# SSLC MATHS BOOK BACK ONE MARK QUESTIONS RELATIONS AND FUNCTIONS

| 1. If $n(AXB) = 6$ and $A = \{1$               | .,3} then n(B) 1s                           |                                     |                                                                             |
|------------------------------------------------|---------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------|
| (A) 1                                          | (B) 2                                       | (C) 3                               | (D) 6                                                                       |
| 2. If $A = \{a,b,p\}$ , $B = \{2,3\}$ ,        | $\vec{C} = \{p,qr,s\} \text{ then } n[(A)]$ | $(A \cup B) \times C$ is            | , ,                                                                         |
| (A) 8                                          | (B) 20                                      | (C) 12                              | (D) 16                                                                      |
| 3. If $A = \{1,2\}$ , $B = \{1,2,3,4\}$        | $(D) = \{5,6\} \text{ and } D = \{6,6\}$    | (6) 12 $(6)$ then states            |                                                                             |
|                                                | $\{0,0\}$ and $D=\{0,0\}$                   | 5,0,7,0 <sub>3</sub> , then state ( | willen of the following                                                     |
| statement is true.                             | $(D)(D \cup D) = (A \cup C)$                | (C)(A D) = (A D)                    | $\langle D \rangle \langle D \cdots A \rangle = \langle D \cdots A \rangle$ |
|                                                |                                             |                                     | $(D)(D \times A) \subset (B \times A).$                                     |
| 4. If there are 1024 relation                  | ons from a set $A = \{1$                    | ,2,3,4,5} to a set B, t             | then the number of                                                          |
| elements in B is                               |                                             |                                     |                                                                             |
| (A) 3                                          | (B) 2                                       | (C) 4                               | (D) 8                                                                       |
| 5. The range of the relation                   | $n R = \{(x, x^2) / x \text{ is a } \}$     | orime number less than              | 13} is                                                                      |
|                                                |                                             |                                     | (D) {1,4,9,25,49,121                                                        |
|                                                |                                             |                                     | (15) (1, 1, 5, 20, 15, 121                                                  |
| 6. If the ordered pairs (a+2                   |                                             |                                     | (D) (2 0)                                                                   |
|                                                | (B) (5,1)                                   |                                     | (D) (3,-2)                                                                  |
| 7. Let $n(A) = m$ and $n(B) =$                 | n then the total nui                        | mber of non-empty r                 | elations that can be                                                        |
| defined from A to B is                         |                                             |                                     |                                                                             |
| (A) m <sup>n</sup>                             | (B) n <sup>m</sup>                          | (C) $2^{mn}-1$                      | (D) $2^{mn}$ .                                                              |
| 8. If {(a,8), (6,b)} represent                 | s an identify functio                       | n, then the value of                | a and b are                                                                 |
| respectively                                   |                                             |                                     |                                                                             |
| (A) (8,6)                                      | (B) (8,8)                                   | (C) (6,8)                           | (D) (6,6)                                                                   |
| 9. Let $A = \{1,2,3,4\}$ and $B = \{1,2,3,4\}$ | $= \{4, 8, 9, 10\}$ A funct                 | ion $f: A \rightarrow B$ given by t | f =                                                                         |
| ((1.4), (2.8), (3.0), (4.10)] is a             | 1,0,5,10 <sub>3</sub> . It fullet.          | ion i. A / B given by i             |                                                                             |
| $\{(1,4),(2,8),(3,9),(4,10)\}$ is a            |                                             | (D) Ideatify for ation              |                                                                             |
| (A) Many-one funct                             |                                             | (B) Identify function               | 1                                                                           |
| (C) one-to-one func                            | tion                                        | (D) Into function                   |                                                                             |
| 10. If $f(x) = 2x^2$ and $g(x) = \frac{1}{2}$  | $\frac{1}{2}$ then fog is                   |                                     |                                                                             |
| 3                                              |                                             | (a) 2                               | (D) 1                                                                       |
| (A) $\frac{3}{2x^2}$                           | $(B)\frac{2}{3x^2}$                         | $(C)\frac{2}{9x^2}$                 | (D) $\frac{1}{6x^2}$ .                                                      |
| 11. If $f: A \rightarrow B$ is a bijective     | function and if n(B)                        | =7, then $n(A)$ is                  |                                                                             |
| (A) 7                                          | (B) 49                                      | , ,                                 | (D) 14                                                                      |
| 12. Let f and g be two fund                    | ` ,                                         |                                     |                                                                             |
| $(2,4)$ , $(-4,2)$ , $(7,0)$ } then the        |                                             | 0,1),(2,0),(0, 1),(1,2),            | (0,7),, 8 ((0,2), (1,0)                                                     |
| (A) (0.0.2.4.5)                                | (D) (4.1.0.0.7)                             | (C) {1,2,3,4,5}                     | (D) (O 1 0)                                                                 |
|                                                |                                             | $(C)$ $\{1,2,3,4,5\}$               | (D) $\{0,1,2\}$                                                             |
| 13. Let $f(x) = \sqrt{1 + x^2}$ then           | 1                                           |                                     |                                                                             |
| (A) f(xy) = f(x).f(y)                          | $(B)f(xy) \ge f(x).f(y)$                    | (C) $f(xy) \le f(x) \cdot f(y)$     | (D) None of these                                                           |
| 14. If $g = \{(1,1), (2,3), (3,5)\}$           |                                             |                                     |                                                                             |
| $\alpha$ and $\beta$ are                       | , ( , , , , , == == ===================     | 8-11-13/8()                         |                                                                             |
| -                                              | (B) (2,-1)                                  | (C) (-1,-2)                         | (D) (1,2)                                                                   |
|                                                |                                             |                                     | (D)(1,2)                                                                    |
| 15. $f(x) = (x+1)^3 - (x-1)^3 \text{ rep}$     |                                             |                                     | (D) 1 ::                                                                    |
| (A) Linear                                     | (B) cubic                                   | (C) reciprocal                      | (D) quadratic                                                               |
|                                                |                                             |                                     |                                                                             |
| -                                              |                                             | D CEOLIENCE                         | 30                                                                          |
| 1                                              | NUMBERS AN                                  | ID SEQUENCE                         | 55                                                                          |
| 1. Euclid's division Lemma                     | a states that for pos                       | itive integers a and b              | o, there exists unique                                                      |
| integers q and r such that                     |                                             |                                     | -                                                                           |
| (A) $1 < r < b$                                | (B) $0 < r < b$                             |                                     | (D) $0 < r \le b$ .                                                         |
| 2. Using Euclid's division                     | ` ,                                         |                                     |                                                                             |
| _                                              | icinina, ii die cube c                      | n arry micegal is aivid             | ica by 2 men me                                                             |
| possible remainders are                        | (D) 1 4 0                                   | (0) 0 1 0                           | (D) 1 2 F                                                                   |
| (A) 0,1,8                                      | (B) 1,4,8                                   | (C) 0,1,3                           | (D) 1,3,5                                                                   |
| 3. If the HCF of 65 and 11                     |                                             |                                     |                                                                             |
| is (A) 4                                       | (B) 2                                       | (C) 1                               | (D) 3                                                                       |

