www.Trb Tnpsc.Com

www.Padasalai.Net

பள்ளிக் கல்வித்துறை செங்கல்பட்டு மாவட்டம்

10ஆம் வகுப்பு

கணிதம்

(ஆங்கல வழ) மெல்ல மினிரும் மாணவர்களுக்கானு திறப்புக் கையேடு

2024 - 2025

வெளியீடு : முதன்மைக்கல்வி அலுவலகம், செங்கல்பட்டு

இதனை இதனால் இவன்முடிக்கும் என்றாய்ந்து அதனை அவன்கண் விடல்.

– குறள்.

அன்பார்ந்த மாணவர்களே!

- உங்களின் இயல்பினை அறிந்து, அனைவரும் வெற்றி பெறும் நோக்கத்துடன் எனது வழிகாட்டுதலின் பேரில் உருவாக்கப்பட்ட சிறப்பு வழிகாட்டி இது. இந்த வழிகாட்டி முழுமையும் படித்தால் நீங்கள் வெற்றி பெறுவது உறுதி.
- 2. படித்ததை எழுதிப் பழகுங்கள், மேலும் படித்த விணா விடைகளை, சக மாணவர்களோடு கலந்து பேசி தெளிவாகுங்குள் வெற்றி எளிது...
- முயன்றால் முடியாதது எதுவுமே இல்லை. உங்களால் முடியாதது வேறு எவராலும் முடியாது என்பதை உணருங்கள்.
- 4. நாளைய நாட்கள் உங்களுக்காகவே காத்திருக்கின்றன. இச்சிறப்பு வழிகாட்டி உங்களை வெற்றிக்கு அழைத்துச் செல்ல இருக்கிறது. கல்வியிலும், வாழ்க்கையிலும் வசந்தம் பெற வாழ்த்துக்கள்.......!

முதன்மைக்கல்வி அலுவலர், செங்கல்பட்டு.

1

$B \cap C = \{2, 3, 4\} \cap \{3, 5\} = \{3\}$
$A \times (B \cap C) = \{0, 1\} \times \{3\} = \{(0, 3), (1, 3)\} \rightarrow (1)$
<u>KHS:</u> $A \times B = \{0, 1\} \times \{2, 3, 4\} = \{(0, 2), (0, 3), (0, 4), (1, 2), (1, 3), (1, 4)\}$
$A \times B = \{0, 1\} \times \{2, 3, 4\} = \{(0, 2), (0, 3), (0, 4), (1, 2), (1, 3), (1, 4)\}$ $A \times C = \{0, 1\} \times \{3, 5\} = \{(0, 3), (0, 5), (1, 3), (1, 5)\}$
$(A \times B) \cap (A \times C) = \{(0,3), (1,3)\} \rightarrow (2)$
$\therefore \text{ from (1) and (2) we see that } A \times (B \cap C) = (A \times B) \cap (A \times C)$
3) $A = \{x \in \mathbb{W} \mid x < 2\}$, $B = \{x \in \mathbb{N}, 1 < x < 4\}$ and $C = \{3, 5\}$ then, verify that
$(A \cup B) \times C = (A \times C) \cup (B \times C).$
Solution:-
<u>Given</u> , $A = \{0, 1\}, B = \{2, 3, 4\}, C = \{3, 5\}$
LHS:
$A \cup B = \{0, 1\} \cup \{2, 3, 4\} = \{0, 1, 2, 3, 4\}$
$(A \cup B) \times C) = \{0, 1, 2, 3, 4\} \cup \{3, 5\}$
$= \{(0,3), (0,5), (1,3), (1,5), (2,3, (2,5), (3,3)(3,5), (4,3), (4,5)\} \rightarrow (1)$
<u>KHS:</u> $4 \times C = \{0, 1\} \mathbb{Y}(2, 5) = \{(0, 2), (0, 5), (1, 2), (1, 5)\}$
$A \times C = \{0, 1\} \land \{3, 5\} = \{(0, 5), (0, 5), (1, 5), (1, 5)\}$ $B \times C = \{2, 2, 4\} \land \{2, 5\} = \{(2, 2), (2, 5), (2, 5), (4, 2), (4, 5)\}$
$D \times C = \{2, 3, 4\} \times \{3, 3\} = \{(2, 3), (2, 3), (3, 3), (4, 3), (4, 3)\}$
$\therefore \text{ from (1) and (2) we see that } (A \sqcup B) \times C = (A \times C) \sqcup (B \times C)$
4) $A = \{1, 2, 3\}$ $B = \{2, 3, 5\}$ $C = \{3, 4\}$ and $D = \{1, 3, 5\}$ then verify that
$(A \cap C) \times (B \cap D) = (A \times B) \cap (C \times D)$
Solution:-
$\frac{50101001.5}{1000}$
Given, A if $C = \{1, 2, 3\} \cap \{1, 2, 3\} = \{3\}$
$B \cap D = \{2, 3, 5\} \cap \{1, 3, 5\} = \{3, 5\}$
$(A \cap C) \times (B \cap D) = \{(3,3), (3,5)\} \rightarrow (1)$
$\frac{\mathbf{KHS}}{\mathbf{A}} = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \left(\frac{1}{2} - 1$
$A \times B = \{1, 2, 3\} \times \{1, 2, 3\} = \{(1, 2), (1, 3), (1, 5), (2, 2), (2, 3), (2, 5), (3, 2), (3, 3), (3, 5)\}$
$C \times D = \{3,4\} \times \{1,3,5\} = \{(3,1), (3,3), (3,5), (4,1), (4,3), (4,5)\}$
$(A \times B) \cap (C \times D) = \{(3,3), (3,5)\} \rightarrow (2)$
$\therefore \text{ from (1) and (2) we see that,} (A \cap C) \times (B \cap D) = (A \times B) \cap (C \times D)$
TWO MARKS QUESTIONS
UNIT - 1 : RELATIONS AND FUNCTIONS
1) If $A = \{1,3,5\}, B = \{2,3\}$ then find (i) $A \times B$ and $B \times A$. (ii) Is $\times B = B \times A$? If not why? (iii) Show that $n(A \times B) = n(B \times A) = n(A) \times n(B)$. [Sep-21]
Solution:-
<u>Given</u> , $A = \{1, 3, 5\}$ and $B = \{2, 3\}$
(i) $A \times B = \{1,3,5\} \times \{2,3\} = \{(1,2), (1,3), (3,2), (3,3), (5,2), (5,3)\} \rightarrow (1)$
$B \times A = \{2,3\} \times \{1,3,5\} = \{(2,1), (2,3), (2,5), (3,1), (3,3), (3,5)\} \rightarrow (2)$
(ii) From (1) and (2), $(1) \neq (2)$
2

Also $A \times B \neq B \times A$ since $(1,2) \neq \overline{(2,1)}$ (iii) n(A) = 3 and n(B) = 2(1) and (2), we get, $n(A \times B) = n(B \times A) = 6 \rightarrow (3)$ Here, $n(A) \times n(B) = 3 \times 2 = 6 \rightarrow (4)$ $n(B) \times n(A) = 2 \times 3 = 6 \quad \rightarrow \quad (5)$ From (3), (4) and (5), we see that, $n(A \times B) = n(B \times A) = n(A) \times n(B)$ 2) Let $A = \{1,2,3\}$ and $B = \{x | x \text{ is a prime number less than } 10\}$. Find $A \times B$ and $B \times A$. [May-22] Solution:- $A = \{1, 2, 3\}, B = \{2, 3, 5, 7\}$ $A \times B = \{1,2,3\} \times \{2,3,5,7\}$ $= \{(1,2), (1,3), (1,5), (1,7), (2,2), (2,3), (2,5), (2,7), (3,2), (3,3), (3,5), (3,7)\}$ $B \times A = \{2,3,5,7\} \times \{1,2,3\}$ $= \{(2,1), (2,2), (2,3), (3,1), (3,2), (3,3), (5,1), (5,2), (5,3), (7,1), (7,2), (7,3)\}$ 3) If $A = \{2, -2, 3\}$ and $B = \{1, -1\}$ then (i) $A \times B$ (ii) $A \times A$ and (iii) $B \times A$. **[PTA-1]** Solution:- $A \times B = \{2, -2, 3\} \times \{1, -1\} =$ **(i)** $\{(2,1), (2,-1), (-2,1), (-2,-1), (3,1), (3,-1)\}$ $A \times A = \{2, -2, 3\} \times \{2, -2, 3\}$ **(ii)** $= \{(2,2), (2,-2), (2,3), (-2,2), (-2,-2), (-2,3), (3,2), (3,-2), (3,3)\}$ $B \times A = \{1, -1\} X \{2, -2, 3\} =$ (iii) $\{1,2), (1,-2), (1,3), (-1,2), (-1,-2), (-1,3)\}$ 4) If $A = B = \{p, q\}$ then (i) $A \times B$ (ii) $A \times A$ and (iii) $B \times A$. **Solution:-**A X B = {p,q} × {p,q} = {(p,p), (p,q), (q,p), (q,q)} **(i)** $A X A = \{p,q\} \times \{p,q\} = \{(p,p), (p,q), (q,p), (q,q)\}$ (ii) (iii) B X A = {p,q} × {p,q} = {(p,p), (p,q), (q,p), (q,q)} 5) If $A = \{m, n\}$ and $B = \emptyset$, then (i) $A \times B$ (ii) $A \times A$ and (iii) $B \times A$. [PTA-1] Solution:- $A \times B = \{m, n\} \times \emptyset = \emptyset$ (i) $A \times A = \{m, n\} \times \{m, n\} = \{(m, m), (m, n), (n, m), (n, n)\}$ **(ii)** $B \times A = \emptyset X \{m, n\} = \emptyset$ (iii) **ONE MARK QUESTIONS UNIT - 1 : RELATIONS AND FUNCTIONS** 1) If n(AXB) = 6 and $A = \{1, 3\}$ then, n(B) is **Ans:- 3** 2) $A = \{a, b, p\}, B = \{2, 3\}, C = \{p, q, r, s\}$ then, $n[(A \cup C) \times B]$ Ans:- 12 is

