

COMMON HALF YEARLY EXAMINATION - 2024

Reg No	1 1 1
	-

PHYSICS

Time: 3.00 hrs

Part - A

Marks: 70

I. Choose the correct answer:

- 1. If voltage applied on a capacitor is increased from V to 2V, choose the correct conclusion
 - a) Q remains the same, C is doubled
- b) Q is doubled, C doubled
- c) C remains same, Q doubled
- d) Both Q and C remain same
- 2. The threshold wavelength for a metal surface whose photoelectric work function is 3.313 eV is
 - a) 4125 Å
- b) 3750 A
- c) 6000 A
- d) 20625 A

- 3. The zener diode is primarily used as
 - a) Rectifier
- b) Amplifier
- c) Oscillator
- 4. A radioactive nucleus (initial mass number A and atomic number Z) emits two α -particles and 2 positrons. The ratio of number of neutrons to that of proton in the final nucleus will be
 - a) $\frac{A-Z-4}{Z-6}$ b) $\frac{A-Z-4}{Z-2}$ c) $\frac{A-Z-12}{Z-4}$

Usill-2

- d) $\frac{A-Z-2}{Z-6}$
- 5. The number of electrons in one coulomb of negative charge are
 - a) 6.25 × 10-18 electrons

b) 6,25 × 1020 electrons

c) 6.25 × 10²⁵ electrons

- (d) 6.25 × 10¹⁸ electrons
- There is a current of 1.0 A in the circuit shown below. What is the resistance of P.?

- a) 1.5 \O
- b) 2.5 Ω
- c) 3.5 \O

- 7) A wire of length I carrying a current I along the Y direction is kept in a magnetic field

given by $\vec{B} = \frac{\beta}{\sqrt{3}} (\hat{i} + \hat{j} + \hat{k})$ T. The magnitude of Lorentz force acting on the wire is

- a) $\sqrt{\frac{2}{3}}\beta II$
- b) $\sqrt{\frac{1}{3}} \beta 1 I$ c) $\sqrt{\frac{1}{2}} \beta 1 I$
- d) \2 6 1 21 15

2

XII Physics

- 8. Light transmitted by Nicol prism is,
 - a) partially polarised

b) unpolarised

c) plane polarised

- d) elliptically polarized
- 9 The radius of the 10th orbit of hydrogen atom is 52.9 Å. Calculate the de broglie wavelength of the electron orbitting in the 10th orbit.
 - a) 16.64 A
- b) 3.322 Å
- c) 33.22 A
- d) 6.64 A
- The instantaneous values of alternating current and voltage in a circuit are $i = \frac{1}{\sqrt{2}} \sin(100\pi t) A$ and $V = \frac{1}{\sqrt{2}} \sin(100\pi t + \frac{\pi}{3}) V$. The average power in watts consumed in the circuit is
 - a) 1/4
- b) $\frac{\sqrt{3}}{4}$
- c) $\frac{1}{2}$

- d) $\frac{1}{8}$
- 11. Electromagnetic waves travel in a medium which has relative permeability 2.0 and relative permittivity 2.0. Then the speed of the electromagnetic wave in the medium will be 5.2.1
 - a) 3.6 × 108 m/s

(b) 3 × 108 m/s

(c) 1.5 × 108 m/s

- d) 1.5×10^2 m/s
- 12. The particle which gives mass to protons and neutrons are
 - a) Higgs particle
- b) Einstein particle

c) Nanoparticle

- d) Bulk particle
- 13. For the given logic circuit, the output will be 1 under which of the following conditions?

- a) A = 0, B = 0, C = 1, D = 0
- b) A = 1, B = 0, C = 1, D=0
- c) A = 0, B = 1, C = 0, D = 1
- d) A = 0, B = 1, C = 1, D = 1
- 14.) Speed of light in an isotropic medium depends on,
 - a) its intensity

- b) its wavelength
- c) the nature of propagation
- d) the motion of the source

T-TIMU

*** 21:51**

3

XII Physics

- When a metallic surface is illuminated with radiation of wavelength λ, the stopping potential is V. If the same surface is illuminated with radiation of wavelength 2λ, the stopping potential is $\frac{V}{4}$. The threshold wavelength for the metallic surface is
 - a) $\frac{5}{2}\lambda$
- b) 47

c) 5_λ

d) 3\(\lambda

Part - B

II. Answer any 6 questions. (Q.No.24 is compulsory)

 $6 \times 2 = 12$

- 16. What is corona discharge?
- 17 If the resistance of coil is 3 Ω at 20°C and α = 0.004/°C then determine its resistance at 100°C.
- 18. State Flemming's left hand rule.
- 19. Mention the ways of producing induced emf. 4.4.2
- Write the properties of cathode rays.
- 21. Define work function of a metal. Give its unit.
- The angle of minimum deviation for an equilateral prism is 37°. Find the refractive index of the material of the prism.
- The given circuit has two ideal diodes connected as shown in figure below. Calculate the current flowing through the resistance R₁.

Compute the speed of the electromagnetic wave in a medium if the amplitude of electric and magnetic fields are 3 × 10⁴ N C⁻¹ and 2 × 10⁻⁴ T, respectively.

Part - C

III. Answer any 6 questions. (Q.No.33 is compulsory)

6 x 3 = 18

- 25. Write the uses of the capacitors.
- 26. Explain the equivalent resistance of a parallel resistor network.

XII Physics

- 27. How is a galvanometer converted into
 - (i) an ammeter and (ii) a voltmeter?, Draw respective diagrams.
- Write down the properties of electromagnetic waves.
- 29. An object is placed at a certain distance from a convex lens of focal length 20 cm. Find the object distance if the image obtained is magnified 4 times.
- Differentiate between Fresnel and Fraunhofer diffraction.
- 31. List out the laws of photoelectric effect.
- 32) The self-inductance of an air-core solenoid is 4.8 mH. If its core is replaced by iron core, then its selfinductance becomes 1.8 H. Find out the relative permeability of iron.
- 33. Find the ratio of minimum to maximum wavelength in Balmer series.

Part - D

IV. Answer all the questions.

 $5 \times 5 = 25$

1.5.3

34. a) Derive an expression for electrostatic potential due to an electric dipole.

(OR)

- b) Derive the expression for the force on a current-carrying conductor in a magnetic 3.8.2 3.10.5 field.
- 35. a) Obtain the condition for bridge balance in Wheatstone's bridge. 2.5.5

(OR)

- by Derive an expression for phase angle between the applied voltage and current in a series RLC circuit. 4.7 b
- 36. a) What is Spectrum? Explain the types of emission spectrum. 5.3

- b) Obtain lens maker's formula. 6.6.3
- 37. a) Obtain the equations for magnification for near point and normal focusing of the simple microscope 6.13.1.1 & 6.13.1.2.

(OR)

- b) Briefly explain the principle and working of electron microscope. 7 · 3 · 5
- 38. a) Discuss the Millikan's oil drop experiment to determine the charge of an electron.

(OR)

Explain the construction and working of a full wave rectifier. 9.3.4.1