| 4. The sum of the exponer                                                                    | nts of the prime facto                                                   | ors in the prime fact                            | orization of 1729 is                               |
|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------|
| (A) 1                                                                                        | (B) 2                                                                    | (C) 3                                            | (D) 4                                              |
| 5. The least number that i                                                                   | is divisible by all the                                                  | numbers form 1 to                                | 10 (both inclusive) is                             |
| (A) 2025                                                                                     | (B) 5220                                                                 |                                                  | (D) 2520                                           |
| 6. $7^{4k} \equiv (\mod 100)$                                                                | ( )                                                                      | ,                                                | ,                                                  |
| (A) 1                                                                                        | (B) 2                                                                    | (C) 3                                            | (D) 4                                              |
| 7. Given $F_1 = 1$ , $F_2 = 3$ and                                                           | • •                                                                      | ` '                                              | (D) 1                                              |
| (A) 3                                                                                        | (B) 5                                                                    | (C) 8                                            | (D) 11                                             |
| ` '                                                                                          | • •                                                                      | ` ,                                              | • •                                                |
| 8. The first term of an arit                                                                 |                                                                          | <u> </u>                                         | illion difference is 4.                            |
| Which of the following will                                                                  |                                                                          |                                                  | (D) 12521                                          |
| (A) 4551                                                                                     | (B) 10091                                                                | (C) 7881                                         | (D) 13531                                          |
| 9. If 6 times of 6 <sup>th</sup> term of                                                     | an A.P. is equal to 7                                                    | times of the 7 <sup>th</sup> terr                | n, then 13 <sup>th</sup> term of                   |
| the A.P. is                                                                                  | (D) 6                                                                    | (a) =                                            |                                                    |
| (A) 0                                                                                        | (B) 6                                                                    | (C) 7                                            | (D) 13                                             |
| 10. An A.P consists of 31                                                                    | terms. If its 16 <sup>th</sup> terr                                      | n is m, then the sun                             | n of all the terms of                              |
| this A.P. is                                                                                 |                                                                          |                                                  |                                                    |
| (A) 16 m                                                                                     | (B) 62 m                                                                 | (C) 31m                                          | (D) $\frac{31}{2}$ m                               |
| 11. In an A.P. the first term                                                                |                                                                          |                                                  |                                                    |
| the A.P. must be taken for                                                                   |                                                                          |                                                  | low many terms or                                  |
| (A) 6                                                                                        |                                                                          | (C) 8                                            | (D) 9                                              |
| 12. If $A = 2^{65}$ and $B = 2^{64}$ +                                                       | (B) 7                                                                    | (C) O                                            | (D) 9                                              |
|                                                                                              |                                                                          |                                                  |                                                    |
| (A) B is 2 <sup>64</sup> more th                                                             |                                                                          | (B) A and B are equ                              |                                                    |
| (C) B is larger then                                                                         |                                                                          | (D) A is larger than                             | B by I                                             |
| 13. The next term of the s                                                                   | equence $\frac{3}{16}$ , $\frac{1}{9}$ , $\frac{1}{12}$ , $\frac{1}{19}$ | is                                               |                                                    |
| (A) 1/24                                                                                     | (B) 1/27 ° 12 18                                                         | (C) 2/3                                          | (D) 1/81                                           |
| 14. If the sequence $t_1, t_2, t_3$                                                          |                                                                          |                                                  | ` ' '                                              |
| (A) a Geometric Pro                                                                          |                                                                          | (B) an Arithmetic P.                             |                                                    |
|                                                                                              |                                                                          | (D) a constant sequ                              | _                                                  |
| 15. The value of $(1^3+2^3+3^3)$                                                             |                                                                          |                                                  | icricc                                             |
|                                                                                              |                                                                          |                                                  | (D) 14F00                                          |
| (A) 14400                                                                                    | (B) 14200                                                                | (C) 14280                                        | (D) 14520                                          |
|                                                                                              |                                                                          |                                                  |                                                    |
|                                                                                              | AT.G                                                                     | EBRA                                             |                                                    |
| 1 4 6 6 1                                                                                    |                                                                          |                                                  |                                                    |
| 1. A system of three linear                                                                  |                                                                          |                                                  |                                                    |
| (A) Intersect only at                                                                        | t a point                                                                | (B) intersect in a lir                           | ne                                                 |
| (C) coincides with e                                                                         | each other                                                               | (D) do not intersect                             |                                                    |
| 2. The solution of the syst                                                                  |                                                                          |                                                  |                                                    |
| (A) $x=1$ , $y=2$ , $z=3$                                                                    | (B) $x=-1,y=2,z=3$                                                       | (C) $x=-1,y=-2,z=3$                              | (D) $x=1,y=-2,z=3$                                 |
| 3. If $(x-6)$ is the HCF of $x^2$ -                                                          | $-2x-24$ and $x^2-kx-6$ t                                                | hen the value of k is                            |                                                    |
| (A) 3<br>4. $\frac{3y-3}{y} \div \frac{7y-7}{3y^2}$ is (A) $\frac{9y}{7}$                    | (B) 5                                                                    | (C) 6                                            | (D) 8                                              |
| $4 \frac{3y-3}{3} \div \frac{7y-7}{3}$ is $(\Delta) \frac{9y}{3}$                            | (B) $\frac{9y^3}{}$                                                      | $(C)^{\frac{21y^2-42y+22}{2}}$                   | $\frac{1}{2}$ $(D)^{\frac{7(y^2-2y+1)}{2}}$        |
| $\frac{1}{y} \cdot \frac{1}{3y^2} \cdot \frac{1}{7}$                                         | (B) $\frac{1}{21y-21}$                                                   | $(C) \frac{1}{3y^3}$                             | $(D) \frac{y^2}{y^2}$ .                            |
| 5. $y^2 + \frac{1}{v^2}$ is not equal to                                                     |                                                                          |                                                  |                                                    |
| y                                                                                            |                                                                          | 2                                                | 4. 2                                               |
| (A) $\frac{y^4+1}{2}$                                                                        | (B) $(y + \frac{1}{x})^2$                                                | (C) $\left(y - \frac{1}{y}\right)^2 + 2$         | (D) $(y + \frac{1}{x})^2 - 2$ .                    |
| , ,                                                                                          | ( ) ( y)                                                                 | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \            | ( ) ( y)                                           |
| 6. $\frac{x}{x^2-25} - \frac{8}{x^2+6x+5}$ gives                                             |                                                                          |                                                  |                                                    |
| $(\Delta) x^2 - 7x + 40$                                                                     | (D) $x^2 - 7x + 40$                                                      | $(C)$ $x^2-7x+40$                                | $(D)$ $x^2+10$                                     |
| (x-5)(x+5)                                                                                   | (x-5)(x+5)(x+1)                                                          | $(x^2-25)(x+1)$                                  | $(x^2-25)(x+1)$ .                                  |
| (A) $\frac{x^2 - 7x + 40}{(x - 5)(x + 5)}$<br>7. The square root of $\frac{256x^8y}{25x^6y}$ | $\frac{y^4z^{10}}{1}$ is equal to                                        |                                                  |                                                    |
|                                                                                              |                                                                          |                                                  |                                                    |
| (A) $\frac{16}{5} \left  \frac{x^2 y^4}{y^2} \right $                                        | (B) $16 \left  \frac{y^2}{y^2 z^4} \right $                              | (C) $\frac{16}{5} \left  \frac{y}{rz^2} \right $ | (D) $\frac{16}{5} \left  \frac{xz^2}{y} \right $ . |
| ` ' 5 I y <sup>2</sup> I                                                                     | ` ' [X <sup>2</sup> Z <sup>4</sup> ]                                     | ` ' 5  xz <sup>4</sup>                           | ` ′ 5 I <i>y</i> I                                 |
|                                                                                              |                                                                          |                                                  |                                                    |

8. Which of the following should be added to make  $x^2+64$  a perfect square?

- $(B) 16x^2$
- (C)  $8x^2$

(D)  $-8x^2$ .

9. The solution of  $(2x-1)^2 = 9$  is equal to

- (B) 2
- (C) -1,2

(D) None of these

10. The values of a and b if  $4x^4-24x^3+76x^2+ax+b$  is a perfect square are

(A) 100, 120

- (B) 10,12
- (C)-120,100

(D) 12,10

11. If the roots of the equation  $q^2x^2+p^2x+r^2=0$  are the squares of the roots of the equation  $qx^2+px+r=0$ , then q,p,r are in -----

(A) A.P.