www.Trb Tnpsc.Com

3) If $A = \{1, 2\}, B = \{1, 2, 3, 4\}, C = \{5, 6\} \text{ and } D = \{5, 6, 7, 8\}$	Ans:-
then state which of the following statement is true?	$(AXC) \subset (BXD)$
4) If there are 1024 relations from a set $A = \{1, 2, 3, 4, 5\}$ to a set	Ans:- 2
B, then the number of elements of B is	
5) The range of the relation $R = \{(x, x^2)/(x^2)\}$	Ans:-
x is a prime number lessthan 13} is	{4, 9, 25, 49, 121}
Slip Test – 1	
I Choose the most suitable answer from the given four alternatives and w	rite the option code with
the corresponding answer.	$(3 \times 1 = 3)$
1) $A = \{a, b, p\}, B = \{2, 3\}, C = \{p, q, r, s\}$ then, $n[(A \cup C)XB]$ is	
(A) 8 (B) 20 (C) 12 (D) 1	16
2) If there are 1024 relations from a set $A = \{1, 2, 3, 4, 5\}$ to a set B, then	n the number of elements
of B is	
(A) 3 (B) 2 (C) 4 (D) 8	3
3) If $n(AXB) = 6$ and $A = \{1, 3\}$ then, $n(B)$ is	
(A) 1 (B) 2 (C) 3 (D) 6	5
II Answer the following:-	$(2 \ge 2 = 4)$
4) Let $A = \{1,2,3\}$ and $B = \{x x \text{ is a prime number less than 10}\}$. Find $A \times$	$Band B \times A.$
5) If $A = \{m, n\}$ and $B = \emptyset$, then (i) $A \times B$ (ii) $A \times A$ and (iii) B	$\times A.$
III Answer the following:-	$(1 \times 5 = 5)$
6) $A = \{x \in \mathbb{W} \mid x < 2\}$, $B = \{x \in \mathbb{N} \mid 1 < x \le 4\}$ and $C = \{3, 5\}$ then	n, verify that $A \ge (B \cup B)$
$C) = (A \times B) \cup (A \times C).$	
III Answer the following:-	$(1 \times 8 = 8)$
7) Construct a triangle similar to a given triangle PQR with its sides equal	to $\frac{3}{5}$ of the corresponding
sides of the triangle PQR. (Scale factor $\frac{3}{5} < 1$).	
DAY - 2	
SPECIAL GRAPHS - DIRECTVARIATIO	N

1) Graph the following linear function $y = \frac{1}{2}x$. Identify the constant of variation and verify it with the graph. Also (i) find y when x = 9 (ii) find x when y = 7.5. Solution:-

VARIATION:- Direct Variation.

TABLE:-

x	2	4	6	8	10
у	1	2	3	4	5

POINTS:-

(2, 1), (4, 2), (6, 3), (8, 4), (10, 5) <u>CONSTANT OF VARIATION</u>: $k = \frac{y}{x} = \frac{1}{2}$ <u>EQUATION :-</u> $y = \frac{1}{2}x$ <u>SCALE</u>: x - axis : 1 cm = 2 unitsy - axis : 1 cm = 1 unit

4

www.Trb Tnpsc.Com

<u>RHS</u> : $A \times B = \{(2,0), (2,1), (3,0), (3,1)\}$	
$A \times C = \{(2,1), (2,2), (3,1), (3,2)\}$	
$(A \times B) \cap (A \times C) = \{(2,1), (3,1)\} \rightarrow (2)$	
$\therefore \text{ from (1) and (2) we see that, } A \times (B \cap C) = (A \times B) \cap (A \times C)$	
7) Let $A =$ The set of all natural numbers less than 8, $B =$ The set of all prime numbers	
less than 8 and C = The set of even prime number. Verify that $(A \cap B) \times C = C$	•
$(A \times C) \cap (B \times C)$	
[Sep-20]	
Solution:-	
<u>Given</u> , $A = \{1, 2, 3, 4, 5, 6, 7\}, B = \{2, 3, 5, 7\}, C = \{2\}$	
LHS:	
$A \cap B = \{1, 2, 3, 4, 5, 6, 7\} \cap \{2, 3, 5, 7\} = \{2, 3, 5, 7\}$	
$(A \cap B +) \times C = \{2, 3, 5, 7\} \times \{2\} = \{(2, 2), (3, 2), (5, 2), (7, 2)\} \rightarrow (1)$	
<u>RHS:</u>	
$A \times C = \{1, 2, 3, 4, 5, 6, 7\} \times \{2\} = \{(1, 2), (2, 2), (3, 2), (4, 2), (5, 2), (6, 2), (7, 2)\}$	
$B \times C = \{2, 3, 5, 7\} \times \{2\} = \{(2, 2), (3, 2), (5, 2), (7, 2)\}$	
$(A \times C) \cap (B \times C) = \{(2,2), (3,2), (5,2), (7,2)\} \rightarrow (2)$	
$\therefore \text{ from (1) and (2) we see that,} \qquad (A \cap B) \times C = (A \times C) \cap (B \times C)$	
8) Let $A =$ The set of all natural numbers less than 8, $B =$ The set of all prime numbers	
less than 8 and C = The set of even prime number. Verify that $A \times (B - C) =$	
$(A \times B) - (A \times C).$ [PTA-1, May-22]	
Solution:-	
<u>Given</u> , $A = \{1, 2, 3, 4, 5, 6, 7\}, B = \{2, 3, 5, 7\}, C = \{2\}$	
$B - C = \{2, 3, 5, 7\} - \{2\} = \{3, 5, 7\}$	
$A \times (B - C) = \{1, 2, 3, 4, 5, 6, /\} \times \{3, 5, /\}$ = $((1, 2), (1, 5), (1, 7), (2, 2), (2, 5), (2, 7), (2, 7), (4, 2), (4, 5), (4, 7),$	
$= \{(1,3), (1,3), (1,7), (2,3), (2,3), (2,7), (3,3), (3,3), (3,7), (4,3), (4,7), (4,7), (5,2), (5,2), (5,3), (5,3), (5,3), (5,7), (5,3), (5,7), (5,3), (5,7), (5,3), (5,7), (5,3), (5,7), (5,3), (5,7), (5,3), (5,7), (5,3), (5,7), (5,3), (5,7), (5,3), (5,7), (5,3), (5,7), (5,3), (5,7), (5,3), (5,7), (5,3), (5,3), (5,7), (5,3), (5,3), (5,7), (5,3$	
RHS •	
$A \times B = \{1, 2, 3, 4, 5, 6, 7\} \times \{2, 3, 5, 7\}$	
$= \{(1,2), (1,3), (1,5), (1,7), (2,2), (2,3), (2,5), (2,7), (3,2), (3,3), (3,5), (3,7$	
(4,2), (4,3), (4,5), (4,7), (5,2), (5,3), (5,5), (5,7), (6,2), (6,3), (6,5), (6,7),	
(7,2), (7,3), (7,5), (7,7)	
$A \times C = \{1, 2, 3, 4, 5, 6, 7\} \times \{2\} = \{(1, 2), (2, 2), (3, 2), (4, 2), (5, 2), (6, 2), (7, 2)\}$	
$(A \times B) - (A \times C) = \{(1,3), (1,5), (1,7), (2,3), (2,5), (2,7), (3,3), (3,5), (3,7), $	
(4,3), (4,5), (4,7), (5,3), (5,5), (5,7), (6,3), (6,5), (6,7),	
$(7,3), (7,5), (7,7) \} \rightarrow (2)$	
$\therefore \text{ from (1) and (2) we see that, } A \times (B - C) = (A \times B) - (A \times C) .$	
TWO MARKS QUESTIONS	
UNIT - 1 : RELATIONS AND FUNCTIONS	
6) If $A \times B = \{(3,2), (3,4), (5,2), (5,4)\}$ then find A and B [Sen-20] Aug-22 Apr-24]	

6

 $A = \{3, 5\}$ and $B = \{2, 4\}$ 7) If $B \times A = \{(-2,3), (-2,4), (0,3), (0,4), (3,3), (3,4)\}$ find A and B. [Apr-23] Solution:- $A = \{3,4\}$ and $B = \{-2,0,3\}$ 8) If A={5,6}, B={4,5,6}, C={5,6,7}, Show that $A \times A = (B \times B) \cap (C \times C)$. [Aug-22] Solution:-Given, $A = \{5,6\}, B = \{4,5,6\}, C = \{5,6,7\}$ LHS:- $A \times A = \{5,6\} \times \{5,6\} = \{(5,5), (5,6), (6,5), (6,6)\} \rightarrow (1)$ RHS:- $B \times B = \{4,5,6\} \times \{4,5,6\}$ $= \{(4,4), (4,5), (4,6), (5,4), (5,5), (5,6), (6,4), (6,5), (6,6)\}$ $C \times C = \{5,6,7\} \times \{5,6,7\}$ $= \{(5,5), (5,6), (5,7), (6,5), (6,6), (6,7), (7,5), (7,6), (7,7)\}$ $(B \times B) \cap (C \times C) = \{(5,5), (5,6), (6,5), (6,6)\} \rightarrow (2)$ Therefore from (1) and (2) we see that, $A \times A = (B \times B) \cap (C \times C)$ 9) Let $A = \{1, 2, 3, 4, \dots, 45\}$ and R be the relation defined as "is a square of" on A. Write R as a subset of A×A. Also, find the domain and range of R. [Sep-21] Solution:-Given, $A = \{1, 2, 3, 4, \dots, 45\}$ $A \times A = \{1, 2, 3, \dots, 45\} \times \{1, 2, 3, \dots, 45\}$ $= \{(1,1), (1,2), \dots, (2,1), \dots, (3,1), \dots, (45,45)\}$ R be the relation defined as "is a square of" on A. $\therefore R = \{(1,1), (2,4), (3,9), (4,16), (5,25), (6,36)\}$ $R \subseteq A \times A$ Domain of $R = \{1, 2, 3, 4, 5, 6\}$ Here, Range of $R = \{1, 4, 9, 16, 25, 36\}$ 10) Let $A = \{1, 2, 3, 4, \dots, 100\}$ and R be the relation defined as "is a cube of" on A. Write R Also, find the domain and range as a subset of $A \times A$. of R. **[PTA-4]** Solution:-**Given**, $A = \{1, 2, 3, 4, \dots, 100\}$ $A \times A = \{1, 2, 3, \dots, 100\} \times \{1, 2, 3, \dots, 100\}$ $= \{(1,1), (1,2) \dots (2,1) \dots (3,1) \dots \dots (100,100)\}$ R be the relation defined as "is a cube of" on A. $\therefore R = \{(1,1), (2,8), (3,27), (4,64)\}$ $R \subseteq A \times A$ Domain of $R = \{1, 2, 3, 4\}$ Here, Range of $R = \{1, 4, 8, 64\}$

