

Sri Raghavendra Tuition Center

Pre Quaterly Exam

10th Standard

Maths

	Date: 19-09-24					
Reg.No.:						

Exam Time: 03:00 Hrs

Total Marks: 100

EACHER NAME: P.DEEPAK M.Sc.,M.A.,B.Ed.,DCA.,TET-1.,TET-2.,

PHONE NUMBER : 9944249262 EMAIL: darthi99ktp@gmail.com

Centum Book Available

I. Multiple Choice Question $14 \times 1 = 14$

- 1) If $n(A \times B) = 6$ and $A = \{1,3\}$ then n(B) is
 - (a) 1 (b) 2 (c) 3 (d) 6
- 2) If the ordered pairs (a + 2, 4) and (5, 2a + b) are equal then (a, b) is
 - (a) (2,-2) (b) (5,1) (c) (2,3) (d) (3,-2)
- 3) If f: A \rightarrow B is a bijective function and if n(B) = 7, then n(A) is equal to
 - (a) 7 (b) 49 (c) 1 (d) 14
- 4) $A = \{a, b, p\}, B = \{2, 3\}, C = \{p, q, r, s\} \text{ then } n[(A \cup C) \times B] \text{ is}$
 - (a) 8 (b) 20 (c) 12 (d) 16
- 5) If the HCF of 65 and 117 is expressible in the form of 65m 117, then the value of m is
 - (a) 4 (b) 2 (c) 1 (d) 3
- 6) Given $F_1 = 1$, $F_2 = 3$ and $F_n = F_{n-1} + F_{n-2}$ then F_5 is
 - (a) 3 (b) 5 (c) 8 (d) 11
- An A.P. consists of 31 terms. If its 16th term is m, then the sum of all the terms of this A.P. is
 - (a) 16 m (b) 62 m (c) 31 m (d) $\frac{31}{2}$ m
- 8) If (x 6) is the HCF of $x^2 2x 24$ and $x^2 kx 6$ then the value of k is
 - (a) 3 (b) 5 (c) 6 (d) 8
- The square root of $\frac{256x^8y^4z^{10}}{25x^6y^6z^6}$ is equal to
 - (a) $\frac{16}{5} \left| \frac{x^2 z^4}{y^2} \right|$ (b) $16 \left| \frac{y^2}{x^2 z^4} \right|$ (c) $\frac{16}{5} \left| \frac{y}{x z^2} \right|$ (d) $\frac{16}{5} \left| \frac{x z^2}{y} \right|$
- Which of the following should be added to make x^4 + 64 a perfect square
 - (a) $4x^2$ (b) $16x^2$ (c) $8x^2$ (d) $-8x^2$
- The number of points of intersection of the quadratic polynomial $x^2 + 4x + 4$ with the X axis is
 - (a) 0 (b) 1 (c) 0 or 1 (d) 2
- 12) Graph of a linear equation is a _____
 - (a) straight line (b) circle (c) parabola (d) hyperbola
- If in triangles ABC and EDF, $\frac{AB}{DE} = \frac{BC}{FD}$ then they will be similar, when
 - (a) $\angle B = \angle E$ (b) $\angle A = \angle D$ (c) $\angle B = \angle D$ (d) $\angle A = \angle F$

- 14) The area of triangle formed by the points (-5, 0), (0, -5) and (5, 0) is

- (a) 0 sq. units (b) 25 sq. units (c) 5 sq. units (d) none of these
- 15) The slope of the line which is perpendicular to a line joining the points (0, 0) and (-8, 8) is
 - (a) -1 (b) 1 (c) $\frac{1}{3}$ (d) -8