- (B) G.P.
- (C) both A.P and G.P (D) None of these

12. Graph of a linear equation is a

(A) Straight line

- (B) circle
- (C) parabola

(D) hyperbola

13. The number of points of intersection of the quadratic polynomial  $x^2+4x+4$  with the X axis is

(A) 0

14. For the given matrix  $A = \begin{pmatrix} 1 & 3 & 5 & 7 \\ 2 & 4 & 6 & 8 \\ 9 & 11 & 13 & 15 \end{pmatrix}$  the order of the matrix  $A^{T}$  is

(A)  $2 \times 3$ 

(C)  $3 \times 4$ 

15. If A is a 2 x 3 matrix and B is a 3 x 4 matrix, how many columns does AB have (B) 4 (A) 3 (C) 2(D) 5

16. If number of columns and rows are not equal in a matrix then it is said to be a

(A) Diagonal matrix (B) rectangular matrix (C) square matrix (D) identity matrix

17. Transpose of a column matrix is

(A) Unit matrix (B) diagonal matrix (C) column matrix (D) row matrix

18. Find the matrix X if 2X 4

19. Which of the following can be calculated from the given matrices  $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}$ ,  $B = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$ , (i)  $A^2$  (ii)  $B^2$  (iii) AB (iv) BA.

(A) (i) and (ii) only (B) (ii) and (iii) only (C) (ii) and (iv) only (D) all of these

20. If  $A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$ ,  $B = \begin{pmatrix} 1 & 0 \\ 2 & -1 \\ 0 & 2 \end{pmatrix}$  and  $C = \begin{pmatrix} 0 & 1 \\ -2 & 5 \end{pmatrix}$ , which of the following statements are correct? (i)  $AB+C=\begin{pmatrix} 5 & 5 \\ 5 & 5 \end{pmatrix}$  (ii)  $BC=\begin{pmatrix} 0 & 1 \\ 2 & -3 \\ -4 & 10 \end{pmatrix}$  (iii)  $BA+C=\begin{pmatrix} 2 & 5 \\ 3 & 0 \end{pmatrix}$  (iv)  $AB+C=\begin{pmatrix} -8 & 20 \\ -8 & 13 \end{pmatrix}$ .

(A) (i) and (ii) only (B)(ii) and (iii) only (C) (iii) and (iv) only (D) all of these.

## **GEOMETRY**

1. If in triangles ABC and DEF,  $\frac{AB}{DE} = \frac{BC}{FD}$  then they will be similar, when

(A)  $\angle B = \angle E$ 

(B)  $\angle A = \angle D$ 

(C)  $\angle B = \angle D$ 

(D)  $\angle A = \angle F$ .

2. In  $\Delta$ LMN,  $\angle$ L = 60°,  $\angle$ M = 50°. If  $\Delta$ LMN $\sim$  $\Delta$ PQR then the value of  $\angle$ R is

 $(A) 40^{\circ}$ 

(B)  $70^{\circ}$ 

 $(C) 30^{\circ}$ 

(D) 110°.

3. In  $\triangle$ ABC is an isosceles triangle with  $\angle$ C = 90° and AC=5cm, then AB is

(A) 2.5 cm

(B) 5 cm

(C) 10cm

(D) $5\sqrt{2}$  cm

4. In a given figure, PS = 2 cm and SQ = 3cm. Then the ratio of the area of  $\Delta$ PQR to the area of  $\Delta$ PST is

(A) 25:4

(B) 25:7

(C) 25:11

(D) 25:13



| 5. The perimeter      | ers of two similar                  | triangles ΔAB                | C and ΔPQR are 30                   | бст and 24cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------|-------------------------------------|------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| respectively. If      | PQ = 10cm, then                     | the length of                | AB is                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (A) $6\frac{2}{3}$ cm | ı (B)                               | $\frac{10\sqrt{6}}{2}$ cm    | (C) $66\frac{2}{3}$ cm              | (D) 15 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                       |                                     |                              |                                     | n the length of AE is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                       |                                     |                              | (C) 1.2 cm                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       |                                     | of ∠BAC. If A                | B = 8  cm, BD = 6  c                | m and DC = 3 cm. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| length of the si      |                                     |                              | (0) 0                               | (D) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (A) 6 cm              | (B) 4<br>= ent figure ∠BAC=         | cm                           | (C) 3 cm                            | (D) 8 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (A) BD.C              | $D = BC^2$                          | (B) $AB.AC =$                | BC <sup>2</sup>                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (B) BD.C              | $D = BC^2$<br>$D = AD^2$            | (D) $AB.AC =$                | $AD^2$ .                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       |                                     |                              | B                                   | DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                       |                                     |                              | rtically on a plane                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       |                                     |                              | ne distance between                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (A) 13 m              | (B) 1<br>a figure, PR = 26          |                              | (C) 15 m                            | (D) 12.8 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                       | A = 6  cm and  QA                   |                              |                                     | A 90°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (A) 80°               | (B) 85°                             | (C)75°                       | (D) 90°                             | 71 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                       |                                     |                              |                                     | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 11 4                  |                                     | 100                          |                                     | The state of the s |
| (A) Centi             | s perpendicular (                   | o the radius a               |                                     | (D) chord                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ` ,                   |                                     |                              | circle from an exter                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (A) One               | (B) tv                              |                              | (C) infinite                        | (D) zero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                       |                                     | _                            | P to a circle with c                | entre at O are PA and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                       | 0° then the value                   |                              | (0) 1000                            | (D) 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (A) 100°              | (B) 1<br>P and CQ are tan           |                              | (C) 120°                            | (D) 130°.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ARB is another        | tangent touchin                     | g the circle at              | R. If                               | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CP = 11  cm and       | d BC = 7 cm, the                    | n the length of              | f BR is                             | (. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                       | (B) 5 cm                            |                              |                                     | O R B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 15 7 6 76             | DD:                                 | .1 . 1 . 5                   | . 1                                 | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                       | PR is tangent to of the circle, the |                              | and                                 | Cips R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (A) 120°              |                                     | (C)110°                      | (D)90°.                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (1-) 1-0              | (2)100                              | (3)113                       | (2)30.                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       | COOF                                | RDINATE                      | <b>GEOMETRY</b>                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1. The area of t      |                                     |                              | 5,0), (0,-5) and (5,0               | )) is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (A) 0 sq.1            |                                     |                              | (C) 5 sq.units                      | (D) none of these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                       |                                     |                              |                                     | and the wall is 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                       |                                     |                              | path travelled by the               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (A) $x = 10$          | 0                                   |                              | (C) $x = 0$                         | (D) y = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                       | lel to X axis                       | cquation x =                 | (B) parallel to Y a                 | xis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| , ,                   | ng through the o                    | origin                       | · · -                               | gh the point (0,11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4. If (5,7), (3,p)    | and (6,6) are col                   | linear, then th              | _                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (A) 3                 | (B) 6                               | . 4 1                        | (C) 9                               | (D) 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| _                     | intersection of 3                   | -                            | •                                   | (D) (A A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (A) (5,3)             | (B) (2                              | 10 2) (4 a) ia <sup>1</sup>  | (C) (3,5)  The value of 'e' is      | (D) (4,4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                       | the line joining (                  | 1∠,3j, (4,aj 18 <del>-</del> | The value of 'a' is $\frac{1}{3}$ . |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (A) 1                 | (B) 4                               |                              | (C) -5                              | (D) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