ONE MARK QUESTIONS	
UNIT - 1 : RELATIONS AND FUNCTION	IS
6) If the ordered pairs $(a + 2, 4)$ and $(5, 2a + b)$ are equal then (a, b) is	Ans:- (3, -2)
7) Let $n(A) = m$ and $n(B) = n$ then the total number of non- empty relations that can be defined from A to B is	Ans:- $2^{mn} - 1$
 8) If {(a, 8), (6, b)} represents an identity function, then the value of a and b are respectively 	Ans:- (8, 6)
9) Let $A = \{1, 2, 3, 4\}$ and $B = \{4, 8, 9, 10.$ A function $f: A \rightarrow B$ given by $f = \{(1, 4), (2, 8), (3, 9), (4, 10)\}$ is a	Ans:- One-to-one function
10) If $f(x) = 2x^2$ and $g(x) = \frac{1}{3x}$ then fog is	Ans: - $\frac{2}{9x^2}$
I Choose the most suitable answer from the given four alternatives and we the corresponding answer. 1) If $f(x) = 2x^2$ and $g(x) = \frac{1}{3x}$ then $f \circ g$ is (A) $\frac{3}{2x^2}$ (B) $\frac{2}{3x^2}$ (C) $\frac{2}{9x^2}$ (D) 2) Let $n(A) = m$ and $n(B) = n$ then the total number of non-empty related from A to B is (A) m^n (B) n^m (C) $2^{mn} - 1$ (D) 2 3) If $\{(a, 8), (6, b)\}$ represents an identity function, then the value of (A) (8, 6) (B) (8, 8) (C) (6, 8) (D) (D) (D) (D) (D) (D) (D) (D) (D) (D	tite the option code with $(3 \ge 1 = 3)$ $\frac{1}{6x^2}$ tions that can be defined 2^{mn} a and b are respectively (6, 6) $(2 \ge 2 = 4)$ on A. Write R as a subset
 4) Let A={1,2,3,4,,43} and K be the relation defined as its a square of of A×A. Also, find the domain and range of R. 5) If A × B = {(3,2), (3,4), (5,2), (5,4)} then find A and B. III Answer the following:- 6) Let A = The set of all natural numbers less than 8, B = The set of all p and C = The set of even prime number. Verify that AX(B - C) = (A III Answer the following:- 7) Graph the following:- 	$(1 \times 5 = 5)$ rime numbers less than 8 XB) - (AXC). $(1 \times 8 = 8)$ ariation and varify it with
the graph. Also (i) find y when $x = 9$ (ii) find x when $y = 7.5$.	anation and voring it with

DAY – 3 PRACTICAL GEOMETRY - SIMILAR TRIANGLES

2) Construct a triangle similar to a given triangle PQR with its sides equal to $\frac{2}{3}$ of the corresponding sides of the triangle PQR. (Scale factor $\frac{2}{3} < 1$).

Solution:-

8

www.Trb Tnpsc.Com

III Answer the following:-

 $(1 \times 5 = 5)$ 6) Let $A = \{2, 4, 6, 10, 12\}$ and $B = \{0, 1, 2, 4, 5, 9\}$ be two sets. Let $f : A \rightarrow B$ be a function given by $f(x) = \frac{x}{2} - 1$. Represent this function (i) as a set of ordered pairs (ii) in a table form (iii) by arrow diagram (iv) in a graphical form.

III Answer the following:-

 $(1 \times 8 = 8)$

7) Construct a triangle similar to a given triangle PQR with its sides equal to $\frac{2}{3}$ of the corresponding sides of the triangle PQR. (Scale factor $\frac{2}{3} < 1$).

		DAV					
	SPECIAL GRAP	$\frac{DAI}{HS - 1}$	DIREC'	Γ VAR	ΙΑΤΙΟ	N	
1) Varshika drev	w 6 circles with different size	zes. Dra	w a graph	n for the	relations	ship bet	ween the diameter
and circumfer	rence (approximately related	d) of ea	ch circle a	as shown	in the t	able an	d use it to find the
circumference	e of a circle when its diamet	er is 6 c	m.	Г Г			
	Diameter x (cm)	1	2	3	4	5	
	Circumference y (cm)	3.1	6.2	9.3	12.4	15.5	
Solution:-							
VARIATION:- D	irect Variation.						
<u>IABLE</u> :-							
	Diameter x (cm)	1	2	3	4	5	
	Circumference y (cm)	3.1	6.2	9.3	12.4	15.5	
POINTS:-							
(1,	3.1), (2, 6.2), (3, 9.3), (4, 12	2.4), (5,	15.5)				
CONSTANT OF	VARIATION:-						
	$k = \frac{y}{1} = \frac{3.1}{1} = 3.1$						
EOUATION:-	v = kx						
<u></u>	,						
	y = (3.1) x						
SCALE:-							
	x - axis : 1 cm = 1 un	it					
	y - axis : 1 cm = 3.1 v	inits					
FROM THE GR	<u>APH,</u>						
If $x =$	6 then $v = 18.6$						
The cir	cumference of a circle when	n its dia	meter is 6	cm is 1	8.6 cm.		

(x + 2); $x > \overline{1}$ 12) If the function $f: \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = \begin{cases} x + 2 & y \\ 2 & y \\ x - 1 & y \end{cases}$, $-1 \le x \le 1$ then find the values of: (i) f(3) (ii) f(0) (iii) f(-1.5) (iv) f(2) + f(-2)Solution:f(x) = x + 2x > 1 x = 2, 3, 4, 5, ... $-1 \le x \le 1$ x = -1, 0, 1,f(x) = 2f(x) = x - 1-3 < x < -1 x = -2f(3) = 3 + 2 = 5(i) f(0) = 2**(ii)** f(-1.5) = -1.5 - 1 = -2.5(iii) (iv) f(2) + f(-2) = [2+2] + [-2-1] = 4 - 3 = 1defined follows. 13) A function $f: [-5, 9] \rightarrow \mathbb{R}$ is f(x) =as $(6x+1); -5 \le x < 2$ $5x^2 - 1$: 2 < x < 6Find: **[PTA-4]** $(3x - 4 : 6 \le x \le 9)$ (i) f(-3) + f(2) (ii) f(7) - f(1) (iii) 2f(4) + f(8) (iv) Solution: $f(x) = 6x + 1 \qquad -5 \le x < 2 \qquad x = -5, -4, -3, -2, -1, 0, 1$ $f(x) = 5x^2 - 1$ $2 \le x < 6$ x = 2, 3, 4, 5 $6 \le x \le 9$ f(x) = 3x - 4x = 6, 7, 8, 9 $f(-3) + f(2) = [6(-3) + 1] + [5(2)^2 - 1]$ (i) = [-18 + 1] + [5(4) - 1]= [-17] + [20 - 1]= -17 + 19= 2f(7) - f(1) = [3(7) - 4] - [6(1) + 1]**(ii)** = [21 - 4] - [6 + 1]= 17 - 7 = 10 $2f(4) + f(8) = 2[5(4)^2 - 1] + [3(8) - 4]$ (iii) = 2[5(16) - 1] + [24 - 4]= 2[80 - 1] + [20]= 2[79] + 20= 158 + 20= 1782[6(-2)+1]-[3(6)-4]-f(6)(iv) $[5(4)^2-1]+[6(-2)+1]$ f(4) + f(-2)

17

 Different elements in the domain A having different images 	s in the co-domain B.
Hence f is one – one function.	
* The element 7 in the co-domain does not have any pre – i	mage in the
domain.	
Hence f is not an onto function.	
Therefore f is one – one function but not an onto func	ction.
20) Let $A = \{1, 2, 3, 4\}$ and $B = \mathbb{N}$. Let $f : A \longrightarrow B$ be defined	by $f(x) = x^3$ then,
(i) find the range of f (ii) identify the type of function	1.
Solution:-	
Given, $f(x) = x^3$,	
$A = \{1, 2, 3, 4\}$ as $B = \mathbb{N} = \{1, 2, 3,\}$	
If $x = 1$ then $f(1) = (1)^3 = 1$	
If $x = 2$ then $f(2) = (2)^3 = 8$	
If $x = 2$ then $f(2) = (2)^3 = 37$	
If $x = 3$ then $f(3) = (3) = 27$	
If $x = 4$ then $f(4) = (4)^{\circ} = 64$	
(i) Range of $f = \{1, 8, 27, 64\}$	
(ii) Distinct elements of the domain \mathbb{N} have distinct images in	the codomain \mathbb{N} .
Also the range of f is the proper subset of the co –	domain.
Therefore, f is a one – one and into function.	
ONE MARK QUESTIONS	
UNIT - 2 : NUMBERS AND SEQUENCE	<u>S</u>
6) Euclid's division lemma states that for positive integers a and	
b, there exist unique integers q and r such that $a = bq + r$,	Ans:- $0 \le r < b$
where r must satisfy	
7) Using Euclid's division lemma, if the cube of any positive	Ans:- 0, 1, 8
integer is divided by 9 then the possible reminders are	
(8) If the HCF of 65 and 117 is expressible in the form of $65m - 100$	Ans:- 2
117, then the value of <i>m</i> is	
9) The sum of the exponents of the prime factors in the prime	Ans:- 3
factorization of 1/29 is	
(0) The least number that is divisible by all the numbers from 1 to $10 (1 + 1) (1 + $	Ans:- 2520
10 (both inclusive) is	
<u>SIID IESt - 4</u> Choose the most suitable answer from the given four alternatives and wri	te the option code with
the corresponding answer.	$(3 \times 1 = 3)$
) The least number that is divisible by all the numbers from 1 to 10 (bot	h inclusive) is
(A) 2025 (B) 5220 (C) 5025 (D) 2520	• • • . •
Euclid's division lemma states that for positive integers a and b, there exist such that $a = ba + r$, where r must satisfy	unique integers q and r
(A) $1 < r < b$ (B) $0 < r < b$ (C) $0 \le r < b$ (D) $0 < r < c$	$\leq b$
3) If the HCF of 65 and 117 is expressible in the form of $65m - 117$, then the	value of <i>m</i> is
(A) 4 (B) 2 (C) 1 (D) 3	
11 Answer the following: Let $Y = \{1, 2, 2, 4\}$ $Y = \{2, 4, 6, 9, 10\}$ and $P = \{(1, 2), (2, 4), (2, 6), (4, 9)\}$	$(2 \times 2 = 4)$
$\int L_{CI} \Lambda - \{1, 2, 3, 4\}, I - \{2, 4, 0, 0, 10\} \text{ all } \Lambda = \{(1, 2), (2, 4), (3, 0), (4, 0)\}$	J. SHOW HIAL A IS A

 $(1 \times 8 = 8)$

function and find its domain, co-domain and range.

- Let $A = \{1, 2, 3, 4\}$ and $B = \mathbb{N}$. Let $f : A \rightarrow B$ be defined by $f(x) = x^3$ then, (i)find the 5) range of f (ii) identify the type of function. **III Answer the following:-** $(1 \times 5 = 5)$
- (1 x 5 6) If the function $f: \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = \begin{cases} 2x+7 ; x < -2 \\ x^2-2 ; -2 \le x < 3 \end{cases}$ then find the values of: (i) f(4) (ii) f(-2) (iii) f(4) + 2f(1) (iv) $\frac{f(1)-3f(4)}{f(-3)}$ III Answer the following:-

III Answer the following:-

7) Varshika drew 6 circles with different sizes. Draw a graph for the relationship between the diameter and circumference (approximately related) of each circle as shown in the table and use it to find the circumference of a circle when its diameter is 6 cm.