II. Answer any 10 question.

 $10 \times 2 = 20$

- 16) If A x B = $\{(3,2), (3, 4), (5,2), (5, 4)\}$ then find A and B.
- 17) If B x A = $\{(-2,3), (-2,4), (0,3), (0,4), (3,3), (3,4)\}$ find A and B.
- 18) if m, n are natural numbers, for what values of m, does 2ⁿ x 5^m ends in 5?
- 19) If $13824 = 2^a \times 3^b$ then find a and b.
- 20) Let A = {1, 2, 3, 4,..., 45} and R be the relation defined as "is square of a number" on A. Write R as a subset of A x A. Also, find the domain and range of R.
- 21) For what values of natural number n, 4ⁿ can end with the digit 6?
- 22) Check whether the following sequences are in A.P. a - 3, a - 5, a - 7,....
- 23) Find x, y and z, given that the numbers x, 10, y, 24, z are in A.P.
- 24) Find the sum and product of the roots for each of the following quadratic equations: $x^2 + 8x - 65 = 0$
- 25) Solve $2x^2 - 3x - 3 = 0$ by formula method.
- 26) Find the excluded values of the following expressions (if any). $8p^2 + 13p + 5$
- 27) Find the area of the triangle formed by the points (1, -1), (-4, 6) and (-3, -5)
- 28) Simplify
- 29) Find the number of terms in the following G.P. 4, 8, 16, ..., 8192
- 30) Prove that $\tan^2\theta - \sin^2\theta = \tan^2\theta \sin^2\theta$
- 31) A cylindrical drum has a height of 20 cm and base radius of 14 cm. Find its curved surface area and the total surface area.

III. Answer any 10 question.

- 32) Let $A = \{1,2,3,4\}$ and $B = \{2, 5, 8, 11,14\}$ be two sets. Let $f: A \rightarrow B$ be a function given by f(x) = 3x - 1. Represent this function
 - (i) by arrow diagram
 - (ii) in a table form
 - (iii) as a set of ordered pairs
 - (iv) in a graphical form
- 33) Let A = $\{x \in \mathbb{N} | 1 < x < 4\}$, B = $\{x \in \mathbb{W} | 0 \le x < 2\}$ and C = $\{x \in \mathbb{N} | x < 3\}$ Then verify that
 - (i) $A \times (B \cup C) = (A \times B) \cup (A \times C)$
 - (ii) $A \times (B \cap C) = (A \times B) \cap (A \times C)$
- 34) If the function $f: R \rightarrow R$ defined by

$$f(x) = \left\{ egin{array}{l} 2x+7, x < -2 \ x^2-2, -2 \leq x < 3 \ 3x-2, x \geq 3 \end{array}
ight.$$

- (i) f(4)
- (ii) f(-2)
- (iii) f(4) + 2f(1)
- (iv) $\frac{f(1)-3f(4)}{f(-3)}$
- 35) Find the HCF of 396, 504, 636.

- 36) Find the sum to n terms of the series 3 + 33 + 333 + ...to n terms
- The sum of three consecutive terms that are in A.P. is 27 and their product is 288. Find the three terms.
- 38) Find the sum of $9^3 + 10^3 + \dots + 21^3$
- Find the square root of the following expressions $16x^2 + 9y^2 24xy + 24x 18y + 9$
- 40) Show that the points P(-1, 5, 3), Q(6, -2), R(-3, 4) are collinear.
- 41) If $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$ show that $A^2 5A + 7I_2 = 0$
- From a solid cylinder whose height is 2.4 cm and diameter 1.4 cm, a conical cavity of the same height and base is hollowed out. Find the total surface area of the remaining solid.

- The product of Kumaran's age (in years) two years ago and his age four years from now is one more than twice his present age. What is his present age?
- Given that $A = \begin{bmatrix} 1 & 3 \\ 5 & -1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 5 & 2 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 3 & 2 \\ -4 & 1 & 3 \end{bmatrix}$ verify that A(B + C) = AB + AC.
- 45) If $A = \begin{bmatrix} 5 & 2 & 9 \\ 1 & 2 & 8 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 7 \\ 1 & 2 \\ 5 & -1 \end{bmatrix}$ verify that $(AB)^T = B^T A^T$

IV. Answer all question.

 $2 \times 8 = 16$

- Draw the graph of $y = x^2 + 4x + 3$ and hence find the roots of $x^2 + x + 1 = 0$
- Varshika drew 6 circles with different sizes. Draw a graph for the relationship between the diameter and circumference of each circle as shown in the table and use it to find the circumference of a circle when its diameter is 6 cm.

Diameter $(\mathbf{x})\mathbf{cm}$	1	2	3	4	5
Circumference (y) cm	3.1	6.2	9.3	12.4	15.5

- Construct a $\triangle PQR$ in which QR = 5 cm, $\angle P = 40^{\circ}$ and the median PG from P to QR is 4.4 cm. Find the length of the altitude from P to QR.
- Draw a circle of diameter 6 cm from a point P, which is 8 cm away from its centre. Draw the two tangents PA and PB to the circle and measure their lengths.

All the best
