

Sri Raghavendra Tuition Center

Pass Level Test

10th Standard

Maths

	Date: 0	04-12-24
Reg.No. :		

Exam Time : 01:00 Hrs

Total Marks : 50

EACHER NAME: P.DEEPAK M.Sc., M.A., B.Ed., DCA., TET-1., TET-2.,

PHONE NUMBER : 9944249262 EMAIL: darthi99ktp@gmail.com

Centum Book Available

- I. Multiple Choice Question. $13 \times 1 = 13$
- The range of the relation $R = \{(x, x^2) \mid x \text{ is a prime number less than } 13\}$ is
 - (a) $\{2,3,5,7\}$ (b) $\{2,3,5,7,11\}$ (c) $\{4,9,25,49,121\}$ (d) $\{1,4,9,25,49,121\}$
- 2) The sum of the exponents of the prime factors in the prime factorization of 1729 is
 - (a) 1 (b) 2 (c) 3 (d) 4
- If $A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 \\ 2 & -1 \\ 0 & 2 \end{pmatrix}$ and $C = \begin{pmatrix} 0 & 1 \\ -2 & 5 \end{pmatrix}$, Which of the following statements are correct?

(i) AB + C =
$$\begin{pmatrix} 5 & 5 \\ 5 & 5 \end{pmatrix}$$

(ii) BC =
$$\begin{pmatrix} 0 & 1 \\ 2 & -3 \\ -4 & 10 \end{pmatrix}$$

(iii) BA + C =
$$\begin{pmatrix} 2 & 5 \\ 3 & 0 \end{pmatrix}$$

(iv) (AB)C =
$$\begin{pmatrix} -8 & 20 \\ -8 & 13 \end{pmatrix}$$

- (a) (i) and (ii) only (b) (ii) and (iii) only (c) (iii) and (iv) only (d) all of these
- 4) The value of $(1^3 + 2^3 + 3^3 + ... + 15^3)$ (1 + 2 + 3 + ... + 15) is
 - (a) 14400 (b) 14200 (c) 14280 (d) 14520
- 5) $\frac{3y-3}{y} \div \frac{7y-7}{3y^2}$ is
 - (a) $\frac{9y}{7}$ (b) $\frac{9y^2}{(21y-21)}$ (c) $\frac{21y^2-42y+21}{3y^2}$ (d) $\frac{7(y^2-2y+1)}{y^2}$
- In a given figure ST $\mid \mid$ QR, PS = 2 cm and SQ = 3 cm. Then the ratio of the area of \triangle PQR to the area \triangle PST is

- (a) 25:4 (b) 25:7 (c) 25:11 (d) 25:13
- 7) Consider four straight lines

(i)
$$1_1 : 3y = 4x + 5$$

(ii)
$$l_2 : 4y = 3x - 1$$

(iii)
$$1_3 : 4y + 3x = 7$$

(iv)
$$1_4: 4x + 3y = 2$$

Which of the following statement is true?

(a) l_1 and l_2 are perpendicular (b) l_1 and l_4 are parallel (c) l_2 and l_4 are perpendicular (d) l_2 and l_3 are parallel

- 8) If the radius of the base of a right circular cylinder is halved keeping the same height, then the ratio of the volume of the cylinder thus obtained to the volume of original cylinder is
 - (a) 1:2 (b) 1:4 (c) 1:6 (d) 1:8
- The point of intersection of 3x y = 4 and x + y = 8 is
 - (a) (5, 3) (b) (2, 4) (c) (3, 5) (d) (4, 4)
- 10) If $x = a \tan \theta$ and $y = b \sec \theta$ then
 - (a) $\frac{y^2}{b^2} \frac{x^2}{a^2} = 1$ (b) $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ (c) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (d) $\frac{x^2}{a^2} \frac{y^2}{b^2} = 0$
- A shuttle cock used for playing badminton has the shape of the combination of
 - (a) a cylinder and a sphere (b) a hemisphere and a cone (c) a sphere and a cone (d) frustum of a cone and a hemisphere
- 12) The sum of all deviations of the data from its mean is
 - (a) Always positive (b) always negative (c) zero (d) non-zero integer
- If function $f: N \rightarrow N$, f(x) = 2x then the function is, then the function is ______
 - (a) Not one one and not onto (b) one-one and onto (c) Not one one but not onto (d) one one but not onto
- If $\sin \theta + \cos \theta = a$ and $\sec \theta + \csc \theta = b$, then the value of $b(a^2 1)$ is equal to
 - (a) 2a (b) 3a (c) 0 (d) 2ab
- II. Answer all question. $5 \times 2 = 10$
- 15) If B x A = $\{(-2,3), (-2,4), (0,3), (0,4), (3,3), (3,4)\}$ find A and B.
- If f(x) = 3x 2, g(x) = 2x + k and if f(x) = 3x 2, g(x) = 2x + k and if f(x) = 3x 2, g(x) = 2x + k and if f(x) = 3x 2, g(x) = 2x + k and if f(x) = 3x 2, g(x) = 2x + k and if f(x) = 3x 2, g(x) = 2x + k and if f(x) = 3x 2, g(x) = 2x + k and if f(x) = 3x 2, g(x) = 3x 2, g(x) = 2x + k and if f(x) = 3x 2, g(x) = 3x 2, g(x) = 2x + k and if f(x) = 3x 2, g(x) = 3x 2, g(x) = 2x + k and if f(x) = 3x 2, g(x) = 3x
- 17) If $A = \begin{bmatrix} 5 & 2 & 2 \\ -\sqrt{17} & 0.7 & \frac{5}{2} \\ 8 & 3 & 1 \end{bmatrix}$ then verify $(A^T)^T = A$
- Find the range and coefficient of range of the following data: 25, 67, 48, 53, 18, 39, 44.
- What is the probability that a leap year selected at random will contain 53 saturdays. (Hint: $366 = 52 \times 7 + 2$)
- III. Answer all question. $2 \times 5 = 10$
- 20) If the function $f: R \rightarrow R$ defined by

$$f(x) = \left\{ egin{array}{l} 2x+7, x < -2 \ x^2-2, -2 \leq x < 3 \ 3x-2, x \geq 3 \end{array}
ight.$$

- (i) f(4)
- (ii) f(-2)
- (iii) f(4) + 2f(1)
- (iv) $\frac{f(1)-3f(4)}{f(-3)}$
- Find x if gff(x) = fgg(x), given f(x) = 3x + 1 and g(x) = x + 3.

Iv. Answer any 5 question. $4 \times 8 = 32$

Graph the following quadratic equations and state their nature of solutions. $x^2 + x + 7 = 0$

(OR)

b) Varshika drew 6 circles with different sizes. Draw a graph for the relationship between the diameter and circumference of each circle as shown in the table and use it to find the circumference of a circle when its diameter is 6 cm.

Diameter (\mathbf{x}) cm	1	2	3	4	5
Circumference (v)cm	3.1	6.2	9.3	12.4	15.5

23) a) Construct a \triangle PQR such that QR = 6.5 cm, \angle P = 60°and the altitude from P to QR is of length 4.5 cm.

(OR)

b) Draw the two tangents from a point which is 10 cm away from the centre of a circle of radius 5 cm. Also, measure the lengths of the tangents.