Diameterx (cm)	1	2	3	4	5	
circumferencey (cm)	3.1	6.2	9.3	12.4	15.5	

= (2x + 3) o [1 - 2(3x)]= [2(1-2x)+3] o (3x)= (2 - 4x + 3)o(3x)= (2x + 3) o (1 - 6x)= 2(1-6x) + 3= (5 - 4x) + (3x)= 2 - 12x + 3= 5 - 4(3x) $= 5 - 12x \rightarrow (1)$ $= 5 - 12x \rightarrow (2)$ \therefore from (1) and (2) we see that, fo(goh) = (fog)oh. 15) f(x) = x - 1, g(x) = 3x + 1 and $h(x) = x^2$ Prove that fo(goh) = (fog)ohSolution: $fo(goh) = (x - 1) o [(3x + 1) o (x^2)]$ $(fog)oh = [(x - 1) o (3x + 1)]o(x^2)]$ $= (3x + 1 - 1) o (x^2)$ $= (x - 1) o (3x^{2} + 1)$ $= (3x) o (x^2)$ $= 3x^{2} + 1 - 1$ $=3x^2 \rightarrow (2)$ $= 3x^2 \rightarrow (1)$ \therefore from (1) and (2) we see that, fo(goh) = (fog)oh. 16) $f(x) = x^2$, g(x) = 2x and h(x) = x + 4என்ற சார்புகளுக்கு fo(goh) = (fog)oh Prove that fo(goh) = (fog)ohSolution:- $(fog)oh = [(x^2) o (2x)] o (x + 4)]$ $fo(goh) = (x^2) o [(2x) o (x + 4)]$ $= (2x)^2 o (x + 4)$ = [2(x + 4)]² $= (x^2) o 2(x + 4)$ $= (x^2) o (2x + 8)$ $= (2x + 8)]^2 \rightarrow (2)$ $=(2x+8)^2 \rightarrow (1)$ \therefore from (1) and (2) we see that, fo(goh) = (fog)oh. 17) f(x) = x - 4, $g(x) = x^2$ and h(x) = 3x - 5. Prove that fo(goh) = (fog)oh**[PTA-2]** Solution: $fo(goh) = (x - 4) o[(x^2) o(3x - 5)]$ $(fog)oh = [(x - 4) o(x^2)] o(3x - 5)]$ $= (x^2 - 4) o (3x - 5)$ $= (x - 4) o (3x - 5)^{2}$ $=(3x-5)^2-4 \rightarrow (2)$ $= (3x-5)^2 - 4 \rightarrow (1)$ \therefore from (1) and (2) we see that, fo(goh) = (fog)oh. **TWO MARKS OUESTIONS UNIT - 1 : RELATIONS AND FUNCTIONS** 21) If $R = \{(x, -2), (-5, y)\}$ represents the identity function, find the values of x and y. **[PTA-6]** Solution:-Given, $R = \{(x, -2), (-5, y)\}$ represents the identity function. x = -2 and y = -522) Represent the function $f(x) = \sqrt{2x^2 - 5x + 3}$ as a composition of two functions. Solution:-Let $f_1(x) = \sqrt{x}$ and $f_2(x) = 2x^2 - 5x + 3$ $f(x) = \sqrt{f_2(x)} = f_1[f_2(x)] = f_1f_2(x)$

20

ONE MARK QUESTIONS	
UNIT - 1 : RELATIONS AND FUNCTIONS	
$21)7^{4k} \equiv \underline{\qquad} (mod100) $	ns:- 1
22) Given $F_1 = 1$, $F_2 = 3$ and $F_n = F_{n-1} + F_{n-2}$ then F_5 is Ar	ns:- 11
23) The first term of an arithmetic progression is unity and the common difference is 4 which of the following will be a term of Ar	ns:- 7881
this A.P?	
24) If 6 times of 6^{th} term of an A.P. is equal to 7 times the 7^{th} , then An the 13^{th} term of the A P is	ns:- 0
25 An A P consists of 31 terms. If its 16^{th} term is m, then the sum Ar	ns:- 31 m
of all the terms of this A.P. is	IS 51 III
Slip Test - 5	
I Choose the most suitable answer from the given four alternatives and write t the corresponding answer.	the option code with $(3 \ge 1 = 3)$
1) Given $F_1 = 1$, $F_2 = 3$ and $F_n = F_{n-1} + F_{n-2}$ then F_5 is	
(A) 3 (B) 5 (C) 8 (D) 11 (2) An A B consists of 21 terms. If its 16^{th} term is m, then the sum of all the	torms of this A D is
2) All A.F. consists of 51 terms. If its 10 term is in, then the sum of all the (A) 16 m (B) 62 m (C) 31 m (D) $\frac{31}{2}$ m	terms of this A.F. is
(A) 10 III (B) 02 III (C) 31 III (D) $\frac{1}{2}$ (C) 31 III (D) $\frac{1}{2}$	
$ \begin{array}{c} \text{(b)} & \text{(b)} \\ \text{(c)} & \text{(c)} \\ (c$	
II Answer the following:-	$(2 \ge 2 = 4)$
4) If $R = \{(x, -2), (-5, y)\}$ represents the identity function, find the values of xar	nd y.
5) Represent the function $f(x) = \sqrt{2x^2 - 5x + 3}$ as a composition of two function	18.
III Answer the following:-	(1 x 5 = 5)
6) $f(x) = x - 1$, $g(x) = 3x + 1$ and $h(x) = x^2$ Prove that $fo(goh) = (fog)^2$	oh.
III Answer the following:-	$(1 \times 8 = 8)$
/) Construct a triangle similar to a given triangle PQR with its sides equal to $\frac{1}{5}$	of the corresponding
sides of the triangle PQR. (Scale factor $\frac{4}{5} < 1$).	

DAY – 6 WEEKLY TEST - 1

DAY – 7 PRACTICAL GEOMETRY - SIMILAR TRIANGLES

4) Construct a triangle similar to a given triangle PQR with its sides equal to ⁷/₄ of the corresponding sides of the triangle PQR. (Scale factor ⁷/₄ > 1)
 Solution:-

22

UNIT - 2 : NUMBERS AND SEQUENCES 20) Find the HCF of : 396, 504, 636 [Sep-21] Solution:-First we have to find HCF of 396 and 504 **Here,** a = 504 and b = 396 $504 = 396 \times 1 + 108$; Remainder = $108 \neq 0$ $396 = 108 \times 3 + 72$; Remainder = $72 \neq 0$ $108 = 72 \times 1 + 36$; Remainder = $36 \neq 0$ $72 = 36 \times 2 + 0$ Here. Remainder = 0Therefore, the HCF of 396 and 504 is 36 Then we have to find the HCF of 636 and 36 Here. a = 636 and b = 36 $636 = 36 \times 17 + 24$; Remainder $= 24 \neq 0$ $36 = 24 \times 1 + 12$; Remainder $= 12 \neq 0$ $24 = 12 \times 2 + 0$ Here, Remainder = 0Therefore, the HCF of 636 and 36 is 12 Thus the HCF of 396, 504 and 636 is 12. **TWO MARKS QUESTIONS UNIT - 1 : RELATIONS AND FUNCTIONS** 23) If f(x) = 2x + 1, $g(x) = x^2 - 2$ then find f o g and g o f. Solution: $gof = (x^2 - 2) o (2x + 1)$ $fog = (2x + 1) o (x^2 - 2)$ $= 2(x^2 - 2) + 1$ $=(2x+1)^2-2$ $=2x^{2}-4+1$ $= (2x)^{2} + 2x 2x x 1 + (1)^{2} - 2$ $= 2x^2 - 3 \rightarrow (1)$ $=4x^{2}+4x+1-2$ $= 4x^2 + 4x - 1 \quad \rightarrow (2)$ \cdot from (1) and (2) we see that, $fog \neq gof$ 24) If f(x) = 3 + x, g(x) = x - 4 then find $f \circ g$ and $g \circ f$. [GMQ, PTA-1] Solution:fog = (3 + x) o (x - 4) gof = (x - 4) o (3 + x)= (3 + x) - 4= 3 + (x - 4)= 3 + x - 4= 3 + x - 4 $= x - 1 \rightarrow (1)$ $= x - 1 \rightarrow (2)$ \therefore from (1) and (2) we see that, fog = gof25) If f(x) = x - 6, $g(x) = x^2$ then find f o g and g o f. Check whether $f \circ g = g \circ f$. [Jun-23] Solution: $fog = (x-6) o (x^2)$ $gof = (x^2) o (x-6)$

$= x^2 - 6 \rightarrow (1) = (x - 6)^2$	
$=x^2 - 2(x)(6) + (6)$)2
$= x^2 - 12x + 36$	♦ (2)
\therefore from (1) and (2) we see that, $f \circ g \neq g$	of
26) If $f(x) = \frac{2}{r}$, $g(x) = 2x^2 - 1$ then find $f \circ g$ and $g \circ f$. Check w	whether $fog = gof$.
Solution:-	
$fog = \left(\frac{2}{x}\right) o(2x^2 - 1)$ $gof = (2x^2 - 1) o($	$\left(\frac{2}{x}\right)$
$=\frac{2}{2x^2-1} \rightarrow (1)$ $=2\left(\frac{2}{-1}\right)^2 - 1$	
$=\frac{2 \times 4}{m^2}-1$	
$=\frac{8}{3}-1 \rightarrow (2)$	
\therefore from (1) and (2) we see that, $f \circ g \neq g$	of
27) If $f(x) = \frac{x+6}{3}$, $g(x) = 3 - x$ then find $f \circ g$ and $g \circ f$. Check w	whether $fog = gof$.
Solution:-	
$fog = \left(\frac{x+6}{3}\right) o (3 \qquad gof = (3-x) o \left(\frac{x+3}{3}\right)$	$\left(\frac{-6}{-}\right)$
(-x) = -3 - (x+6)	,
$=\frac{(3-x)+6}{3}$	
$3 - x + 6 = \frac{9 - (x + 0)}{3}$	
$=\frac{3}{3}$ 9-x-6)	
$=\frac{9-x}{3} \rightarrow (1)$ $=\frac{3}{3}$	
$=\frac{3-x}{3} \rightarrow (2)$	
$\therefore \text{ from (1) and (2) we see that, } fog \neq ge$	of
UNIT - 1 · PELATIONS AND FUNCTION	NS
26) In an A P the first term is 1 and the common difference is 4	
How many terms of the A.P. must be taken for their sum to be	Ans:- 8
equal to 120?	
27) If $A = 2^{65}$ and $B = 2^{64} + 2^{63} + 2^{62} + \dots + 2^{0}$ which of the	Ans:- A is larger
tollowing is true?	
28) The next term of the sequence $\frac{1}{16}, \frac{1}{8}, \frac{1}{12}, \frac{1}{18}, \dots$ 18	Ans:- $\frac{1}{27}$
(29) If the sequence $t_1, t_2, t_3,$ are in A.P. then the sequence	Ans:- an Arithmetic
<i>v</i> ₆ , <i>v</i> ₁₂ , <i>v</i> ₁₈ , 13	Progression
30) The value of $(1^3 + 2^3 + 3^3 + + 15^3) - (1 + 2 + 3 + + 15)$	A
18	Ans:- 14280

