SRI DIVYA CHAITANYA MATRIC HIGHER SECONDARY SCHOOL, SHOLINGHUR. RANIPET – 631102 HSC SECOND YEAR HALF-YEARLY EXAMINATION DEC-2024

PHYSICS ANSWER KEY

NOTE:

- 1. Answers written with Blue or Black ink only to be evaluated.
- 2. Choose the most suitable answer in Part A from the given alternatives and write the option code and their corresponding answer.
- For answers in Part II, Part III, Part IV like reasoning, explanation, narration, description
 and listing of points, students may write in their own words but without changing the concepts
 and without skipping any point.
- 4. In numerical problems if formula is not written , marks should be given for the remaining correct steps.
- 5. In graphical representation, physical variables for X-axis and Y-axis should be marked.

TOTAL MARKS : 70

Q.NO	OPTION	ANSWER					
1	С	Refraction					
2	d	Polarisation					
3	а	π/4					
4	Lenz						
5	С	480 W					
6	b	(4500±5%)Ω					
7	b	1.2 Am ²					
8	а	3×10 ⁻² C					
9	b	ML ³ T ⁻³ A ⁻¹ , NM ² C ⁻¹					
10	с	Longitudinal					
11	d	Voltage regulator					
12	Ċ	Albert Einstein					
13	c	Thermionic					
14	b	1.602×10 ⁻¹⁹ J					
15	С	3					

PART - I

Choose the correct answer:

>

Q.NO	ANSWER							
16	Correct Definition Unit	1½ ½	2					
	INTRINSIC SEMICONDUCTOR EXTRINSIC SEMICONDUCTOR							
	Pure form of semiconductor without Impurity added semiconductor							
	impurity. Eg: Pure Si and Pure Ge							
47	The number of electrons in the The number of electrons in the conduction	2.1						
17	conduction band is equal to the band is not equal to the number of holes in	Z×I	Ζ					
	number of holes in the valence band. the valence band.							
	Electrical conductivity is less. Electrical conductivity is high.							
	(any Two point)							
	$A = \sqrt{a^2 + a^2 + 2a a \cos \phi}$	1/						
	$A = \sqrt{u_1 + u_2 + 2u_1u_2\cos\psi}$	/2						
	$A_{\max} = \sqrt{(a_1 + a_2)^2} = \sqrt{(5+3)^2} = \sqrt{(8)^2}$	1/2						
18	= 6 unus		2					
	$A_{\min} = \sqrt{(a_1 - a_2)} = \sqrt{(5 - 3)} = \sqrt{2}$ $= 2 \text{ units}$	1⁄2						
	$\frac{I_{\text{max}}}{I_{\text{max}}} = \frac{(8)^2}{16} = \frac{64}{16} = 16$ (or)							
	$\frac{I_{\min}}{I_{\min}} = \frac{I_{\min}}{(2)^2} = \frac{I_{\min}}{4} = 10^{-10} (01)^{-10}$							
19	Any two uses of LIV radiation	2x1	2					
10	During sunrise and sunset, the light from sun travels a greater distance	21	-					
20	through the atmosphere. Hence, the blue light which has shorter							
20	wavelength is scattered away and the red light which has longer	∠	Z					
	wavelength and less-scattered manages to reach our eye.	<u> </u>						
21	Any two ways of producing induced emf	2×1	2					
22	Correct Definition	2	2					
23	Any four properties of Cathode rays	4×½	2					
	$a = \frac{eE}{d}$							
	m							
24	$=\frac{570 \times 1.0 \times 10}{9.11 \times 10^{-31}}$	1/2	2					
	$=1.001 \times 10^{14} \text{ m s}^{-2}$	1						
	(if unit not mensioned reduce ¹ / ₂ mark)							

PART – II

	WVBKC		
$\Phi_{E} = \oint \vec{E} \cdot d\vec{A} \Phi_{E} = \oint E dA \cos\theta$			
$E = \frac{1}{4\pi r_0} \frac{Q}{r_0^2}$	1		
$4\pi\epsilon_0 r$ $\Phi_E = \frac{Q}{\epsilon_0}$	1	3	
(or) Correct definition of Gauss law	2		
$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$			
	1/2		
$\overline{v} = \frac{1}{-15} - \frac{1}{-20}$	1⁄2		
$v = -60.0 \ cm$	1⁄2		
$m = \frac{h'}{h} = -\frac{v}{u}$	1/2	3	
$m = \frac{h'}{h} = -\frac{(-60)}{(-20)} = -3$	1/2		
As the sign of magnification is negative, the image is inverted. As the magnitude of magnification is 3, the image is enlarged three times	1/2		
As the image is formed to the left of the concave mirror, the image is real.			
	1		
$V = \begin{array}{c} \downarrow^{+} \\ \neg \\ \neg \end{array} \qquad \qquad$			
$I = I_1 + I_2 + I_3$	1⁄2	3	
$I = \frac{V}{R_1} + \frac{V}{R_2} + \frac{V}{R_3}$	1⁄2		
$\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$	1		

