factor of the differential equation $\frac{dy}{dx} + P(x)y = Q(x)$ is x, then P(x)10. (b) $\frac{x^2}{2}$ $(c) \frac{1}{r}$ (a) xThe degree of the differential equation $y(x) = 1 + \frac{dy}{dx} + \frac{1}{12} \left(\frac{dy}{dx}\right)^2 + \frac{1}{123} \left(\frac{dy}{dx}\right)^3 + \dots$ is 11. By Samy Sir, PH:7639147727 Page 28

	(a) 2 (b) 3 (c) 1 (d) 4						
12.	If p and q are the order and degree of the differential equation $y \frac{dy}{dx} + x^3 \frac{d^2y}{dx^2} + xy = \cos x$, when						
	(a) $p < q$ (b) $p = q$ (c) $p > q$ (d) p exists, q does not exist						
13.	The solution of the differential equation $\frac{dy}{dx} + \frac{1}{\sqrt{1-x^2}} = 0$ is						
	(a) $y + \sin^{-1} x = c$ (b) $x + \sin^{-1} y = 0$						
	(c) $y^2 + 2\sin^{-1}x = C$ (d) $x^2 + 2\sin^{-1}y = 0$						
14.	The solution of the differential equation $\frac{dy}{dx} = 2xy$ is						
	(a) $y = Ce^{x^2}$ (b) $y = 2x^2 + C$ (c) $y = Ce^{-x^2} + C$ (d) $y = x^2 + C$						
15.	The general solution of the differential equation $\log\left(\frac{dy}{dx}\right) = x + y$ is						
	(a) $e^{x} + e^{y} = C$ (b) $e^{x} + e^{-y} = C$ (c) $e^{-x} + e^{y} = C$ (d) $e^{-x} + e^{-y} = C$						
16.	The solution of $\frac{dy}{dx} = 2^{y-x}$ is						
	(a) $2^{x} + 2^{y} = C$ (b) $2^{x} - 2^{y} = C$ (c) $\frac{1}{2^{x}} - \frac{1}{2^{y}} = C$ (d) $x + y = C$						
17.	The solution of the differential equation $\frac{dy}{dx} = \frac{y}{dx} + \frac{\phi(\frac{y}{dx})}{\phi(y)}$ is						
	$dx x \phi'(\frac{x}{x})$						
	(a) $x\phi\left(\frac{z}{x}\right) = k$ (b) $\phi\left(\frac{z}{x}\right) = kx$ (c) $y\phi\left(\frac{z}{x}\right) = k$ (d) $\phi\left(\frac{z}{x}\right) = ky$						
18.	If sin x is the integrating factor of the linear differential equation $\frac{dy}{dx} + Py = Q$, then P is						
	(a) $\log \sin x$ (b) $\cos x$ (c) $\tan x$ (d) $\cot x$						
19.	The number of arbitrary constants in the general solutions of order n and $n + 1$ are respectively (a) $n - 1$ $n - (b)$ $n + 1$ (c) $n + 1$ $n + 2$ (d) $n + 1$ n						
20.	The number of arbitrary constants in the particular solution of a differential equation of third						
	order is						
	(a) 3 (b) 2 (c) 1 (d) 0						
21.	Integrating factor of the differential equation $\frac{dy}{dx} = \frac{x+y+1}{x+1}$ is						
	(a) $\frac{1}{x+1}$ (b) $x+1$ (c) $\frac{1}{\sqrt{x+1}}$ (d) $\sqrt{x+1}$						
22.	The population <i>P</i> in any year <i>t</i> is such that the rate of increase in the population is proportional						
	to the population. Then						
72	(a) $P = Ce^{\pi c}$ (b) $P = Ce^{\pi c}$ (c) $P = Ckt$ (d) $P = C$ <i>P</i> is the amount of certain substance left in after time <i>t</i> . If the rate of overparation of the						
4 3.	substance is proportional to the amount remaining, then						
	(a) $P = Ce^{kt}$ (b) $P = Ce^{-kt}$ (c) $P = Ckt$ (d) $P = C$						
24.	If the solution of the differential equation $\frac{dy}{dx} = \frac{ax+3}{2w+6}$ represents a circle, then the value of a is						
	(a) 2 (b) -2 (c) 1 (d) -1						
25.	The slope at any point of a curve $y = f(x)$ is given by $\frac{dy}{dx} = 3x^2$ and it passes through (-1,1).						
	Then the equation of the curve is						
	(a) $y = x^3 + 2$ (b) $y = 3x^2 + 4$ (c) $y = 3x^3 + 4$ (d) $y = x^3 + 5$						
CHAPTER 11							
PROBABILITY DISTRIBUTIONS LAPLACE							
D. C							
by Samy Sir, PH:/63914/727 Page 29							

