

Sri Raghavendra Tuition Center

HALF YEARLY QUESTION PAPER - TYPE B

10th Standard

Maths

		Date: 1	6-12-24
Reg.No.	: []		

Exam Time: 03:00 Hrs

TEACHER NAME: P.DEEPAK M.Sc., M.A., B.Ed., DCA., TET-1., TET-2.,

PHONE NUMBER: 9944249262 EMAIL: darthi99ktp@gmail.com

Centum Book Available

PART - I $14 \times 1 = 14$

Multiple Choice Question.

- 1) If $n(A \times B) = 6$ and $A = \{1,3\}$ then n(B) is
 - (a) 1 (b) 2 (c) 3 (d) 6
- 2) Graph of a linear equation is a _____
 - (a) straight line (b) circle (c) parabola (d) hyperbola
- If the ordered pairs (a + 2, 4) and (5, 2a + b) are equal then (a, b) is
 - (a) (2,-2) (b) (5,1) (c) (2,3) (d) (3,-2)
- 4) $\frac{3y-3}{y} \div \frac{7y-7}{3y^2}$ is
 - (a) $\frac{9y}{7}$ (b) $\frac{9y^2}{(21y-21)}$ (c) $\frac{21y^2-42y+21}{3y^2}$ (d) $\frac{7(y^2-2y+1)}{y^2}$
- Find the matrix X if $2X + \begin{pmatrix} 1 & 3 \\ 5 & 7 \end{pmatrix} = \begin{pmatrix} 5 & 7 \\ 9 & 5 \end{pmatrix}$
 - (a) $\begin{pmatrix} -2 & -2 \\ 2 & -1 \end{pmatrix}$ (b) $\begin{pmatrix} 2 & 2 \\ 2 & -1 \end{pmatrix}$ (c) $\begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix}$ (d) $\begin{pmatrix} 2 & 1 \\ 2 & 2 \end{pmatrix}$
- 6) If \triangle ABC is an isosceles triangle with \angle C = 90° and AC = 5 cm, then AB is
 - (a) 2.5 cm (b) 5 cm (c) 10 cm (d) $5\sqrt{2}$ cm
- If in \triangle ABC, DE | | BC, AB = 3.6 cm, AC = 2.4 cm and AD = 2.1 cm then the length of AE is
 - (a) 1.4 cm (b) 1.8 cm (c) 1.2 cm (d) 1.05 cm
- The area of triangle formed by the points (-5, 0), (0, -5) and (5, 0) is
 - (a) 0 sq. units (b) 25 sq. units (c) 5 sq. units (d) none of these
- The probability of getting a job for a person is $\frac{x}{3}$. If the probability of not getting the job is $\frac{2}{3}$ then the value of x is
 - (a) 2 (b) 1 (c) 3 (d) 1.5
- If a letter is chosen at random from the English alphabets $\{a, b, ..., z\}$, then the probability that the letter chosen precedes x (a) $\frac{12}{13}$ (b) $\frac{1}{13}$ (c) $\frac{23}{26}$ (d) $\frac{3}{26}$
- The condition for $px^2 + qx + r = 0$ to be a pure quadratic equation is then the second root is ______
 - (a) p = 0 (b) q = 0 (c) r = 0 (d) p = q = 0
- S and T are points on sides PQ and PR respectively of PQR. If PS = 3 cm, SQ = 6 cm, PT = 5 cm and TR = 10 cm, then QR =
 - (a) 4ST (b) 5ST (c) 3ST (d) 3QR

Find the slope and the y-intercept of the line $3y - \sqrt{3x} + 1 = 0$ is ______

(a)
$$\frac{1}{\sqrt{3}}, \frac{-1}{3}$$
 (b) $-\frac{1}{\sqrt{3}}, \frac{-1}{3}$ (c) $\sqrt{3}, 1$ (d) $-\sqrt{3}, 3$

14) If the smallest value and co-efficient of range a data are 25 and 0.5 respectively. Then the largest value is _____

PART - II $10 \times 2 = 20$

Answer ANY FIVE questions in which Question No.28 is compulsory.