## P. LAKSHMIKANDAN, AVVAI CORPORATION GIRLS HSS, MADURAI

| 7. The (-8,8) i                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                   | which is perpendicula                                                                                                                                                                                                                                                      | ar to a line joining th                                                                                                                                                                                                                                                                                           | e points (0,0) and                                                                                                                                          |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                              | (A) -1                                                                                                                                                                                                                                                                                                                                                                                                                                              | (B) 1                                                                                                                                                                                                                                                                      | (C) $\frac{1}{3}$                                                                                                                                                                                                                                                                                                 | (D) -8                                                                                                                                                      |
| 8. If sl                                     | ope of the line PQ                                                                                                                                                                                                                                                                                                                                                                                                                                  | is $\frac{1}{\sqrt{3}}$ then slope of the                                                                                                                                                                                                                                  | e perpendicular bised                                                                                                                                                                                                                                                                                             | ctor of PQ is                                                                                                                                               |
|                                              | (A) $\sqrt{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                      | (B) $-\sqrt{3}$                                                                                                                                                                                                                                                            | (C) $\frac{1}{\sqrt{3}}$                                                                                                                                                                                                                                                                                          | (D) 0                                                                                                                                                       |
|                                              | sae is 5 then the e                                                                                                                                                                                                                                                                                                                                                                                                                                 | quation of the line A                                                                                                                                                                                                                                                      | B is                                                                                                                                                                                                                                                                                                              | t on the X axis whose                                                                                                                                       |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (B) $8x - 5y = 40$ e passing through th                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                             |
| (iii) l <sub>3</sub> : 12. A s 13. WI 14. WI | onsider the four str<br>4y+3x = 7 (iv) $l(A) l_1 and l_2 are perfectly and l_4 are partial time has expected as traight line has expected as the following straight line has expected as l(B) The slope is l(C) The slope is l(D) The slope is l(D) The slope is l(D) The slope is l(C) Opposite sides are proving that a l(A) The slopes of the following the following that a l(C) The length of a l(C) The length of a l(D) is the point of its$ | quation $8y = 4x + 21$ . 5 and the y intercept and the y intercept is 5 and the y intercept and the y intercept is quadrilateral is a traparallel (B) To are parallel (D) A quadrilateral is a pawo sides (B) To all sides (D) B attersection of two lines $x - y - 7 = 0$ | = 4x+5 (ii) $l_2$ : of the following state (B) $l_1$ and $l_4$ are par (D) $l_2$ and $l_3$ are par Which of the following is 2.6 s 1.6 to 1.6 to 2.6 apezium, it is necessary wo parallel and two related are of equal 1 rallelogram by using the slopes of two pair oth the lengths and the slopes of two pairs. | 4y = 3x-1 ement is true? callel rallel ng is true?  ary to show non-parallel sides. ength. slope you must find of opposite sides slopes of two sides  y = 7 |
| 6                                            | (C) $3x + y = 3; x +$                                                                                                                                                                                                                                                                                                                                                                                                                               | y = 7                                                                                                                                                                                                                                                                      | (D) $x + 3y - 3 = 0$ ; $x + 3y - 3 = 0$                                                                                                                                                                                                                                                                           | x - y - 7 = 0.                                                                                                                                              |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TRIGONO                                                                                                                                                                                                                                                                    | METRY                                                                                                                                                                                                                                                                                                             |                                                                                                                                                             |
| 1. The                                       | value of $sin^2\theta + \frac{1}{1}$                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{1}{1+tan^2\theta}$ is equal to                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                             |
|                                              | (A) $tan^2\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                   | (B) 1                                                                                                                                                                                                                                                                      | (C) $cot^2\theta$                                                                                                                                                                                                                                                                                                 | (D) 0                                                                                                                                                       |
| 2. tan                                       | $\theta \csc^2 \theta - \tan \theta \text{ is } \epsilon$                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                            | (C) ain 0                                                                                                                                                                                                                                                                                                         | (D) cot()                                                                                                                                                   |
| 3. If (s                                     | (A) $\sec\theta$<br>$in\alpha + \csc\alpha$ ) <sup>2</sup> + (co                                                                                                                                                                                                                                                                                                                                                                                    | (B) $\cot^2 \theta$<br>$\cos \alpha + \sec \alpha$ ) <sup>2</sup> = $k + \tan \beta$                                                                                                                                                                                       | (C) $\sin\theta$<br>$(2\alpha + \cot^2\alpha$ , then the v                                                                                                                                                                                                                                                        | (D) cotθ .<br>value of 'k' is                                                                                                                               |
| (-                                           | (A) 9                                                                                                                                                                                                                                                                                                                                                                                                                                               | (B) 7                                                                                                                                                                                                                                                                      | (C) 5                                                                                                                                                                                                                                                                                                             | (D) 3                                                                                                                                                       |
| 4. If si                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $c\theta + \csc\theta = b$ , then                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                             |
|                                              | (A) 2a                                                                                                                                                                                                                                                                                                                                                                                                                                              | (B) 3a                                                                                                                                                                                                                                                                     | (C) 0                                                                                                                                                                                                                                                                                                             | (D) 2ab                                                                                                                                                     |
| 5. 11 53                                     | $x = \sec\theta$ and $\frac{1}{y} = ta$                                                                                                                                                                                                                                                                                                                                                                                                             | anθ, then $x^2 - \frac{1}{y^2}$ is equ                                                                                                                                                                                                                                     | ai to                                                                                                                                                                                                                                                                                                             |                                                                                                                                                             |
|                                              | (A) 25                                                                                                                                                                                                                                                                                                                                                                                                                                              | (B) $\frac{1}{25}$                                                                                                                                                                                                                                                         | (C) 5                                                                                                                                                                                                                                                                                                             | (D) 1                                                                                                                                                       |
| 6. If si                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $^{2}\theta$ + sin $^{2}\theta$ – 1 is equal                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                 | 2                                                                                                                                                           |
|                                              | (A) $-\frac{3}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                  | (B) $\frac{3}{2}$                                                                                                                                                                                                                                                          | (C) $\frac{2}{3}$                                                                                                                                                                                                                                                                                                 | (D) $-\frac{2}{3}$ .                                                                                                                                        |
| 7. If x                                      | = $a \tan \theta$ and $y = b$                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                            | $x^2$ $y^2$                                                                                                                                                                                                                                                                                                       | $x^2$ $y^2$                                                                                                                                                 |
| 0 (4 )                                       | b u                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (B) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$                                                                                                                                                                                                                                | u b                                                                                                                                                                                                                                                                                                               | (D) $\frac{x}{a^2} - \frac{y}{b^2} = 0$ .                                                                                                                   |
| 8. (1+                                       | (A) 0                                                                                                                                                                                                                                                                                                                                                                                                                                               | $ot\theta - cosec\theta$ ) is equal (B) 1                                                                                                                                                                                                                                  | to (C) 2                                                                                                                                                                                                                                                                                                          | (D) -1                                                                                                                                                      |
| 9. a co                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | and b cot $\theta + a \csc\theta =$                                                                                                                                                                                                                                        | ` '                                                                                                                                                                                                                                                                                                               |                                                                                                                                                             |
|                                              | (A) $a^2 - b^2$                                                                                                                                                                                                                                                                                                                                                                                                                                     | (B) $b^2 - a^2$                                                                                                                                                                                                                                                            | (C) $a^2 + b^2$                                                                                                                                                                                                                                                                                                   | (D) b - a                                                                                                                                                   |