PART – III

2

29	Any six properties of electromagnetic waves								6×1⁄2	3	
30	 For a given metallic surface, the emission of photoelectrons takes place only if the frequency of incident light is greater than a certain minimum frequency called the threshold frequency. For a given frequency of incident light (above threshold value), the number of photoelectrons emitted is directly proportional to the intensity of the incident light. The saturation current is also directly proportional to the intensity of incident light. Maximum kinetic energy of the photo electrons is independent of intensity of the incident light. Maximum kinetic energy of the photo electrons from a given metal is directly proportional to the frequency of incident light. There is no time lag between incidence of light and ejection of photoelectrons. 										
31	De Mo Statem $\overline{A+B}$ \overline{A} 0 0 1 1 De Mo Statem $\overline{A \cdot B}$ =	$rgan$ $=\overline{A}$ B 0 1 0 1 $rgan$ $=\overline{A}$	\overrightarrow{B} $\overrightarrow{A+B}$ $\overrightarrow{0}$ 1 1 3 \overrightarrow{S} First T	Theorem A+B 1 0 0 0 Theorem	A 1 0 0	B 1 0 1 0	$\overline{A}.\overline{B}$ 1 0 0 0		1/2 1/2 1/2 1/2	3	
	A 0 1 1	B 0 1 0 1	A.B 0 0 0	A.B 1 1 1 0	Ā 1 1 0 0	B 1 0 1 0	$\overline{A} + \overline{B}$ 1 1 1 0		1/2		
32	Definition of alpha decay Definition of Beta decay Definition of Gamma emission								1 1 1	3	
	$I = \frac{2RB_{H}}{\mu_{I}N} \tan \theta$							1			
33	$= \frac{2 \times 0.12 \times 25 \times 10^{-6}}{4 \times 10^{-7} \times 3.14 \times 100} \times 1.732$						1	3			
	I=0.0	082	A (if uni	t not mer	nsione	ed red	uce ½ mar	k)	1		

PART	-	IV
------	---	----

Answer all the questions:

Answe	ver all the questions: 5					
Q.NO	ANSWER					
	Electrostatic potential at a point due to an electric dipole:					
	Diagram & Explanation	1				
34(a)	$upto V = \frac{q}{4\pi\varepsilon_o} \left(\frac{1}{r_1} - \frac{1}{r_2}\right)$	1	5			
	Upto $\frac{1}{r_1} = \frac{1}{r} \left(1 + \frac{a\cos\theta}{r} \right)$	1/2				
	$\frac{1}{r_2} = \frac{1}{r} \left(1 - \frac{a \cos \theta}{r} \right)$	1/2				
	$upto V = \frac{1}{4\pi\varepsilon_o} \frac{2aq \cos \theta}{r^2}$	1/2 1/				
	$p = 2aq$ $V = \frac{1}{p \cos \theta} (or) V = \frac{\vec{p} \cdot \hat{r}}{\vec{p} \cdot \hat{r}}$	/2				
	$v = \frac{1}{4\pi\varepsilon_o} \frac{1}{r^2} r^2 = \frac{1}{100} v = \frac{1}{4\pi\varepsilon_o r^2}$					
	(OR)					
	B A C B' F F F					
34(b)	$\frac{A'B'}{AB} = \frac{PA'}{BA} \qquad \frac{A'B'}{AB} = \frac{A'F}{BE}$	1	5			
	PA' PA' - PF	1⁄2				
	PA PF PA II PA' = II PE - f	1⁄2				
	$PA = -u, \qquad PA = -v, \qquad PF = -j$ Upto					
	$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$	1				
	$m = \frac{h'}{h} = -\frac{v}{u} \qquad m = \frac{h'}{h} = \frac{f-v}{f} = \frac{f}{f-u}$	1				

	Absorption spectra: Definition of absorption spectra	1⁄2		
38(a)	 (i) Continuous absorption spectra (ii) Line absorption spectra (iii) Band absorption spectra Explanation and examples 	1½ 1½ 1½	5	
	(or) Naming the types of Emission spectrum alone	1½		X
	(OR)			
38(b)	Basic element of communication system:			
	Block diagram	2	5	
	Explanation	3		

Prepared by

M.PRAKASH M.Sc., B.Ed., DEPARTMENT OF PHYSICS SRI DIVYA CHAITANYA MAT. HR. SEC. SCHOOL, SHOLINGHUR, RANIPET-631102