15) If A x B = $\{(3,2), (3, 4), (5,2), (5, 4)\}$ then find A and B.

- 16) If B x A = {(-2,3), (-2,4),(0,3), (0,4),(3,3),(3,4)} find A and B.
- 17) If $A = \begin{bmatrix} 5 & 2 & 2 \\ -\sqrt{17} & 0.7 & \frac{5}{2} \\ 8 & 3 & 1 \end{bmatrix}$ then verify $(A^T)^T = A$
- Let $A = \{1, 2, 3, 4, ..., 45\}$ and R be the relation defined as "is square of a number" on A. Write R as a subset of A x A. Also, find the domain and range of R.
- 19) If f(x) = 3x 2, g(x) = 2x + k and if f o g = f o f, then find the value of k...
- 20) If a matrix has 16 elements, what are the possible orders it can have?
- Find the values of x, y and z from the following equations $\begin{bmatrix} 12 & 3 \\ x & \frac{3}{2} \end{bmatrix} = \begin{bmatrix} y & z \\ 3 & 5 \end{bmatrix}$
- Find the range and coefficient of range of the following data: 25, 67, 48, 53, 18, 39, 44.
- A and B are two candidates seeking admission to IIT. The probability that A getting selected is 0.5 and the probability that both A and B getting selected is 0.3. Prove that the probability of B being selected is allmost 0.8.
- Find the equation of a straight line which has Slope $\frac{-5}{4}$ passing through the point (-1, 2).
- Two coins are tossed together. What is the probability of getting different faces on the coins?
- 26) If P(A) = 0.37, P(B) = 0.42, $P(A \cap B) = 0.09$ then find $P(A \cup B)$.
- 27) Let f(x) = 2x + 5. If $x \ne 0$ then find $\frac{f(x+2) f(2)}{x}$.
- Find the standard deviation of first 21 natural numbers.

PART - III $10 \times 5 = 50$

Answer ANY FIVE questions in which Question No. 42 is compulsory.

Let A = The set of all natural numbers less than 8, B = The set of all prime numbers less than 8, C = The set of even prime number.

Verify that

$$(A \cap B) \times C = (A \times C) \cap (B \times C)$$

- Let $A = \{1,2,3,4\}$ and $B = \{2, 5, 8, 11,14\}$ be two sets. Let $f: A \rightarrow B$ be a function given by f(x) = 3x 1. Represent this function
 - (i) by arrow diagram
 - (ii) in a table form
 - (iii) as a set of ordered pairs
 - (iv) in a graphical form
- 31) If the function f is defined by

$$f(x) = \left\{ egin{array}{ll} x+2 & ext{if } x>1 \ 2 & ext{if } -1 \leq x \leq 1 \ x-1 & ext{if } -3 < x < -1 \end{array}
ight.$$

find the values of

- i) f(3)
- ii) f(O)
- iii) f(-1.5)
- iv) f(2) + f(-2)

- Consider the functions f(x), g(x), h(x) as given below. Show that (f o g) o h = f o (g o h) in each case.
 - (i) f(x) = x 1, g(x) = 3x + 1 and $h(x) = x^2$
 - (ii) $f(x) = x^2$, g(x) = 2x and h(x) = x + 4
 - (iii) f(x) = x 4, $g(x) = x^2$ and h(x) = 3x 5
- Solve for x, y: $\begin{bmatrix} x^2 \\ y^2 \end{bmatrix} + 2 \begin{bmatrix} -2x \\ -y \end{bmatrix} = \begin{bmatrix} -5 \\ 8 \end{bmatrix}$
- 34) If $A = \begin{bmatrix} 5 & 2 & 9 \\ 1 & 2 & 8 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 7 \\ 1 & 2 \\ 5 & -1 \end{bmatrix}$ verify that $(AB)^T = B^T A^T$
- 35) If $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$ show that $A^2 5A + 7I_2 = 0$
- Find the area of the quadrilateral formed by the points (8, 6), (5, 11), (-5, 12) and (-4, 3).
- A bag contains 12 blue balls and x red balls. If one ball is drawn at random (i) what is the probability that it will be a red ball? (ii) If 8 more red balls are put in the bag, and if the probability of drawing a red ball will be twice that of the probability in (i), then find x.
- Two unbiased dice are rolled once. Find the probability of getting
 - (i) a doublet (equal numbers on both dice)
 - (ii) the product as a prime number
 - (iii) the sum as a prime number
 - (iv) the sum as 1
- Three fair coins are tossed together. Find the probability of getting
 - (i) all heads
 - (ii) atleast one tail
 - (iii) at most one head
 - (iv) at most two tails
- Given that $A = \begin{bmatrix} 1 & 3 \\ 5 & -1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 5 & 2 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 3 & 2 \\ -4 & 1 & 3 \end{bmatrix}$ verify that A(B + C) = AB + AC.
- If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ show that A^2 $(a + d) A = (bc ad)I_2$
- 42) Find the sum to n terms of the series