| angle of elevation of the su                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                         | he length of its shad                                                                                                                                                                                                                                                                                                                           | low is $\sqrt{3}$ : 1, then the                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (A) 45°                                                                                                                                                                                                                                                                                                                                                                                                                                      | (B) 30°                                                                                                                                                                                                                                                                                 | (C) 90°                                                                                                                                                                                                                                                                                                                                         | (D) 60°.                                                                                                                                                                                                                                                              |
| 11. The electric pole subte                                                                                                                                                                                                                                                                                                                                                                                                                  | ` ,                                                                                                                                                                                                                                                                                     | ` ,                                                                                                                                                                                                                                                                                                                                             | ` ,                                                                                                                                                                                                                                                                   |
| At a second point 'b' metre                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                       |
| The height of the pole (in n                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                 | P                                                                                                                                                                                                                                                                     |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                         | (C) $\frac{b}{2}$                                                                                                                                                                                                                                                                                                                               | (D) $\frac{b}{\sqrt{3}}$ .                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                               | γ 5                                                                                                                                                                                                                                                                   |
| 12. A tower is 60 m heigh.                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                               | ne angle of elevation                                                                                                                                                                                                                                                 |
| of the sun increases from 3                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                 | (D) 45.6 m                                                                                                                                                                                                                                                            |
| (A) 41.92 m<br>13. The angle of depression                                                                                                                                                                                                                                                                                                                                                                                                   | (B) 43.92 m                                                                                                                                                                                                                                                                             | (C) 43 m                                                                                                                                                                                                                                                                                                                                        | ` '                                                                                                                                                                                                                                                                   |
| a multistoried building are                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                       |
| building and the distance                                                                                                                                                                                                                                                                                                                                                                                                                    | <del>-</del>                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                 | the manistoried                                                                                                                                                                                                                                                       |
| (A) $20,10\sqrt{3}$                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                 | (D) 30, $10\sqrt{3}$ .                                                                                                                                                                                                                                                |
| 14. Two persons are stand                                                                                                                                                                                                                                                                                                                                                                                                                    | , ,                                                                                                                                                                                                                                                                                     | (C) 20, 10                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                       |
| first persons is double that                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                       |
| their feet an observer finds                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                               | č č                                                                                                                                                                                                                                                                   |
| then the height of the shor                                                                                                                                                                                                                                                                                                                                                                                                                  | _                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                 | be complementary,                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24                                                                                                                                                                                                                                                                                      | 20                                                                                                                                                                                                                                                                                                                                              | (D) 0 **                                                                                                                                                                                                                                                              |
| (A) $\sqrt{2}x$                                                                                                                                                                                                                                                                                                                                                                                                                              | (B) $\frac{x}{2\sqrt{2}}$                                                                                                                                                                                                                                                               | (C) $\frac{\lambda}{\sqrt{2}}$                                                                                                                                                                                                                                                                                                                  | (D) $2x$ .                                                                                                                                                                                                                                                            |
| 15. The angle of elevation                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                       |
| of depression of its reflection                                                                                                                                                                                                                                                                                                                                                                                                              | on in the lake is $45^{\circ}$                                                                                                                                                                                                                                                          | The height of locat                                                                                                                                                                                                                                                                                                                             | tion of the cloud from                                                                                                                                                                                                                                                |
| the lake is                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                       |
| (A) $\frac{h(1+tan\beta)}{1-tan\beta}$                                                                                                                                                                                                                                                                                                                                                                                                       | (B) $\frac{h(1-tan\beta)}{1+tan\beta}$                                                                                                                                                                                                                                                  | (C) $h \tan(45^\circ - \beta)$                                                                                                                                                                                                                                                                                                                  | (D) none of these                                                                                                                                                                                                                                                     |
| 1-tanp                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1+tanp                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                              | MENCIID                                                                                                                                                                                                                                                                                 | A TTO N                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                              | MENSUR                                                                                                                                                                                                                                                                                  | ATION                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                       |