	Slip Test - 6
Ι	Choose the most suitable answer from the given four alternatives and write the option code with
th	e corresponding answer. (3 x 1 = 3)
1)	If $A = 2^{65}$ and $B = 2^{64} + 2^{63} + 2^{62} + + 2^{0}$ which of the following is true?
	(A) B is 2^{64} more than A (B) A and B are equal
	(C) B is larger than A by 1 (D) A is larger than B by 1
2)	If the sequence t_1, t_2, t_3, \dots are in A.P. then the sequence $t_6, t_{12}, t_{18}, \dots$ is
	(A) a Geometric Progression (B) an Arithmetic Progression
	(C) neither an Arithmetic Progression nor a Geometric Progression (D) a constant sequence
3)	The next term of the sequence $\frac{1}{16}, \frac{1}{8}, \frac{1}{12}, \frac{1}{18}, \dots$ is
	(A) $\frac{1}{24}$ (B) $\frac{1}{27}$ (C) $\frac{2}{2}$ (D) $\frac{1}{84}$
Π	Answer the following:- $(2 \times 2 = 4)$
4)	If $f(x) = \frac{x+6}{3}$, $g(x) = 3 - x$ then find $f \circ g$ and $g \circ f$. Check whether $f \circ g = g \circ f$.
5)	If $f(x) = 3 + x$, $g(x) = x - 4$ then find $f \circ g$ and $g \circ f$.
Π	I Answer the following:- $(1 \times 5 = 5)$
6)	Find the HCF of : 396, 504, 636
IV	Answer the following:- $(1 \times 8 = 8)$
7)	Construct a triangle similar to a given triangle PQR with its sides equal to $\frac{7}{4}$ of the corresponding
	sides of the triangle PQR. (Scale factor $\frac{7}{4} > 1$).

DA	$\mathbf{Y} - 8$				
SPECIAL GRAPHS - DIRECT VARIATION					
2) A two wheeler parking zone near bus stand ch	arges as b	elow.	Г Г	1	
Time (in hours)(x)	4	8	12	24	
Amount (Rs.) (y)	60	120	180	360	

Check if the amount charged are in direct variation or in inverse variation to the parking time. Graph the data. Also (i) find the amount to be paid when parking time is 6 *hr*; (ii) find the parking duration when the amount paid is $\gtrless 150$.

Solution:-

VARIATION:- Direct Variation.

GIVEN:-

Time (in hours)(x)	4	8	12	24
Amount (Rs.) (y)	60	120	180	360

POINTS:-

(4,60), (8,120), (12,180), (24,360)

CONSTANT OF VARIATION:-

$$k = \frac{y}{x} = \frac{60}{4} = 15$$

<u>EQUATION</u>: y = kx

$$y = 15 x$$

SCALE:-

x - axis : 1 cm = 2 units

y - axis : 1 cm = 30 units

FROM THE GRAPH,

(i) If x = 6 then y = 90. The amount to be paid when parking time is 6 hrs is Rs.90

(ii) If y = 150 then x = 10. The parking duration when the amount paid is ₹150 is 10 hours.

d = +7 $\Rightarrow a = 9$ and d = +7(i) If a = 9 and d = 7, the required three terms are 9-7, 9, 9+72, 9, 16 If a = 9 and d = -7, the required three terms are **(ii)** 9-7, 9, 9+(-7)9+7, 9, 9-716, 9, 2 22) Find the sum to *n* terms of the series: $5 + 55 + 555 + \cdots$ [PTA-4, Apr-23] Solution:- $S_n = 5 + 55 + 555 + \dots n$ terms $= 5(1 + 11 + 111 + \dots n \text{ terms})$ $= 5 \ge \frac{9}{9} (1 + 11 + 111 + \dots n \text{ terms})$ $=\frac{5}{9}(9+99+999+\cdots n \text{ terms})$ $= \frac{5}{2} [(10 - 1) + (100 - 1) + (1000 - 1) + \dots n \text{ terms}]$ $= \frac{5}{9} [(10 + 100 + 1000 + \dots n \text{ terms}) - (1 + 1 + 1 + \dots n \text{ terms})]$ <u>WKT</u>, $S_n = \frac{a(r^{n}-1)}{r-1}$ Here, a = 10, r = 10 $S_n = \frac{5}{9} \left[\frac{10(10^n - 1)}{10 - 1} - n \right]$ $=\frac{5}{9}\left[\frac{10(10^n-1)}{9}-n\right]$ $=\frac{50(10^n-1)}{81}-\frac{5n}{9}$ 23) Find the sum to *n* terms of the series: $3 + 33 + 333 + \cdots$. [Jun-23] Solution:- $S_n = 3 + 33 + 333 + \dots n$ terms $= 3(1 + 11 + 111 + \dots n \text{ terms})$ $= 3 \ge \frac{9}{9} (1 + 11 + 111 + \dots n \text{ terms})$ $=\frac{1}{2}(9+99+999+\cdots n \text{ terms})$ $= \frac{1}{3} [(10 - 1) + (100 - 1) + (1000 - 1) + \dots n \text{ terms}]$ $= \frac{1}{3} [(10 + 100 + 1000 + \dots n \text{ terms}) - (1 + 1 + 1 + \dots n \text{ terms})]$ <u>WKT</u>, $S_n = \frac{a(r^{n}-1)}{r-1}$ Here, a = 10, r = 1027

$$S_{n} = \frac{5}{9} \left[\frac{10(10^{n} - 1)}{10 - 1} - n \right]$$

$$= \frac{1}{3} \left[\frac{10(10^{n} - 1)}{9} - n \right]$$

$$= \frac{10(10^{n} - 1)}{27} - \frac{n}{3}$$
TWO MARKS QUESTIONS

$$\frac{UNT + 1 : RELATIONS AND FUNCTIONS}{28) If f(x) = 4x^{2} - 1 , g(x) = 1 + x \text{ then find } f o g \text{ and } g o f. \text{ Check whether } fog = gof.$$
Solution:
$$fog = (4x^{2} - 1) o (1 + x)$$

$$= 4(1 + x)^{2} - 1$$

$$= 4(1 + 2x + x^{2}) - 1$$

$$= 4(1 + 2x + x^{2}) - 1$$

$$= 4 + 8x + 4x^{2} - 1$$

$$= 4x^{2} + 8x + 3 \rightarrow (1)$$

$$\therefore \text{ from (1) and (2) we see that, $fog \neq gof$

$$29) If f(x) = 2x - 1 \text{ and } g(x) = \frac{x+1}{2}, \text{ show that } fog = gof = x.$$
Solution:
$$fog$$

$$= (2x - 1) o \left(\frac{x + 1}{2}\right) - 1$$

$$= x + 1 - 1$$

$$= x \rightarrow (1)$$

$$= 2\left(\frac{x + 1}{2}\right) - 1$$

$$= x + 1 - 1$$

$$= x \rightarrow (1)$$

$$= 2\left(\frac{x + 1}{2}\right) - 1$$

$$= \frac{2x}{2}$$

$$= x \rightarrow (2)$$

$$\therefore \text{ from (1) and (2) we see that, fog = gof = x.$$
Solution:
$$fog(x) = (2x - 1) o (2x - 1)$$

$$= \frac{2x - 1 + 1}{2}$$

$$= \frac{2x}{2}$$

$$= x \rightarrow (2)$$

$$\therefore \text{ from (1) and (2) we see that, fog = gof = x.$$
Solution:
$$fof(k) = (2k - 1) o (2k - 1)$$

$$= 2(2k - 1) - 1$$

$$= 4k - 2 - 1$$$$

28

41 0					
=4k-3					
<u>Given</u> , $fof(k) = 5$					
4k - 3 = 5					
4k = 5 + 3					
4k = 8					
8					
$k = \frac{1}{4}$					
k = 2					
ONE MARK	QUES'	ΓΙΟΝΣ			
UNIT - 3 :	ALGL	EBRA			
31) Δ system of three linear equations in three	variahl	esis		Ans	
inconsistent if their planes	variaui	05 15		do no	ot intersect
22) The set of the set	(7	7_ 7		<i>h</i> intersect
32) The solution of the system $x + y - 3x =$	-6, -	-7y + 3	z = 7,	Ans:	-1
3z = 9 1s				<i>x</i> =	1, y = 2, z = 3
[33) If $(x - 6)$ is the HCF of $x^2 - 2x - 24$ a	nd x^2	-kx -	6 then		
the value of k is				Ans:	- 5
$(34)\frac{3y-3}{y} \div \frac{7y-7}{3y^2}$ is			Ans:	$-\frac{9y}{7}$	
$\frac{1}{25} \frac{1}{x^2 + \frac{1}{x^2}}$ is not equal to					$(1)^2$
$\frac{55}{y} + \frac{1}{y^2}$ is not equal to				Ans:	$-\left(y+\frac{1}{y}\right)$
<u>Slip T</u>	<u>Cest - 7</u>				
I Choose the most suitable answer from the given	four alt	ernatives	and wr	ite the o	ption code with
the corresponding answer.					$(3 \times 1 = 3)$
1) $\frac{3y-3}{y} \div \frac{7y-7}{2y^2}$ is					
$y 3y (x) 9y^3 (x) 21y$	$^{2}-42y+21$		$7(y^2-2y)$	v+1)	
(A) $\frac{7}{7}$ (B) $\frac{1}{(21y-21)}$ (C) -	3y ³	(D	$- y^2$		
2) $y^2 + \frac{1}{y^2}$ is not equal to					
(A) $\frac{y^4+1}{y^2}$ (B) $\left(y+\frac{1}{y}\right)^2$ (C) $\left(y\right)$	$-\frac{1}{v}\Big)^{2} +$	2 (D)	$\left(y+\frac{1}{y}\right)$	$)^{2} - 2$	
3) The solution of the system $x + y - 3x = -6$.	-7v + 2	7z = 7.3	3z = 9	is	
(A) $x = 1, y = 2, z = 3$ (B) $x =$	-1, y =	2, z = 3			
(C) $x = -1, y = -2, z = 3$ (D) $x =$	1, y = 2	2, z = -3	3		
II Answer the following:-	-				$(2 \times 2 = 4)$
4) If $f(x) = 2x - 1$ and $g(x) = \frac{x+1}{2}$, show that	t fog =	gof = x	κ.		
5) Find k if $fof(k) = 5$ where $f(k) = 2k - 1$					
III Answer the following:-					$(1 \times 5 = 5)$
6) Find the sum to <i>n</i> terms of the series: $3 + 33 + 3$	333 + ··	• •			
IV Answer the following:-					$(1 \times 8 = 8)$
7) A two wheeler parking zone near bus stand charge	es as bel	ow.	Г	1	
Time (in hours)(x)	4	8	12	24	
Amount (Rs.) (y)	60	120	180	360	
Check if the amount charged are in direct variatio	n or in ii	nverse va	riation to	the par	king time. Graph
the data. Also (i) find the amount to be paid when	parking	time is 6	<i>hr;</i> (ii) f	ind the	parking duration
when the amount paid is ₹150.	U			-	