Let *X* be random variable with probability density function $f(x) = \begin{cases} \frac{2}{x^3}, & x \ge 1\\ 0, & x < 1 \end{cases}$. Which of the 1. following statement is correct (*a*) both mean and variance exist (b) mean exists but variance does not exist (c) both mean and variance do not exist (d) variance exists but Mean does not exist. 2. A rod of length 2l is broken into two pieces at random. The probability density function of the shorter of the two pieces is $f(x) = \begin{cases} \frac{1}{l}, & 0 < x < l \\ 0, & l \le x \le 2l \end{cases}$ The mean and variance of the shorter of the two pieces are respectively (a) $\frac{l}{2}, \frac{l^2}{3}$ (b) $\frac{l}{2}, \frac{l^2}{6}$ (c) $l, \frac{l^2}{12}$ (d) $\frac{l}{2}, \frac{l^2}{12}$ Consider a game where the player tosses a six-sided fair die. If the face that comes up is 6, the 3. player wins `36, otherwise he loses `k2 , where k is the face that comes up $k = \{1, 2, 3, 4, 5\}$. The expected amount to win at this game in `is (a) $\frac{19}{6}$ $(b)\frac{-19}{6}$ $(c) \frac{3}{2}$ $(d) \frac{-3}{2}$ A pair of dice numbered 1, 2, 3, 4, 5, 6 of a six-sided die and 1, 2, 3, 4 of a four-sided die is rolled 4. and the sum is determined. Let the random variable *X* denote this sum. Then the number of elements in the inverse image of 7 is (a) 1(*b*) 2 (c) 3 (d) 45. A random variable *X* has binomial distribution with n = 25 and p = 0.8 then standard deviation of *X* is (*a*) 6 (*b*) 4 (c) 3 (d) 2Let X represent the difference between the number of heads and the number of tails obtained 6. when a coin is tossed *n* times. Then the possible values of *X* are (a) i + 2n, i = 0, 1, 2... n(b)2i-n, i = 0, 1, 2...n(d) 2i + 2n, i = 0, 1, 2...n(c) n-i, i = 0, 1, 2... nIf the function $f(x) = \frac{1}{12}$ for a < x < b, represents a probability density function of a continuous 7. random variable *X*, then which of the following cannot be the value of *a* and *b*? (*a*) 0 and 12 (*b*) 5 and 17 (*c*) 7 and 19 (*d*) 16 and 24 8. Four buses carrying 160 students from the same school arrive at a football stadium. The buses carry, respectively, 42, 36, 34, and 48 students. One of the students is randomly selected. Let X denote the number of students that were on the bus carrying the randomly selected student. One of the 4 bus drivers is also randomly selected. Let *Y* denote the number of students on that bus. Then *E*[*X*] and *E*[*Y*] respectively are (a) 50,40 (b) 40,50 (c) 40.75,40 (d) 41.41 9. Two coins are to be flipped. The first coin will land on heads with probability 0.6, the second with Probability 0.5. Assume that the results of the flips are independent, and let *X* equal the total number of heads that result. The value of *E*[*X*] is (a) 0.11(b) 1.1 (c)11(d)1On a multiple-choice exam with 3 possible destructives for each of the 5 questions, the 10. probability that a student will get 4 or more correct answers just by guessing is $(a) \frac{11}{243} (b) \frac{3}{8} (c) \frac{1}{243} (d) \frac{5}{243} \\ If P(X = 0) = 1 - P(X = 1). If E[X] = 3Var(X), then P(X = 0). \\ (a) \frac{2}{3} (b) \frac{2}{5} (c) \frac{1}{5} (d) \frac{1}{3} \\ If X is a binomial random variable with expected value 6 and variance 2.4, Then P(X = 5) is \\ (a) \left(\frac{10}{5}\right) \left(\frac{3}{5}\right)^6 \left(\frac{2}{5}\right)^4 (b) \left(\frac{10}{5}\right) \left(\frac{3}{5}\right)^{10} (c) \left(\frac{10}{5}\right) \left(\frac{3}{5}\right)^4 \left(\frac{2}{5}\right)^6 (d) \left(\frac{10}{5}\right) \left(\frac{3}{5}\right)^5 \left(\frac{2}{5}\right)^5 \\ \end{cases}$ 11. 12. Page 30 By Samy Sir, PH:7639147727