| 1. The curved surface area                                                                                                                                                                                                                                                                                                                                                                                                                   | of a right circular of                                                                                                                                                                                                                                                                  | cone of height is 15c                                                                                                                                                                                                                                                                                                                           | m and base diameter                                                                                                                                                                                                                                                   |
| 16 cm is                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                       |
| (A) $60\pi \text{ cm}^2$                                                                                                                                                                                                                                                                                                                                                                                                                     | (B) $68\pi \text{ cm}^2$                                                                                                                                                                                                                                                                | (C) $120\pi \text{ cm}^2$                                                                                                                                                                                                                                                                                                                       | (D) $136\pi \text{ cm}^2$ .                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                         | (C) 1201t CIII                                                                                                                                                                                                                                                                                                                                  | ( )                                                                                                                                                                                                                                                                   |
| 2. If two solid hemispheres                                                                                                                                                                                                                                                                                                                                                                                                                  | s of same base radiu                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                       |
| 2. If two solid hemispheres bases, then curved surface                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                         | is r units are joined                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                       |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                            | e area of this new so                                                                                                                                                                                                                                                                   | is r units are joined<br>blid is                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                       |
| bases, then curved surface                                                                                                                                                                                                                                                                                                                                                                                                                   | e area of this new so<br>(B) 6πr² sq. u                                                                                                                                                                                                                                                 | s r units are joined<br>lid is<br>(C) 3πr² sq. u                                                                                                                                                                                                                                                                                                | together along their (D) $8\pi r^2$ sq. u.                                                                                                                                                                                                                            |
| bases, then curved surface (A) $4\pi r^2$ sq. u                                                                                                                                                                                                                                                                                                                                                                                              | e area of this new so<br>(B) 6πr² sq. u                                                                                                                                                                                                                                                 | s r units are joined<br>lid is<br>(C) 3πr² sq. u                                                                                                                                                                                                                                                                                                | together along their (D) $8\pi r^2$ sq. u.                                                                                                                                                                                                                            |
| bases, then curved surface (A) $4\pi r^2$ sq. u  3. The height of a right circ will be                                                                                                                                                                                                                                                                                                                                                       | e area of this new so<br>(B) 6πr² sq. u                                                                                                                                                                                                                                                 | s r units are joined<br>lid is<br>(C) 3πr² sq. u                                                                                                                                                                                                                                                                                                | together along their (D) $8\pi r^2$ sq. u.                                                                                                                                                                                                                            |
| bases, then curved surface (A) $4\pi r^2$ sq. u  3. The height of a right circ will be                                                                                                                                                                                                                                                                                                                                                       | e area of this new so<br>(B) 6πr² sq. u<br>cular cone whose ra<br>(B) 10 cm                                                                                                                                                                                                             | is r units are joined<br>blid is<br>(C) 3πr <sup>2</sup> sq. u<br>dius is 5 cm and sla<br>(C) 13 cm                                                                                                                                                                                                                                             | together along their  (D) 8πr² sq. u.  ant height is 13cm  (D) 5 cm                                                                                                                                                                                                   |
| bases, then curved surface (A) $4\pi r^2$ sq. u  3. The height of a right circ will be  (A) 12 cm                                                                                                                                                                                                                                                                                                                                            | e area of this new so<br>(B) 6πr² sq. u<br>cular cone whose ra<br>(B) 10 cm<br>of a right circular c                                                                                                                                                                                    | IS r units are joined blid is (C) 3πr² sq. u dius is 5 cm and sla (C) 13 cm cylinder is halved ke                                                                                                                                                                                                                                               | together along their  (D) 8πr² sq. u.  ant height is 13cm  (D) 5 cm  eping the same                                                                                                                                                                                   |
| bases, then curved surface (A) $4\pi r^2$ sq. u  3. The height of a right circ will be  (A) 12 cm  4. If the radius of the base height, then the ratio of the original cylinder is                                                                                                                                                                                                                                                           | e area of this new so (B) 6πr² sq. u cular cone whose ra (B) 10 cm of a right circular ce volume of the cylin                                                                                                                                                                           | IS r units are joined blid is (C) 3πr² sq. u dius is 5 cm and sla (C) 13 cm cylinder is halved ke nder thus obtained                                                                                                                                                                                                                            | together along their  (D) 8πr² sq. u.  ant height is 13cm  (D) 5 cm  eping the same to the volume of                                                                                                                                                                  |
| bases, then curved surface (A) $4\pi r^2$ sq. u  3. The height of a right circ will be  (A) 12 cm  4. If the radius of the base height, then the ratio of the original cylinder is                                                                                                                                                                                                                                                           | e area of this new so<br>(B) 6πr² sq. u<br>cular cone whose ra<br>(B) 10 cm<br>of a right circular of<br>e volume of the cylin                                                                                                                                                          | IS r units are joined blid is (C) 3πr² sq. u dius is 5 cm and sla (C) 13 cm cylinder is halved ke nder thus obtained                                                                                                                                                                                                                            | together along their  (D) 8πr² sq. u.  ant height is 13cm  (D) 5 cm  eping the same to the volume of                                                                                                                                                                  |
| bases, then curved surface (A) $4\pi r^2$ sq. u  3. The height of a right circ will be  (A) 12 cm  4. If the radius of the base height, then the ratio of the original cylinder is                                                                                                                                                                                                                                                           | e area of this new so<br>(B) 6πr² sq. u<br>cular cone whose ra<br>(B) 10 cm<br>of a right circular of<br>e volume of the cylin                                                                                                                                                          | IS r units are joined blid is (C) 3πr² sq. u dius is 5 cm and sla (C) 13 cm cylinder is halved ke nder thus obtained                                                                                                                                                                                                                            | together along their  (D) 8πr² sq. u.  ant height is 13cm  (D) 5 cm  eping the same to the volume of                                                                                                                                                                  |