30

$$= 100 \times 49 - 15 \times 19$$

$$= 4900 - 285$$

$$= 4615 \quad \text{Sq.cm}$$
26) Find the sum of : $10^3 + 11^3 + 12^3 + \dots + 25^3$ [PTA-5]
Solution::
WKT. $1^3 + 2^3 + 3^3 + \dots + n^3 = \sum n^3 = \left(\frac{n(n+1)}{2}\right)^2$
 $10^3 + 11^3 + 12^3 + \dots + 20^3 = (1^3 + 2^3 + 3^3 + \dots + 20^3) - (1^3 + 2^3 + 3^3 + \dots + 9^3)$

$$= \left(\frac{20 \times 21}{2}\right)^2 - \left(\frac{9 \times 10}{2}\right)^2$$

$$= (210)^2 - (45)^2$$

$$= 44100 - 2025$$

$$= 42075$$
27) Find the sum of : $9^3 + 10^3 + \dots + 21^3$ [Apr-24]
Solution::
WKT. $1^3 + 2^3 + 3^3 + \dots + n^3 = \sum n^3 = \left(\frac{n(n+1)}{2}\right)^2$
 $9^3 + 10^3 + 11^3 + \dots + 21^3 = (1^3 + 2^3 + 3^3 + \dots + 21^3) - (1^3 + 2^3 + 3^3 + \dots + 8^3)$

$$= \left(\frac{21 \times 22}{2}\right)^2 - \left(\frac{8 \times 9}{2}\right)^2$$

$$= (231)^2 - (36)^2$$

$$= 532665$$
TWO MARKS QUESTIONS
UNIT - 2 : NUMBERS AND SEQUENCES
31) 'a' and 'b' are two positive integers such that $a^{b} \times b^a = 800$. Find a and b.
Solution::

$$\frac{a^{b} \times b^a = 2^5 \times 5^2}{a^{b} \times b^a = 2^5 \times 5^2}$$

$$= 2, b = 5 \text{ or } a = 5, b = 2$$

$$32) \text{ If } 13824 = 2^a \times 3^b \text{ then find } a \text{ and } b.$$
 [May-22]

31

www.Trb Tnpsc.Com

Solution:-	2 13824
$\underbrace{\text{Given}}_{a}, \qquad 2^a x 3^b = 13824$ $\implies 2^a x 3^b = 2^9 x 3^3$	2 6912 2 3456 2 1728 2 864
a = 9 and $b = 3$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
33) If $p_1^{x_1} \times p_2^{x_2} \times p_3^{x_3} \times p_4^{x_4} = 113400$ ascending order and x_1, x_2, x_3, x_4 are integ and x_1, x_2, x_3, x_4 .	where, p_1, p_2, p_3, p_4 are primes in gers, find the value of p_1, p_2, p_3, p_4 [Apr-23]
Solution:-	
$\frac{\text{Given}}{p_1^{x_1}} \times p_2^{x_2} \times p_3^{x_3} \times p_4^{x_4} = 113400$	2 <u>113400</u> 2 <u>56700</u> 2 <u>28350</u> 3 <u>14175</u>
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{vmatrix} p_1 &= 2 \\ p_1 &= 2 \\ p_1 &= 2 \\ x_1 &= 3 \\ x_2 &= 4 \\ x_3 &= 2 \end{vmatrix} \begin{vmatrix} p_2 &= 3 \\ p_3 &= 5 \\ p_3 &= 5 \\ x_4 &= 2 \\ x_5 &= 2 \\ x_5 &= 2 \\ x_5 &= 2 \\ x_5 &= 2 \\ x_6 &= 2 \\ x_6 &= 2 \\ x_6 &= 2 \\ x_7 &$	$ \begin{array}{c} 5 & 175 \\ 5 & 35 \\ 7 & 7 \\ 1 \end{array} $
$p_1 = 2$, $p_2 = 3$, $p_3 = 5$, $p_4 = 7$ and $x_1 = 34$) If $p^2 \times q^1 \times r^4 \times s^3 = 3,15,000$, then find	3, $x_2 = 4$, $x_3 = 2$, $x_4 = 1$ and the values of <i>p</i> , <i>q</i> , <i>r</i> and <i>s</i> . [Apr-23]
Solution :- <u>Given</u> ,	2 315000
$p^2 \times q^1 \times r^4 \times s^3 = 3,15,000$	2 157500 2 78750 5 20275
$p^2 \times q^1 \times r^4 \times s^3 = 3^2 \times 7^1 \times 5^4 \times 2^3$	5 <u>39375</u> 5 <u>7875</u> 5 <u>1575</u>
: $p = 3$, $q = 7$, $r = 5$, $s = 2$	$5 \frac{1373}{315}$ 3 63
	$\begin{array}{c c}3 & 21\\7 & 7\end{array}$

32

ONE MARK QUESTIONS	
UNIT - 3 : ALGEBRA	
$36)\frac{x}{x^2-25} - \frac{8}{x^2+6x+5}$ gives	Ans:- $\frac{x^2 - 7x + 40}{(x^2 - 25)(x + 1)}$
37) The square root of $\frac{256 x^8 y^4 z^{10}}{25 x^6 y^6 z^6}$ is equal to	Ans:- $\frac{16}{5} \left \frac{xz^2}{y} \right $
38) Which of the following should be added to make $x^4 + 64$ a	
perfect square?	Ans:- $16x^2$
39) The solution of $(2x - 1)^2 = 9$ is equal to	Ans:1, 2
40) The values of a and b if $4x^4 - 24x^3 + 76x^2 + ax + b$ is a	
perfect square	Ans:120, 100
Slip Test - 8	
I Choose the most suitable answer from the given four alternatives and w	rite the option code with
the corresponding answer.	$(3 \times 1 = 3)$
1) The solution of $(2x - 1)^2 = 9$ is equal to	
(A) -1 (B) 2 (C) -1,2 (D)	None of these
2) The values of a and b if $4x^4 - 24x^3 + 76x^2 + ax + b$ is a perfect square	
(A) $100, 120$ (B) $10, 12$ (C) $-120, 100$ (D)	12,10
(3) $\frac{x}{x^2-25} - \frac{3}{x^2+6x+5}$ gives	
(A) $\frac{x^2 - 7x + 40}{x^2 - 7x + 40}$ (B) $\frac{x^2 + 7x + 40}{x^2 - 7x + 40}$ (D)	x ² +10
$(x')'(x-5)(x+5) (x-5)(x+1) (x')'(x^2-25)(x+1) (x')'(x') (x') (x') (x') (x') (x') (x'$	$(x^2-25)(x+1)$
If Answer the following:-	$(2 \times 2 = 4)$
4) If $13824 = 2^{a} \times 3^{b}$ then find <i>a</i> and <i>b</i> .	1 -
5) If $p^- \times q^- \times r^+ \times s^\circ = 3,15,000$, then find the values of p, q, r :	and S. $(1 \times 5 - 5)$
(a) Find the sum of $: 15^2 \pm 16^2 \pm 17^2 \pm \pm 28^2$	$(1 \mathbf{X} 5 = 5)$
IV Answer the following:-	$(1 \times 8 = 8)$
7) Construct a triangle similar to a given triangle ABC with its sides equal	to $\frac{6}{-}$ of the corresponding
6	$\frac{5}{5}$
sides of the triangle ABC. (Scale factor $\frac{3}{5} > 1$).	

DAY – 10 SPECIAL GRAPHS - DIRECT VARIATION

3) A bus is travelling at a uniform speed of 50 km/hr. Draw the distance-time graph and hence find

- the constant of variation. (i)
- how far will it travel in 90 minutes? (ii)

the time required to cover a distance of 300 km from the graph. (iii)

Solution:-

VARIATION:- Direct Variation.

TABLE:-

	Time (in minutes)(x)	60	120	180	240	300
	Distance $(kms)(y)$	50	100	150	200	250
POINTS:-						
	(60, 50), (120, 100), (180, 150), (240, 200), (300, 250)					
CONSTANT OF VARIATION:-						
$y = \frac{y}{50} = 5$						
$\kappa = \frac{1}{x} = \frac{1}{60} = \frac{1}{6}$						

34
www.Trb Tnpsc.Com

	16 0 1		
	16 -2 1	16 -2 1	
		16 -2 1	
		0	
	$\frac{3}{2}\sqrt{64x^4 - 16x}$	$\frac{x^3 + 17x^2 - 2x + 1}{2} = \frac{ 8x^2 - x + 1 }{2}$	
29) Find the square	root of : $x^4 - 12$	$2x^3 + 42x^2 - 36x + 9$ [Aug-22]	
Solution:-			
<u>Given</u> ,	$x^4 - 12x^3 + $	$42x^2 - 36x + 9$	
		1 -6 3	
	1	1 -12 42 -36 9	
		1	
		(-)	
	2 -6	5 -12 42	
		-12 36	
		(+) (-)	
	2 -12 3	6 -36 9	
		6 -36 9	
		(-) $(+)$ $(-)$	
		0	
0	$\sqrt{x^4 - 12x^3} +$	$+42x^2 - 36x + 9 = x^2 - 6x + 3 $	
30) Find the square	root of : $4x^4 -$	$-28x^3 + 37x^2 + 42x + 9$	
Solution:-			
<u>Given</u> ,	$4x^4 - 2$	$28x^3 + 37x^2 + 42x + 9$	
		2 7 3	
	2	2 - 7 - 5	
		4 -28 37 42 9	
		4	
	4 -/	7 -28 -37 -28 -40	
		-28 49	
	1 14 2		
	4 -14 -3	$-12 \ 42 \ 9 \ 12 \ 42 \ 0$	
		-12 42 9	
000	$\sqrt{4x^4 - 28x^3} +$	$\frac{+37x^2 + 42x + 9}{2x^2 - 7x - 3}$	
		30	