The random variable *X* has the probability density function $f(x) = \begin{cases} ax + b, 0 < x < 1 \\ 0, 0 \text{ therwise} \end{cases}$ and 13. $E(X) = \frac{7}{12}$, then *a* and *b* are respectively (*a*) **1** and $\frac{1}{2}$ (*b*) $\frac{1}{2}$ and 1 (*c*) 2 and 1 (*d*) 1 and 2 Suppose that *X* takes on one of the values 0, 1, and 2. If for some constant k, P(X = i) =14. kP(X = i - 1) for i = 1,2 and $P(X = 0) = \frac{1}{7}$. Then the value of k is (**b**) 2(a) 1 (c) 3(d) 415. Which of the following is a discrete random variable? *I*. The number of cars crossing a particular signal in a day. *II*. The number of customers in a queue to buy train tickets at a moment. *III*. The time taken to complete a telephone call. (b) II only (*c*) *III* only (d) II and III (a) I and II If $f(x) = \begin{cases} 2x, 0 \le x \le a \\ 0, \ Otherwise \end{cases}$ is a probability density function of a random variable, then the value of 16. a is (a) 1(*b*) 2 (c) 3 (d) 417. The probability function of a random variable is defined as: -2-1 0 1 2 х f(x)2k3kk 4k5kThen E(X) is equal to: (a) $\frac{1}{15}$ $(b) \frac{1}{10}$ $(d) \frac{2}{3}$ $(c) \frac{1}{3}$ Let X have a Bernoulli distribution with mean 0.4, then the variance of (2X - 3) is 18. (a) 0.24(*b*) 0.48 (c) 0.6 (d) 0.96If in 6 trials, X is a binomial variate which follows the relation 9P(X = 4) = P(X = 2), then the 19. probability of success is (**b**) 0.25 (c) 0.375(*a*) 0.125 (d) 0.7520. A computer salesperson knows from *h* is past experience that he sells computers to one in every twenty customers who enter the showroom. What is the probability that he will sell a computer to exactly two of the next three customers? $(a) \frac{57}{20^3}$ (b) $\frac{57}{20^2}$ $(C) \frac{19^3}{20^3}$ $(d) \frac{57}{20}$ **CHAPTER 12** DISCRETE MATHEMATICS A binary operation on a set *S* is a function from 1. $(b) (S \times S) \to S \qquad (c) S \to (S \times S)$ $(d) (S \times S) \to (S \times S)$ (a) $S \to S$ Subtraction is not a binary operation in 2. $(a) \mathbb{R}$ $(b)\mathbb{Z}$ (*c*) ℕ $(d) \mathbb{Q}$ 3. Which one of the following is a binary operation on \mathbb{N} ? (**b**) Multiplication (a) Subtraction (c) Division (*d*) All the above In the set \mathbb{R} of real numbers ' * ' is defined as follows. Which one of the following is not a binary 4. operation on \mathbb{R} ? (a) a * b = min(a, b)(b) a * b = max(a, b) $(d) a * b = a^b$ (c) a * b = aThe operation * defined by $a * b = \frac{ab}{7}$ is not a binary operation on 5. By Samy Sir, PH:7639147727 Page 31 I٢