| bases, then curved surface (A) $4\pi r^2$ sq. u  3. The height of a right circ will be  (A) 12 cm  4. If the radius of the base height, then the ratio of the original cylinder is  (A) 1:2  5. The total surface area of                                                                                                                                                                                                                    | e area of this new so (B) 6πr² sq. u cular cone whose ra (B) 10 cm of a right circular ce volume of the cylin (B) 1:4 f a cylinder whose ra                                                                                                                                             | Is r units are joined blid is (C) $3\pi r^2$ sq. u dius is 5 cm and sla (C) 13 cm (C) 13 cm (Y) sylinder is halved ke (C) 1:6 (C) 1:6 (C) 1:6 (C) 1:6                                                                                                                                                                                           | (D) 8πr² sq. u.  ant height is 13cm  (D) 5 cm  eping the same to the volume of  (D) 1:8  ht is                                                                                                                                                                        |
| bases, then curved surface (A) $4\pi r^2$ sq. u  3. The height of a right circ will be  (A) 12 cm  4. If the radius of the base height, then the ratio of the original cylinder is  (A) 1:2  5. The total surface area of (A) $\frac{9\pi h^2}{8}$ sq. u                                                                                                                                                                                     | e area of this new so (B) 6πr² sq. u cular cone whose ra (B) 10 cm of a right circular cone volume of the cylin (B) 1:4 f a cylinder whose ra (B) 24πh²sq. u                                                                                                                            | Is r units are joined olid is  (C) $3\pi r^2$ sq. u  dius is 5 cm and sla  (C) 13 cm  cylinder is halved ke nder thus obtained  (C) 1:6  adius is $\frac{1}{3}$ of its height $\frac{8\pi h^2}{9}$ sq. u                                                                                                                                        | together along their  (D) $8\pi r^2$ sq. u.  Each height is 13cm  (D) 5 cm  eping the same to the volume of  (D) 1:8  the is  (D) $\frac{56\pi h^2}{9}$ sq. u.                                                                                                        |
| bases, then curved surface (A) $4\pi r^2$ sq. u  3. The height of a right circ will be  (A) 12 cm  4. If the radius of the base height, then the ratio of the original cylinder is  (A) 1:2  5. The total surface area of (A) $\frac{9\pi h^2}{8}$ sq. u  6. In a hollow cylinder, the                                                                                                                                                       | e area of this new so (B) 6πr <sup>2</sup> sq. u cular cone whose ra  (B) 10 cm of a right circular ce volume of the cylin  (B) 1:4 f a cylinder whose ra  (B) 24πh <sup>2</sup> sq. u e sum of the externa                                                                             | Is r units are joined olid is (C) $3\pi r^2$ sq. u dius is 5 cm and slaw (C) 13 cm sylinder is halved kender thus obtained (C) 1:6 adius is $\frac{1}{3}$ of its height (C) $\frac{8\pi h^2}{9}$ sq. u l and internal radii                                                                                                                     | together along their  (D) $8\pi r^2$ sq. u.  Each height is 13cm  (D) 5 cm  eping the same to the volume of  (D) 1:8  the is  (D) $\frac{56\pi h^2}{9}$ sq. u.  is 14 cm and the                                                                                      |
| bases, then curved surface (A) $4\pi r^2$ sq. u  3. The height of a right circ will be  (A) 12 cm  4. If the radius of the base height, then the ratio of the original cylinder is  (A) 1:2  5. The total surface area of (A) $\frac{9\pi h^2}{8}$ sq. u  6. In a hollow cylinder, the width is 4 cm. If its height                                                                                                                          | e area of this new so (B) $6\pi r^2$ sq. u cular cone whose ra  (B) 10 cm of a right circular ce volume of the cylin  (B) 1:4 f a cylinder whose ra  (B) $24\pi h^2$ sq. u e sum of the externatis 20 cm, the volume                                                                    | Is r units are joined olid is (C) $3\pi r^2$ sq. u dius is 5 cm and slaw (C) 13 cm (C) 13 cm (C) 1:6 (C) $\frac{8\pi h^2}{9}$ sq. u 1 and internal radii ne of the material in                                                                                                                                                                  | together along their  (D) $8\pi r^2$ sq. u.  Each height is 13cm  (D) 5 cm  eping the same to the volume of  (D) 1:8  th is  (D) $\frac{56\pi h^2}{9}$ sq. u.  is 14 cm and the it is                                                                                 |
| bases, then curved surface (A) $4\pi r^2$ sq. u  3. The height of a right circ will be  (A) 12 cm  4. If the radius of the base height, then the ratio of thoriginal cylinder is  (A) 1:2  5. The total surface area of (A) $\frac{9\pi h^2}{8}$ sq. u  6. In a hollow cylinder, the width is 4 cm. If its height (A) $5600\pi$ cm <sup>3</sup>                                                                                              | e area of this new so (B) $6\pi r^2$ sq. u cular cone whose ra  (B) 10 cm of a right circular of e volume of the cylin  (B) 1:4 f a cylinder whose ra  (B) $24\pi h^2$ sq. u e sum of the externatis 20 cm, the volum (B) $1120 \pi \text{ cm}^3$                                       | Is r units are joined blid is  (C) $3\pi r^2$ sq. u  dius is 5 cm and sla  (C) 13 cm  cylinder is halved ke hader thus obtained  (C) 1:6  adius is $\frac{1}{3}$ of its height  (C) $\frac{8\pi h^2}{9}$ sq. u  1 and internal radii he of the material in  (C) $56\pi$ cm <sup>3</sup>                                                         | together along their  (D) $8\pi r^2$ sq. u.  Each height is 13cm  (D) 5 cm  eping the same to the volume of  (D) 1:8  th is  (D) $\frac{56\pi h^2}{9}$ sq. u.  is 14 cm and the it is  (D) $3600\pi$ cm <sup>3</sup> .                                                |
| bases, then curved surface (A) $4\pi r^2$ sq. u  3. The height of a right circ will be  (A) 12 cm  4. If the radius of the base height, then the ratio of the original cylinder is  (A) 1:2  5. The total surface area of (A) $\frac{9\pi h^2}{8}$ sq. u  6. In a hollow cylinder, the width is 4 cm. If its height (A) $5600\pi$ cm <sup>3</sup> 7. If the radius of the base                                                               | e area of this new so (B) $6\pi r^2$ sq. u cular cone whose ra  (B) 10 cm of a right circular of e volume of the cylin  (B) 1:4 f a cylinder whose ra  (B) $24\pi h^2$ sq. u e sum of the externatis 20 cm, the volum (B) $1120 \pi \text{ cm}^3$                                       | Is r units are joined blid is  (C) $3\pi r^2$ sq. u  dius is 5 cm and sla  (C) 13 cm  cylinder is halved ke hader thus obtained  (C) 1:6  adius is $\frac{1}{3}$ of its height  (C) $\frac{8\pi h^2}{9}$ sq. u  1 and internal radii he of the material in  (C) $56\pi$ cm <sup>3</sup>                                                         | together along their  (D) $8\pi r^2$ sq. u.  Each height is 13cm  (D) 5 cm  eping the same to the volume of  (D) 1:8  th is  (D) $\frac{56\pi h^2}{9}$ sq. u.  is 14 cm and the it is  (D) $3600\pi$ cm <sup>3</sup> .                                                |
| bases, then curved surface (A) $4\pi r^2$ sq. u  3. The height of a right circ will be  (A) 12 cm  4. If the radius of the base height, then the ratio of the original cylinder is  (A) 1:2  5. The total surface area of (A) $\frac{9\pi h^2}{8}$ sq. u  6. In a hollow cylinder, the width is 4 cm. If its height (A) $5600\pi$ cm <sup>3</sup> 7. If the radius of the base volume is                                                     | e area of this new so (B) $6\pi r^2$ sq. u cular cone whose ra  (B) 10 cm of a right circular ce volume of the cylin  (B) 1:4 f a cylinder whose ra  (B) $24\pi h^2$ sq. u e sum of the externatis 20 cm, the volum  (B) $1120 \pi \text{ cm}^3$ of a cone is tripled                   | Is r units are joined olid is  (C) $3\pi r^2$ sq. u  dius is 5 cm and sla  (C) 13 cm  (Sylinder is halved ke ander thus obtained of the material in (C) $\frac{8\pi h^2}{9}$ sq. u  1 and internal radii the of the material in (C) $56\pi$ cm <sup>3</sup> and the height is do                                                                | together along their  (D) $8\pi r^2$ sq. u.  Each height is 13cm  (D) 5 cm  eping the same to the volume of  (D) 1:8  th is  (D) $\frac{56\pi h^2}{9}$ sq. u.  is 14 cm and the it is  (D) $3600\pi$ cm <sup>3</sup> .  Soubled then the                              |
| bases, then curved surface (A) $4\pi r^2$ sq. u  3. The height of a right circuity will be  (A) 12 cm  4. If the radius of the base height, then the ratio of the original cylinder is  (A) 1:2  5. The total surface area of (A) $\frac{9\pi h^2}{8}$ sq. u  6. In a hollow cylinder, the width is 4 cm. If its height (A) $5600\pi$ cm <sup>3</sup> 7. If the radius of the base volume is  (A) made 6 times                               | e area of this new so (B) 6πr <sup>2</sup> sq. u cular cone whose ra  (B) 10 cm of a right circular of the cyling (B) 1:4 f a cylinder whose ra (B) 24πh <sup>2</sup> sq. u e sum of the externatis 20 cm, the volum (B) 1120 π cm <sup>3</sup> of a cone is tripled (B) made 18 times  | Is r units are joined olid is (C) $3\pi r^2$ sq. u dius is 5 cm and slaw (C) 13 cm (C) 13 cm (C) 1:6 adius is $\frac{1}{3}$ of its height (C) $\frac{8\pi h^2}{9}$ sq. u 1 and internal radiine of the material in (C) $56\pi$ cm <sup>3</sup> and the height is do (C) made 12 time                                                            | together along their  (D) $8\pi r^2$ sq. u. ant height is 13cm  (D) 5 cm eping the same to the volume of  (D) 1:8 ht is  (D) $\frac{56\pi h^2}{9}$ sq. u. is 14 cm and the it is  (D) $3600\pi$ cm <sup>3</sup> . bubled then the                                     |
| bases, then curved surface (A) $4\pi r^2$ sq. u  3. The height of a right circuity will be  (A) 12 cm  4. If the radius of the base height, then the ratio of the original cylinder is  (A) 1:2  5. The total surface area of (A) $\frac{9\pi h^2}{8}$ sq. u  6. In a hollow cylinder, the width is 4 cm. If its height (A) $5600\pi$ cm <sup>3</sup> 7. If the radius of the base volume is  (A) made 6 times  8. The total surface area of | e area of this new so (B) 6πr² sq. u cular cone whose ra  (B) 10 cm of a right circular of e volume of the cylin  (B) 1:4  f a cylinder whose ra  (B) 24πh² sq. u  e sum of the externatis 20 cm, the volum (B) 1120 π cm³ of a cone is tripled  (B) made 18 times f a hemi-sphere is h | Is r units are joined olid is  (C) $3\pi r^2$ sq. u  dius is 5 cm and sla  (C) 13 cm  cylinder is halved ke nder thus obtained  (C) 1:6  adius is $\frac{1}{3}$ of its height  (C) $\frac{8\pi h^2}{9}$ sq. u  1 and internal radii ne of the material in  (C) $56\pi$ cm <sup>3</sup> and the height is do  (C) made 12 time ow much times the | together along their  (D) $8\pi r^2$ sq. u. ant height is 13cm  (D) 5 cm eping the same to the volume of  (D) 1:8 ht is  (D) $\frac{56\pi h^2}{9}$ sq. u. is 14 cm and the it is  (D) $3600\pi$ cm <sup>3</sup> . bubled then the  (D) unchanged square of its radius |
| bases, then curved surface (A) $4\pi r^2$ sq. u  3. The height of a right circuity will be  (A) 12 cm  4. If the radius of the base height, then the ratio of the original cylinder is  (A) 1:2  5. The total surface area of (A) $\frac{9\pi h^2}{8}$ sq. u  6. In a hollow cylinder, the width is 4 cm. If its height (A) $5600\pi$ cm <sup>3</sup> 7. If the radius of the base volume is  (A) made 6 times                               | e area of this new so (B) 6πr <sup>2</sup> sq. u cular cone whose ra  (B) 10 cm of a right circular of the cyling (B) 1:4 f a cylinder whose ra (B) 24πh <sup>2</sup> sq. u e sum of the externatis 20 cm, the volum (B) 1120 π cm <sup>3</sup> of a cone is tripled (B) made 18 times  | Is r units are joined olid is (C) $3\pi r^2$ sq. u dius is 5 cm and slaw (C) 13 cm (C) 13 cm (C) 1:6 adius is $\frac{1}{3}$ of its height (C) $\frac{8\pi h^2}{9}$ sq. u 1 and internal radiine of the material in (C) $56\pi$ cm <sup>3</sup> and the height is do (C) made 12 time                                                            | together along their  (D) $8\pi r^2$ sq. u. ant height is 13cm  (D) 5 cm eping the same to the volume of  (D) 1:8 ht is  (D) $\frac{56\pi h^2}{9}$ sq. u. is 14 cm and the it is  (D) $3600\pi$ cm <sup>3</sup> . bubled then the                                     |
| bases, then curved surface (A) $4\pi r^2$ sq. u  3. The height of a right circuity will be  (A) 12 cm  4. If the radius of the base height, then the ratio of the original cylinder is  (A) 1:2  5. The total surface area of (A) $\frac{9\pi h^2}{8}$ sq. u  6. In a hollow cylinder, the width is 4 cm. If its height (A) $5600\pi$ cm <sup>3</sup> 7. If the radius of the base volume is  (A) made 6 times  8. The total surface area of | e area of this new so (B) 6πr² sq. u cular cone whose ra  (B) 10 cm of a right circular of e volume of the cylin  (B) 1:4  f a cylinder whose ra  (B) 24πh² sq. u  e sum of the externatis 20 cm, the volum (B) 1120 π cm³ of a cone is tripled  (B) made 18 times f a hemi-sphere is h | Is r units are joined olid is  (C) $3\pi r^2$ sq. u  dius is 5 cm and sla  (C) 13 cm  cylinder is halved ke nder thus obtained  (C) 1:6  adius is $\frac{1}{3}$ of its height  (C) $\frac{8\pi h^2}{9}$ sq. u  1 and internal radii ne of the material in  (C) $56\pi$ cm <sup>3</sup> and the height is do  (C) made 12 time ow much times the | together along their  (D) $8\pi r^2$ sq. u. ant height is 13cm  (D) 5 cm eping the same to the volume of  (D) 1:8 ht is  (D) $\frac{56\pi h^2}{9}$ sq. u. is 14 cm and the it is  (D) $3600\pi$ cm <sup>3</sup> . bubled then the  (D) unchanged square of its radius |
| bases, then curved surface (A) $4\pi r^2$ sq. u  3. The height of a right circuity will be  (A) 12 cm  4. If the radius of the base height, then the ratio of the original cylinder is  (A) 1:2  5. The total surface area of (A) $\frac{9\pi h^2}{8}$ sq. u  6. In a hollow cylinder, the width is 4 cm. If its height (A) $5600\pi$ cm <sup>3</sup> 7. If the radius of the base volume is  (A) made 6 times  8. The total surface area of | e area of this new so (B) 6πr² sq. u cular cone whose ra  (B) 10 cm of a right circular of e volume of the cylin  (B) 1:4  f a cylinder whose ra  (B) 24πh² sq. u  e sum of the externatis 20 cm, the volum (B) 1120 π cm³ of a cone is tripled  (B) made 18 times f a hemi-sphere is h | Is r units are joined olid is  (C) $3\pi r^2$ sq. u  dius is 5 cm and sla  (C) 13 cm  cylinder is halved ke nder thus obtained  (C) 1:6  adius is $\frac{1}{3}$ of its height  (C) $\frac{8\pi h^2}{9}$ sq. u  1 and internal radii ne of the material in  (C) $56\pi$ cm <sup>3</sup> and the height is do  (C) made 12 time ow much times the | together along their  (D) $8\pi r^2$ sq. u. ant height is 13cm  (D) 5 cm eping the same to the volume of  (D) 1:8 ht is  (D) $\frac{56\pi h^2}{9}$ sq. u. is 14 cm and the it is  (D) $3600\pi$ cm <sup>3</sup> . bubled then the  (D) unchanged square of its radius |