3 + 33 + 333 + ...to n terms

PART - IV

 $2 \times 8 = 16$

Answer ALL questions.

Construct a \triangle PQR in which QR = 5 cm, \angle P = 40° and the median PG from P to QR is 4.4 cm. Find the length of the altitude from P to QR.

(OR)

- b) Draw a circle of diameter 6 cm from a point P, which is 8 cm away from its centre. Draw the two tangents PA and PB to the circle and measure their lengths.
- Draw the graph of $y = x^2 4$ and hence solve $x^2 + 1 = 0$

(OR)

The following table shows the data about the number of pipes and the time taken to till the same tank.

No of pipes (x)	2	3	6	9
Time Taken (in min) (y)	45	30	15	10

Draw the graph for the above data and hence

- (i) find the time taken to fill the tank when five pipes are used
- (ii) Find the number of pipes when the time is 9 minutes.

ALL THE BEST

.

Sri Raghavendra Tuition Center

HALF YEARLY QUESTION PAPER - 2024 TO 2025

10th Standard

Maths

		Date: 1	6-12-24
Reg.No.	:		

Exam Time: 01:30 Hrs

Total Marks: 50

EACHER NAME: P.DEEPAK M.Sc., M.A., B.Ed., DCA., TET-1., TET-2.,

PHONE NUMBER : 9944249262 EMAIL: darthi99ktp@gmail.com

Centum Book Available

PART -1 $7 \times 1 = 7$

Multiple Choice Question.

- 1) If $n(A \times B) = 6$ and $A = \{1,3\}$ then n(B) is
 - (a) 1 (b) 2 (c) 3 (d) 6
- Euclid's division lemma states that for positive integers a and b, there exist unique integers q and r such that a = bq + r, where r must satisfy
 - (a) 1 < r < b (b) 0 < r < b (c) $0 \le r < b$ (d) $0 < r \le b$
- 3) If (x 6) is the HCF of $x^2 2x 24$ and $x^2 kx 6$ then the value of k is
 - (a) 3 (b) 5 (c) 6 (d) 8
- 4) Graph of a linear equation is a _____
 - (a) straight line (b) circle (c) parabola (d) hyperbola
- The area of triangle formed by the points (-5, 0), (0, -5) and (5, 0) is
 - (a) 0 sq. units (b) 25 sq. units (c) 5 sq. units (d) none of these
- 6) The range of the data 8, 8, 8, 8, 8. . . 8 is
 - (a) 0 (b) 1 (c) 8 (d) 3
- Which of the following is incorrect?
 - (a) P(A) > 1 (b) $0 \le P(A) \le 1$ (c) $P(\Phi) = 0$ (d) $P(A) + P(\bar{A}) = 1$