Kindly Send Me Your Key Answer to Our email id - Padasalai.net@gmail.com

www.Trb Tnpsc.Com

-32	
$k = \frac{32}{-8}$	
k = 4	
39) If $x + 6$, $x + 12$ and $x + 15$ are in G.P, then find x .	[PTA-2, Apr-23]
Solution:-	
<u>Given</u> , $a = x + 6$, $b = x + 15$, $c = x + 15$	
<u>WKT</u> , <i>a</i> , <i>b</i> , <i>c</i> are in A.P. if and only if $b^2 = ac$.	
$(x+12)^2 = (x+6) (x+15)$	
$x^2 + 2(x)(12) + 12^2 = x^2 + 15x + 6x + 90$	
$x^2 + 24x + 144 = x^2 + 21x + 90$	
$x^2 + 24x - x^2 - 21x = 90 - 144$	
3x = -54	
$x = \frac{-54}{-54}$	
3 - 19	
x = -10 40) Find the 8 th term of the C P = 0.2.1	[Jun 23]
40)1 ma une o term or une O.r. 7, 3, 1,	[JUII-23]
Solution:-	
<u>Given</u> , $a = 9$, $r = \frac{3}{9} = \frac{1}{3}$, $n = 8$	
WKT, $t_n = ar^{n-1}$	
\therefore 8th term = t_8	
$\therefore \text{ 8th term } = t_8 \\ = ar^7$	
$\therefore \text{ 8th term } = t_8 \\ = ar^7 \\ (o) (1)^7$	
$\therefore \text{ 8th term } = t_8$ = ar^7 = $(9)\left(\frac{1}{3}\right)^7$	
$\therefore \text{ 8th term } = t_8 \\ = ar^7 \\ = (9)\left(\frac{1}{3}\right)^7 \\ = 9$	
$\therefore \text{ 8th term } = t_8$ = ar^7 = $(9)\left(\frac{1}{3}\right)^7$ = $\frac{9}{3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3}$	
$\therefore \text{ 8th term } = t_8$ = ar^7 = $(9)\left(\frac{1}{3}\right)^7$ = $\frac{9}{3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3}$ = $\frac{1}{2 \times 3 \times 3 \times 3 \times 3 \times 3}$	
$\therefore \text{ 8th term } = t_8$ = ar^7 = $(9)\left(\frac{1}{3}\right)^7$ = $\frac{9}{3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3}$ = $\frac{1}{3 \times 3 \times 3 \times 3 \times 3 \times 3}$	
$\therefore \text{ 8th term } = t_8$ = ar^7 = $(9)\left(\frac{1}{3}\right)^7$ = $\frac{9}{3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3}$ = $\frac{1}{3 \times 3 \times 3 \times 3 \times 3 \times 3}$ = $\frac{1}{243}$	
$\therefore \text{ 8th term } = t_8$ = ar^7 = $(9)\left(\frac{1}{3}\right)^7$ = $\frac{9}{3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3}$ = $\frac{1}{3 \times 3 \times 3 \times 3 \times 3 \times 3}$ = $\frac{1}{243}$ ONE MARK QUESTIONS	
$\therefore \text{ 8th term } = t_8$ $= ar^7$ $= (9) \left(\frac{1}{3}\right)^7$ $= \frac{9}{3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3}$ $= \frac{1}{3 \times 3 \times 3 \times 3 \times 3 \times 3}$ $= \frac{1}{243}$ ONE MARK QUESTIONS UNIT - 3 : ALGEBRA	
$\therefore \text{ 8th term } = t_8$ $= ar^7$ $= (9) \left(\frac{1}{3}\right)^7$ $= \frac{9}{3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3}$ $= \frac{1}{3 \times 3 \times 3 \times 3 \times 3 \times 3}$ $= \frac{1}{243}$ ONE MARK QUESTIONS $\underbrace{\text{UNIT - 3 : ALGEBRA}}$ 41) If the roots of the equation $a^2x^2 + p^2x + r^2 = 0$ are the	
$\therefore \text{ 8th term } = t_8$ $= ar^7$ $= (9) \left(\frac{1}{3}\right)^7$ $= \frac{9}{3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3}$ $= \frac{1}{3 \times 3 \times 3 \times 3 \times 3 \times 3}$ $= \frac{1}{243}$ ONE MARK QUESTIONS $\frac{\text{UNIT - 3 : ALGEBRA}}{41) \text{ If the roots of the equation } q^2x^2 + p^2x + r^2 = 0 \text{ are the squares of the roots of the equation } qx^2 + px + r = 0, \text{ then}$	Ans:- G.P
$\therefore \text{ 8th term } = t_8$ $= ar^7$ $= (9) \left(\frac{1}{3}\right)^7$ $= \frac{9}{3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3}$ $= \frac{1}{3 \times 3 \times 3 \times 3 \times 3}$ $= \frac{1}{243}$ ONE MARK QUESTIONS $\frac{\text{UNIT - 3 : ALGEBRA}}{41) \text{ If the roots of the equation } q^2x^2 + p^2x + r^2 = 0 \text{ are the squares of the roots of the equation } qx^2 + px + r = 0, \text{ then } q, p, r \text{ are in}$	Ans:- G.P
$\therefore \text{ 8th term } = t_8$ $= ar^7$ $= (9) \left(\frac{1}{3}\right)^7$ $= \frac{9}{3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3}$ $= \frac{1}{3 \times 3 \times 3 \times 3 \times 3}$ $= \frac{1}{243}$ ONE MARK QUESTIONS $\frac{\text{UNIT - 3 : ALGEBRA}}{41) \text{ If the roots of the equation } q^2x^2 + p^2x + r^2 = 0 \text{ are the squares of the roots of the equation } qx^2 + px + r = 0, \text{ then } q, p, r \text{ are in}$ $42) \text{ Graph of a linear polynomial is a}$	Ans:- G.P Ans:- Straight line
$\therefore \text{ 8th term } = t_8$ $= ar^7$ $= (9) \left(\frac{1}{3}\right)^7$ $= \frac{9}{3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3}$ $= \frac{1}{3 \times 3 \times 3 \times 3 \times 3 \times 3}$ $= \frac{1}{243}$ ONE MARK QUESTIONS $\frac{\text{UNIT - 3 : ALGEBRA}}{41) \text{ If the roots of the equation } q^2x^2 + p^2x + r^2 = 0 \text{ are the squares of the roots of the equation } qx^2 + px + r = 0, \text{ then } q, p, r \text{ are in}$ $42) \text{ Graph of a linear polynomial is a}$ $43) \text{ The number of points of intersection of the quadratic polynomial}$	Ans:- G.P Ans:- Straight line
$\therefore \text{ 8th term } = t_8$ $= ar^7$ $= (9) \left(\frac{1}{3}\right)^7$ $= \frac{9}{3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3}$ $= \frac{1}{3 \times 3 \times 3 \times 3 \times 3 \times 3}$ $= \frac{1}{243}$ ONE MARK QUESTIONS $\frac{\text{UNIT - 3 : ALGEBRA}}{41) \text{ If the roots of the equation } q^2x^2 + p^2x + r^2 = 0 \text{ are the squares of the roots of the equation } qx^2 + px + r = 0, \text{ then } q, p, r \text{ are in}$ $42) \text{ Graph of a linear polynomial is a}$ $43) \text{ The number of points of intersection of the quadratic polynomial } x^2 + 4x + 4 \text{ with the X-axis is}$	Ans:- G.P Ans:- Straight line Ans:- 1
$\therefore \text{ 8th term } = t_8$ $= ar^7$ $= (9) \left(\frac{1}{3}\right)^7$ $= \frac{9}{3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3}$ $= \frac{1}{3 \times 3 \times 3 \times 3 \times 3 \times 3}$ $= \frac{1}{243}$ $= \frac{1}{243}$ $= 0$ 0 $= 1$	Ans:- G.P Ans:- Straight line Ans:- 1
$\therefore 8 \text{th term} = t_8$ $= ar^7$ $= (9) \left(\frac{1}{3}\right)^7$ $= \frac{9}{3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3}$ $= \frac{1}{3 \times 3 \times 3 \times 3 \times 3 \times 3}$ $= \frac{1}{243}$ ONE MARK QUESTIONS $\frac{\text{UNIT} - 3 : \text{ALGEBRA}}{41) \text{ If the roots of the equation } q^2x^2 + p^2x + r^2 = 0 \text{ are the squares of the roots of the equation } qx^2 + px + r = 0, \text{ then } q, p, r \text{ are in}$ $\frac{42) \text{ Graph of a linear polynomial is a}}{43) \text{ The number of points of intersection of the quadratic polynomial } x^2 + 4x + 4 \text{ with the X-axis is}$ $44) \text{ For the given matrix } A = \begin{pmatrix} 1 & 3 & 5 & 7 \\ 2 & 4 & 6 & 8 \\ 2 & 4 & 6 & 8 \\ 1 & 1 & 1 & 2 & 4 \\ 2 & 4 & 6 & 8 \\ 1 & 1 & 1 & 2 & 4 \\ 3 & 1 & 1 & 1 & 2 & 4 \\ 3 & 1 & 1 & 1 & 2 & 4 \\ 4 & 1 & 1 & 1 & 1 & 2 & 4 \\ 4 & 1 & 1 & 1 & 1 & 2 & 4 \\ 4 & 1 & 1 & 1 & 1 & 2 & 4 \\ 4 & 1 & 1 & 1 & 1 & 2 & 4 \\ 4 & 1 & 1 & 1 & 1 & 2 & 4 \\ 4 & 1 & 1 & 1 & 1 & 2 & 4 \\ 4 & 1 & 1 & 1 & 1 & 2 & 4 \\ 4 & 1 & 1 & 1 & 1 & 2 & 4 \\ 4 & 1 & 1 & 1 & 1 & 2 & 4 \\ 4 & 1 & 1 & 1 & 2 & 4 \\ 4 & 1 & 1 & 1 & 2 & 4 \\ 4 & 1 & 1 & 1 & 2 & 4 \\ 4 & 1 & 1 & 1 & 2 & 4 \\ 4 & 1 & 1 & 1 & 2 & 4 \\ 4 & 1 & 1 & 1 & 2 & 4 \\ 4 & 1 & 1 & 1 & 2 & 4 \\ 4 & 1 & 1 & 1 & 2 & 4 \\ 4 & 1 & 1 & 1 & 2 & 4 \\ 4 & 1 & 1 & 1 & 2 & 4 \\ 4 & 1 & 1 & 1 & 2 & 4 \\ 4 & 1 & 1 & 1 & 2 & 4 \\ 4 & 1 & 1 & 1 & 2 & 4 \\ 4 & 1 & 1 & 1 & 2 & 4 \\ 4 & 1 & 1 & 1 & 1 & 2 & 4 \\ 4 & 1 & 1 & 1 & 1 & 2 & 4 \\ 4 & 1 & 1 & 1 & 2 & 4 \\ 4 & 1 & 1 & 1 & 1 & 2 & 4 \\ 4 & 1 & 1 & 1 & 1 & 2 & 4 \\ 4 & 1 & 1 & 1 & 1 & 2 & 4 \\ 4 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 4 & 1 & 1 & 1 & 1 & 1 & 1 \\ 4 & 1 & 1 & 1 & 1 & 1 \\ 4 & 1 & 1 & 1 & 1 & 1 \\ 4 & 1 & 1 & 1 & 1 & 1 \\ 4 & 1 & 1 & 1 & 1 & 1 \\ 4 & 1 & 1 & 1 & 1 & 1 \\ $	Ans:- G.P Ans:- Straight line Ans:- 1 Ans:- 4 x 3
$\therefore \text{ 8th term } = t_8$ $= ar^7$ $= (9) \left(\frac{1}{3}\right)^7$ $= \frac{9}{3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3}$ $= \frac{1}{3 \times 3 \times 3 \times 3 \times 3 \times 3}$ $= \frac{1}{243}$ $\frac{\text{ONE MARK QUESTIONS}}{\frac{1}{243}}$ $\frac{1}{243}$	Ans:- G.P Ans:- Straight line Ans:- 1 Ans:- 4 x 3
$\therefore 8 \text{th term} = t_8$ $= ar^7$ $= (9) \left(\frac{1}{3}\right)^7$ $= \frac{9}{3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3}$ $= \frac{1}{3 \times 3 \times 3 \times 3 \times 3 \times 3}$ $= \frac{1}{243}$ $\underbrace{\text{ONE MARK QUESTIONS}}$ $\underbrace{\text{UNIT - 3 : ALGEBRA}}_{41) \text{ If the roots of the equation } q^2x^2 + p^2x + r^2 = 0 \text{ are the squares of the roots of the equation } qx^2 + px + r = 0, \text{ then } q, p, r \text{ are in}$ $\underbrace{42) \text{ Graph of a linear polynomial is a}}_{43) \text{ The number of points of intersection of the quadratic polynomial } x^2 + 4x + 4 \text{ with the X-axis is}$ $\underbrace{44) \text{ For the given matrix } A = \begin{pmatrix} 1 & 3 & 5 & 7 \\ 2 & 4 & 6 & 8 \\ 9 & 11 & 13 & 15 \end{pmatrix} \text{ the order of the } matrix A^T \text{ is}$	Ans:- G.P Ans:- Straight line Ans:- 1 Ans:- 4 x 3 Ans:- 4
$\therefore \text{ 8th term } = t_8$ $= ar^7$ $= (9) \left(\frac{1}{3}\right)^7$ $= \frac{9}{3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3}$ $= \frac{1}{3 \times 3 \times 3 \times 3 \times 3 \times 3}$ $= \frac{1}{243}$ ONE MARK QUESTIONS $\frac{\text{UNIT - 3 : ALGEBRA}}{\text{ONE MARK QUESTIONS}}$ $\frac{1}{3 \times 3 \times 3 \times 3 \times 3}$ $= \frac{1}{243}$ $(1) \text{ If the roots of the equation } q^2x^2 + p^2x + r^2 = 0 \text{ are the squares of the roots of the equation } qx^2 + px + r = 0, \text{ then } q, p, r \text{ are in}$ $(2) \text{ Graph of a linear polynomial is a}$ $(3) \text{ The number of points of intersection of the quadratic polynomial } x^2 + 4x + 4 \text{ with the X-axis is}$ $(4) \text{ For the given matrix } A = \begin{pmatrix} 1 & 3 & 5 & 7 \\ 2 & 4 & 6 & 8 \end{pmatrix} the order of the state of the s$	Ans:- G.P Ans:- Straight line Ans:- 1 Ans:- 4 x 3
$\therefore \text{ 8th term } = t_8$ $= ar^7$ $= (9) \left(\frac{1}{3}\right)^7$ $= \frac{9}{3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3}$ $= \frac{1}{3 \times 3 \times 3 \times 3 \times 3 \times 3}$ $= \frac{1}{243}$ $(1) \text{ If the roots of the equation } q^2x^2 + p^2x + r^2 = 0 \text{ are the squares of the roots of the equation } qx^2 + px + r = 0, \text{ then } q, p, r \text{ are in}$ $(4) \text{ If the roots of the alliear polynomial is a}$ $(4) \text{ For the given matrix } A = \left(\begin{array}{c} 1 & 3 & 5 & 7 \\ 2 & 4 & 6 & 8 \\ 9 & 11 & 13 & 15 \end{array}\right) \text{ the order of the alliear of the matrix } A^T \text{ is}$ $(4) \text{ If A is a 2 x 3 matrix and B is a 3 x 4 matrix, how many}$	Ans:- G.P Ans:- Straight line Ans:- 1 Ans:- 4 x 3 Ans:- 4

