| T C | OMMON HA | LF YEARLY | EXAMINAT | 10N - 20 | 24 | |---------|--|--|---|-----------------------------------|--------------------------| | MARIO | | Standard | | eg.No. | 2419 | | Time: 3 | 3.00 hrs. | PHYS | ICS | | Marks: 70 | | (. An: | If voltage applied correct conclusion a) Q remains the sc) C remains same | d on a capacitor
n.
same, C is doubled | | , C doubled | | | 2) | There is a current
the circuit shown
What is the resist | -below. 1 | ον | 2.5Ω | | | . 3) | a) 3.5Ω
A toester operation a) 400W | b) 1.5Ω
ng at 240V has a
b) 2W | P
c) 4.5Ω
resistance of 120
c) 480W | d) 2.5Ω
Ω. Its powe
d) 240W | ris | | 4) | A bar magnet of
Pm is bent in the
The new magneti | form of an arc as | shown in figure. | | > | | | | | | 609 | | | 5) | a) Pm In an oscillating The charge on the | ne capacitor when | aximum charge | on the capa | citor is Q.
y between | | 6) | a) $\frac{Q}{2}$
In a series RL circ
Then the phase di | uit, the resistance | and inductive re | actance are | the same. | | 7) | a) $\frac{\pi}{4}$
An e.m wave is
The instantaneou
axis, then the direct | propagating in
s oscillating elect | a medium wit | e.m wave is | along +y | | | a) -y directionThe speed of lighta) its intensityc) the nature of p | b) -x directionin an isotropic nropagation | c) +z direction
nedium depends
b) its wavelengt
d) the motion of t | d) -z dire
on
th | ection | | | The transverse na
a) interference
The wavelength λt
related by | b) diffraction | c) scattering | d) polaris
of same en | ation
ergy E are | a) $\lambda p \propto \lambda e$ b) $\lambda p \propto \sqrt{\lambda} e$ c) $\lambda p \propto \frac{1}{\sqrt{\lambda} e}$ d) $\lambda p \propto \lambda e^2$ 11) The threshold wavelength for a metal surface whose photo electric work function is 3.313eV is a) 4125Å b) 3750Å c) 6000Å d) 2062.5Å c) 6000Å