PART -2 $5 \times 2 = 10$

Answer ANY FIVE questions in which Question No.18 is compulsory

- 8) If $A \times B = \{(3,2), (3,4), (5,2), (5,4)\}$ then find A and B.
- 9) Let f(x) = 2x + 5. If $x \ne 0$ then find $\frac{f(x+2) f(2)}{x}$.
- Represent the function $f(x) = \sqrt{2x^2 5x + 3}$ as a composition of two functions.
- 11) 'a' and 'b' are two positive integers such that $a^b \times b^a = 800$. Find 'a' and 'b'
- 12) If a matrix has 16 elements, what are the possible orders it can have?
- 13) Show that the points (-2, 5), (6, -1) and (2, 2) are collinear
- 14) prove that $\sqrt{\frac{1+\cos\theta}{1-\cos\theta}} = \csc\theta + \cot\theta$
- Find the range and coefficient of range of the following data: 25, 67, 48, 53, 18, 39, 44.
- The range of a set of data is 13.67 and the largest value is 70.08. Find the smallest value.

17) If P(A) = 0.37, P(B) = 0.42, $P(A \cap B) = 0.09$ then find $P(A \cup B)$.

18) If
$$A = \begin{bmatrix} 5 & 2 & 2 \\ -\sqrt{17} & 0.7 & \frac{5}{2} \\ 8 & 3 & 1 \end{bmatrix}$$
 then verify $(A^T)^T = A$

PART -3 $5 \times 5 = 25$

Answer ANY FIVE questions in which Question No.29 is compulsory.

Let A = The set of all natural numbers less than 8, B = The set of all prime numbers less than 8, C = The set of even prime number.

Verify that

$$(A \cap B) \times C = (A \times C) \cap (B \times C)$$

20) A function f: $[-5,9] \rightarrow R$ is defined as follows:

$$f(x) = egin{bmatrix} 6x+1 & ext{if } -5 \leq x < 2 \ 5x^2 - 1 & ext{if } 2 \leq x < 6 \ 3x - 4 & ext{if } 6 \leq x \leq 9 \end{bmatrix}$$

Find

i) f(-3) + f(2)

ii) f(7) - f(1)

iii) 2f(4) + f(8)

iv) $\frac{2f(-2)-f(6)}{f(4)+f(-2)}$

21) If $f(x) = x^2$, g(x) = 3x and h(x) = x - 2, Prove that (f o g) o h = f o (g o h).

Find the sum to n terms of the series 5 + 55 + 555 + ...

23) If
$$A = \begin{bmatrix} 5 & 2 & 9 \\ 1 & 2 & 8 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 7 \\ 1 & 2 \\ 5 & -1 \end{bmatrix}$ verify that $(AB)^T = B^T A^T$

If $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$ show that $A^2 - 5A + 7I_2 = 0$

Find the area of the quadrilateral formed by the points (8, 6), (5, 11), (-5, 12) and (-4, 3).

Two ships are sailing in the sea on either sides of a lighthouse as observed from the ships are 30° and 45° respectively. if the lighthouse is 200 m high, find the distance between the two ships. $(\sqrt{3} = 1.732)$

A kite is flying at a height of 75m above the ground, the string attached to the kite is temporarily tied to a point on the ground. The inclination of the string with the ground is 60°.find the length of the string ,assuming that there is no slack in the string.

The number of televisions sold in each day of a week are 13, 8, 4, 9, 7, 12, 10. Find its standard deviation.

Two unbiased dice are rolled once. Find the probability of getting

(i) a doublet (equal numbers on both dice)

(ii) the product as a prime number

(iii) the sum as a prime number

(iv) the sum as 1

PART -4 $1 \times 8 = 8$

Answer ANY ONE question.

Draw a circle of diameter 6 cm from a point P, which is 8 cm away from its centre. Draw the two tangents PA and PB to the circle and measure their lengths.

(OR)

b) Draw the graph xy = 24, x, y > 0, Using the graph find,

(i) y when x = 3 and

(ii) x when y = 6.

31) a) Varshika drew 6 circles with different sizes. Draw a graph for the relationship between the diameter and circumference of each circle as shown in the table and use it to find the circumference of a circle when its diameter is 6 cm.

Diameter (x)cm	1	2	3	4	5
Circumference (y)cm	3.1	6.2	9.3	12.4	15.5

(OR)

b) Construct a \triangle ABC such that AB = 5.5 cm, \angle C = 25° and the altitude from C to AB is 4 cm.

All The Best