	$(a) \mathbb{Q}^+$	(b) Z	(<i>c</i>) ℝ	$(d) \mathbb{C}$
6.	In the set \mathbb{Q} define $a($		or what value of y , 3	$(y \odot 5) = 7?$
	(a) $y = \frac{2}{2}$	(b) $y = \frac{-2}{2}$	(c) $y = \frac{-3}{2}$	(d) y = 4
	3	3	Z	
7.	If $a * b = a^2 + b^2$ on	the real numbers th	ien * is	
	(<i>a</i>) commutative but	not associative	(b) associative but	t not commutative
	(c) both commutative	e and associative	(d) neither commu	utative nor associative
8.	Which one of the foll	owing statements ha	as the truth value <i>T</i> ?	
	(a) $\sin x$ is an even f	unction.	(b) Every square r	natrix is non-singular
	(<i>c</i>) The product of co	mplex number and	its conjugate is purely	vimaginary
	(d) 5 is an irrational	number	, , , , , , , , , , , , , , , , , , ,	
9.	Which one of the foll	owing statements ha	as truth value F?	
	(<i>a</i>) Chennai is in Indi	ia or 2 is an integer		
	(<i>b</i>) Chennai is in Indi	a or 2 is an irration	al number	
	(c) Chennai is in Chir	a or 2 is an integer		
	(d) Chennai is in Chin	na or 2 is an irratior	al number	
10	If a compound staten	nent involves 3 sim	le statements then the	e number of rows in the truth
101	table is	in the second	ne statements, then th	
	(a) 9	(\boldsymbol{h}) 8	(c) 6	(d) 3
11	Which one is the inve	erse of the statemen	$t(n \lor a) \rightarrow (n \land a)^2$	
11.	$(a) (n \land a) \rightarrow (n \lor a)$		$(h) - (n \lor a) \rightarrow (n$	Λ (q)
	$(a)(p \land q) \rightarrow (p \land q)$	$(\wedge -a)$	$(d)(-n \wedge -a) \rightarrow (d)$	(-n)(-a)
12	Which one is the con	tra nositive of the st	atement $(n \lor a) \rightarrow r$	
12.	(a) $-r \rightarrow (-n \land -a)$	$(h) = r \rightarrow (n \lor a)$	$(c) r \rightarrow (n \land q)$	$(d) n \rightarrow (a \lor r)$
12	$(\boldsymbol{u}) \neg \boldsymbol{l} \rightarrow (\neg \boldsymbol{p} \land \neg \boldsymbol{q})$ The truth table for (\boldsymbol{r})	$(b) \rightarrow (b \land q)$	$(c) \rightarrow (p \land q)$	$(u) p \to (q \vee r)$
13.		$\eta \eta $	$(n)(n) \vee (n)$	
		$p \qquad q$	$(p \lor q) \lor (\neg q)$	·
			(2)	
			(3)	
		F F	(4)	
	Which one of the foll	owing is true?		
		(1)	(2) (3)	(4)
		(a) T	<u> </u>	T
		(<i>b</i>) <i>T</i>	F T	<u> </u>
		(<i>c</i>) <i>T</i>	T F	<u> </u>
		(<i>d</i>) <i>T</i>		F
14.	In the last column of	the truth table for –	$(p \lor \neg q)$ the number	r of final outcomes of the truth
	value 'F' are			
	(<i>a</i>) 1	(<i>b</i>) 2	(c) 3	(<i>d</i>) 4
15.	Which one of the foll	owing is incorrect?	For any two proposition	ons p and q , we have
	$(a) \neg (p \lor q) \equiv \neg p \land$	$\neg q$	$(b) \neg (p \land q) \equiv \neg p$	$p \vee \neg q$
	$(c) \neg (p \lor q) \equiv \neg p \lor$	$' \neg q$	$(d) \neg (\neg p) \equiv p$	
16.				
		p q	$(p \land q) \rightarrow (\neg P)$	
		<u>T</u> <u>T</u>	(1)	
		T F	(2)	
		F T	(3)	
		$F \qquad F$		
	Which one of the foll	owing is correct for	the truth value of (p / p)	$(\neg P) \rightarrow (\neg P)$
		(1) (2) (3) (4)	
By Sa	amy Sir, PH:7639147727	7		Page 32

www.Trb Tnpsc.Com

Page 33

		(a)	т	T	т	T	1	
		(u)	I F	1 T	1 T	1 T		
		(\boldsymbol{b})	F.	F				
		(d)	T	T		F	_	
		(u)	1	1	1	1		
17.	The dual of \neg	v ∨ q) ∨ [v \	$(p \land \neg r)$)] is				
	$(a) \neg (p \land a) \land$	$[v \lor (v \land \neg$	r)]) - (b) (p V	a) \wedge [p	$\wedge (v \vee \neg r)$)]
	$(c) \neg (p \land q) \land$	$[\nu \land (\nu \land r)]$)]	(d) \neg (r	$(a) \wedge (a) \wedge (a)$	$[\mathbf{v} \land (\mathbf{v} \lor$	$[r]{r}$
18.	The propositio	$n n \wedge (\neg n \vee)$	a) is			1		
-	(a) a tautology	7	17 -	(b) a coi	ntradicti	on	
	(c) logically eq	uivalent to <i>p</i>	$\wedge a$	(d) logic	callv equ	ivalent to	p V a
19.	Determine the	truth value	of each of	the follo	wing st	atement	S:	
	(a) 4 + 2 = 5	and $6 + 3 =$	9	(b) $3 + 3$	2 = 5 an	d 6 + 1 =	7
	(c) 4 + 5 = 9 a	and $1 + 2 =$	4	(d) 3 +	2 = 5 a m	1d 4 + 7 =	11
			(1)	(2)	(3)	(4)		
		<i>(a)</i>	F	T	F	T		
		<i>(b)</i>	Т	F	Т	F		
		(C)	Т	Т	F	F		\mathcal{K}
		(<i>d</i>)	F	F	T	Т		
20.	Which one of t	he following	is not tru	e?				
	(a) Negation o	f a negation	of a statei	ment is t	he state	ement its	self.	
	(b) If the last c	olumn of the	e truth tab	ole contai	ins only	T then	it is a tauto	ology.
	(c) If the last c	olumn of its	truth tabl	e contair	is only	F then i	t is a contr	adiction
	(d) If p and q a	are any two s	tatement	s then p	$\leftrightarrow q$ is a	a tautolo	gy.	
		\mathcal{T}						
	my Sir DU.7420	147777						
rsv > 2	UUV NE PHY/634	141111						