SIR CV RAMAN COACHING CENTRE – 2024 XLL PHYSICS [Unit 1,2,3]- IMPORTANT DIAGRAMS Dr.G.THIRUMOORTHI .,M.Sc,B.Ed,Ph.D ,PHYSICS thiruphysics1994 gmail.com , 8610560810,,,,

EQUATORIAL PLANE:

ELECTRIC DIPOLE AT A ELECTRIC POTENTIAL:

Figure 1.29 The dipole in a uniform electric field

GAUSS LAW APPLICATIONS (i)

Figure 1.37 Cylindrical Gaussian surface

Figure 1.38 Electric field due to charged infinite planar sheet

GAUSS APPILCATIONS (III);

Figure 1.39 Electric field due to two parallel charged sheets

1.40 The electric field due to a charged spherical shell

Capacitor parallel plate capacitor:

Figure 1.58 (a) Capacitors connected in series (b) Equivalent capacitors C_s

Figure 1.59 (a) capacitors in parallel (b) equivalent capacitance with the same

m

rigare 1.05 van de Graan generator

Unit -2

Figure 2.5 Microscopic model of current

Figure 2.7 Current through the conductor

(b) Equivalent resistance (R_s) has the same current

Figure 2.9 Resistors in series

Figure 2.24 Kirchhoff voltage rule

Figure 2.25 Wheatstone's bridge

Ν

Figure 2.27 Potentiometer

Figure 2.28 Comparison of emf of two cells

Figure 2.29 measurement of internal resistance

Unit -3

Figure 3.13 Magnetic field at a point along the axial line due to magnetic dipole

Figure 3.14 Magnetic field at a point along the equatorial line due to a magnetic dipole

Figure 3.15 Components of magnetic field

Figure 3.16 Magnetic dipole kept in a uniform magnetic field

Figure 3.17: A bar magnet (magnetic dipole) in a uniform magnetic field

Figure 3.23 Hysteresis – plot for B vs H

Figure 3.30 Magnetic field at a point P due to current carrying conductor

Figure 3.24 Comparison of two ferromagnetic materials based on hysteresis loop

Figure 3.32 Magnetic field due to a long straight current carrying conductor

Figure 3.33 Magnetic field due to current-carrying circular loop

Figure 3.51 Current carrying conductor in a magnetic field

Figure 3.55 Two parallel conductors carrying current in same direction experience an attractive force

Figure 3.56 Two parallel conductors carrying current in opposite direction experience a repulsive force

Figure 3.57 Rectangular coil placed in a magnetic field

Figure 3.58 Side view of current loop

Figure 3.61 Shunt resistance connected in parallel

Figure 3.62 High resistance connected in series

PREPARED BY

Dr.G.THIRUMOORTHI ,M.Sc,B.Ed ,Ph.,D ,PHYSICS

IDAPPADI,SALEM

8610560810

Thiruphysics1994@gmail.com