| 9. A solid sphere of radius                                                           |                                   | cast into a shape of            | a solid cone of same             |
|---------------------------------------------------------------------------------------|-----------------------------------|---------------------------------|----------------------------------|
| radius. The height of the (A) 3x cm                                                   |                                   | (C) 4x cm                       | (D) 2x cm                        |
| 10. A frustum of a right ci<br>and 20 cm. Then, the volu                              |                                   |                                 | of its ends as 8 cm              |
|                                                                                       |                                   | (C) $3240\pi \text{ cm}^3$      | (D) $3340\pi$ cm <sup>3</sup>    |
| 11. A shuttle cock used fo                                                            |                                   |                                 |                                  |
| (A) a cylinder and a                                                                  | sphere                            | (B) a hemisphere as             | nd a cone                        |
| (C) a sphere and a                                                                    | cone                              | (D) frustum of a con            | nd a cone<br>ne and a hemisphere |
| 12. A spherical ball of rad                                                           | ius r <sub>1</sub> units is melte | d to make 8 new ide             | ntical balls each of             |
| radius $r_2$ units. Then $r_1$ : $r_2$                                                | is                                |                                 |                                  |
| (A) 2:1                                                                               | (B) 1:2                           | . ,                             | (D) 1:4                          |
| 13. The volume (in cm <sup>3</sup> ) of                                               |                                   | that can be cut off f           | from cylindrical log of          |
| wood of base radius 1 cm                                                              |                                   |                                 | 20                               |
| (A) $\frac{4}{3}\pi$                                                                  | (B) $\frac{10}{3}\pi$             | (C) 5π                          | (D) $\frac{20}{3}\pi$ .          |
| 14. The height and radius                                                             |                                   |                                 | art are h <sub>1</sub> units and |
| r <sub>1</sub> units respectively. Heig                                               |                                   | h <sub>2</sub> units and radius | of the smaller base is           |
| $r_2$ units. If $h_1:h_2 = 1:2$ then                                                  |                                   |                                 |                                  |
| (A) 1 : 3                                                                             |                                   | (C) 2:1                         |                                  |
| 15. The ratio of the volum                                                            |                                   | ne and a sphere, if ea          | ach has the same                 |
| diameter and same height                                                              | (B) 2:1:3                         | (0) 1,2,0                       | (D) 3:1:2                        |
| (A) 1:2:3                                                                             | (D) 2:1:3                         | (C) 1:3:2                       | (D) 3.1.2                        |
| ST                                                                                    | ATISTICS AND                      | PROBABILITY                     |                                  |
| 1. Which of the following                                                             | s not a measure of o              | dispersion?                     |                                  |
| (A) Range                                                                             | (B) standard deviat               | ion (C) Arithmetic              | mean (D) variance                |
| 2. The range of the data 8                                                            | ,8,8,8,8 is                       |                                 |                                  |
| (A) O                                                                                 | (B) 1                             | (C) 8                           | (D) 3                            |
| 3. The sum of all deviation                                                           |                                   |                                 | (D)                              |
|                                                                                       |                                   |                                 | (D) non-zero integer             |
| 4. The mean of 100 observation                                                        |                                   | eir standard deviatio           | n is 3. The sum of               |
| squares of all observation (A) 40000                                                  |                                   | (C) 160000                      | (D) 30000                        |
| 5. Variance of first 20 nat                                                           |                                   | (0) 100000                      | (D) 00000                        |
| (A) 32,25                                                                             | (B) 44.25                         | (C) 33.25                       | (D) 30                           |
| 6. The standard deviation                                                             | ` '                               | \ ,                             | ` ,                              |
| variance is                                                                           |                                   |                                 |                                  |
| (A) 3                                                                                 | (B) 15                            | (C) 5                           | (D) 225                          |
| 7. If the standard deviatio                                                           | n of $x,y,z$ is $p$ then t        | he standard deviatio            | n of <i>3x</i> +5, <i>3y</i> +5, |
| <i>3z</i> +5 is                                                                       |                                   |                                 |                                  |
| (A) $3p+5$                                                                            | (B) 3 <i>p</i>                    | (C) p+5                         | (D) 9p+15                        |
| 8. If the mean and coeffici                                                           | ent of variation of a             | data are 4 and 87.5°            | % then the standard              |
| deviation is                                                                          | (D) 2                             | (C) 4 F                         | (D) 0 F                          |
| (A) 3.5  Which of the following is                                                    | (B) 3                             | (C) 4.5                         | (D) 2.5                          |
| 9. Which of the following i (A) P(A) > 1                                              |                                   | (C) $P(\emptyset) = 0$          | (D) $P(A) + P(\overline{A}) = 1$ |
| 10. The probability a red i                                                           |                                   |                                 |                                  |
| and $r$ green marbles is                                                              | narbie selectea at 1e             | andom nom a jar cor             | realining p rea, q brac          |
| (A) $\frac{q}{n+q+r}$                                                                 | $(B) \frac{p}{}$                  | (C) $\frac{p+q}{p+q+r}$         | (D) $\frac{p+r}{n+q+r}$ .        |
| P . 4                                                                                 | r · · · · ·                       | r · 1 ·                         | F . 4                            |
| 11. A page is selected at random from a book. The probability that the digit at units |                                   |                                 |                                  |
| place of the page number                                                              | _                                 |                                 | 7                                |
| (A) $\frac{3}{10}$                                                                    | (B) $\frac{7}{10}$                | (C) $\frac{3}{9}$               | (D) $\frac{7}{9}$ .              |

12. The probability of getting a job for a person is  $\frac{x}{3}$ . If the probability of not getting the job is  $\frac{2}{3}$  then the value of x is

(A) 2 (B) 1 (C) 3 (D) 1.5

13. Kamalam went to play a lucky draw contest. 135 tickets of the lucky draw were sold. If the probability of Kamalam winning is  $\frac{1}{9}$ , then the number of tickets bought by Kamalam is

(A) 5 (B) 10 (C) 15 (D) 20

14. If a letter is chosen at random from the English alphabets  $\{a,b,c,...z\}$ , then the probability that the letter chosen precedes x

(A)  $\frac{12}{13}$  (B)  $\frac{1}{13}$  (C)  $\frac{23}{26}$ 

15. A purse contain 10 notes of Rs.2000, 15 notes of Rs.500, and 25 notes of Rs.200. One note is drawn at random. What is the probability that the note is eithr a Rs.500 note or Rs.200 note?

(A)  $\frac{1}{5}$  (B)  $\frac{3}{10}$  (C)  $\frac{2}{3}$  (D)  $\frac{4}{5}$