					<u>Sl</u> i	ip Test	<u>-9</u>					
I	Choose th	e most suit	able ansv	wer fro	m the s	given fo	ur alteri	native	s and w	vrite the o	ption cod	le with
th	e corresp	onding ans	wer.		,	B- ,					(3×1)	= 3)
1)	Graph	of		a		linear		poly	ynomial		is	a
	(A) Strai	ght line	(B)	circle		(C)	parabola	a	(D)	hyperbol	a	
2)	If A is	a 2 x 3	matrix	and B	is a	3 x 4	matrix,	how	many	columns	does AF	B have
	(A) 3		(B)	4		(C)	2		(D)	5		
3)	The num	ber of point	ts of inter	rsection	of the	quadrati	ic polyno	omial	$x^{2} + 4x$	z + 4 with	n the X -	axis is
	(A) 0		(B)	1		(C)	0 or1		(D)	2		
II	Answer t	he following	g:-								(2 x	(2 = 4)
4)	Find the	e 8 th term o	of the G.	P. 9,3	, 1,							
5)	b) If $3 + k$, $18 - k$, $5k + 1$ are in A.P. then find k.											
III	Answer	the followin	ig:-								(1 x	x 5 = 5)
6)	Find the	square root	of: $4x^4$	$^{1} - 28x$	³ + 37	$x^2 + 42$	<i>x</i> + 9.					
IV	Answer	the followin	:-								(1 x	(8 = 8)
7)	A bus is	travelling at	a uniforr	n speed	of 50 ł	km/hr. D	raw the c	listanc	ce-time	graph and	hence fin	d
	(i) t	he constant	of variation	on.								
	(ii) ł	now far will	it travel i	n 90 mi	nutes?						7	
	(iii) t	he time requ	ired to co	over a d	istance	of 300 k	m from	the gra	aph.			

DAY – 11 PRACTICAL GEOMETRY - SIMILAR TRIANGLES

40

UNIT - 3 : ALGEBRA	
46) If number of columns and rows are not equal in a matrix then it	Ans:-
is said to be a	rectangular matrix
47) Transpose of a column matrix is	Ans:- row matrix
48) Find the matrix X, if $2X + \begin{pmatrix} 1 & 3 \\ 5 & 7 \end{pmatrix} = \begin{pmatrix} 5 & 7 \\ 9 & 5 \end{pmatrix}$	Ans:- $\begin{pmatrix} 2 & 2 \\ 2 & -1 \end{pmatrix}$
49) Which of the following can be calculated from the given	
matrices $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$	Ans:- (ii), (iv) only
(i) A^2 (ii) B^2 (iii) AB (iv) BA	
50) If $A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 \\ 2 & -1 \\ 0 & 2 \end{pmatrix}$ and $C = \begin{pmatrix} 0 & 1 \\ -2 & 5 \end{pmatrix}$.	
Which of the following statements are correct?	Ans:- (i) and (ii) only
(i) $AB + C = \begin{pmatrix} 5 & 5 \\ 5 & 5 \end{pmatrix}$ (ii) $BC = \begin{pmatrix} 0 & 1 \\ 2 & -3 \\ -4 & 10 \end{pmatrix}$	2
(iii) $BA + C = \begin{pmatrix} 2 & 5 \\ 3 & 0 \end{pmatrix}$ (iv) $(AB)C = \begin{pmatrix} -8 & 20 \\ -8 & 13 \end{pmatrix}$	
<u>Slip Test – 10</u>	7
I Choose the most suitable answer from the given four alternatives and w	rite the option code with $(3 \times 1 - 3)$
1) Which of the following can be calculated from the given matrices $A = \begin{pmatrix} 1 \\ 3 \\ r \end{pmatrix}$	$ \begin{pmatrix} 3 & 1 & -3 \\ 2 \\ 4 \\ 6 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 9 & 9 \end{pmatrix} $
(i) A^2 (ii) B^2 (iii) AB (iv) BA	0/ (/ 8 9/
(A) (i), (ii) only (B) (ii), (iii) only (C) (ii), (iv) only (D) all of the	lese
 2) Transpose of a column matrix is (A) Unit matrix (B) diagonal matrix (C) column matrix (D) row matrix 	
3) If number of columns and rows are not equal in a matrix then it is said to be	а
(A) diagonal matrix (B) rectangular matrix (C) square mat	rix (D) unit matrix
II Answer the following:-	$(2 \mathbf{x} 2 = 4)$
4) Find the sum of the infinite series, $21 + 14 + \frac{25}{3} + \dots \infty$.	
5) Find the sum of the infinite series, $9 + 3 + 1 + \cdots$	(1 - 5 - 5)
6) Find the square root of : $289x^4 - 612x^3 + 970x^2 - 684x + 361$	$(1 \mathbf{X} 5 = 5)$
IV Answer the following:-	(1 x 8 = 8)
7) Construct a triangle similar to a given triangle ABC with its sides equal to $\frac{1}{2}$	of the corresponding sides
of the triangle ABC. (Scale factor $\frac{7}{3} > 1$).	

DAY – 12 WEEKLY TEST - 2

Kindly Send Me Your Key Answer to Our email id - Padasalai.net@gmail.com

www.Trb Tnpsc.Com

www.Padasalai.Net

43

www.Trb Tnpsc.Com

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Solution: Given, $36x^4 - 60x^4 - 6$	$x^3 + 61x^2 - mx + n$ 16 is a perfect square.
$ \begin{array}{c} 6 \\ 36 \\ -60 \\ 61 \\ -60 \\ 25 \\ (-) \\ 12 \\ -10 \\ 38 \\ -60 \\ 61 \\ -60 \\ 25 \\ (+) \\ (-) \\ 36 \\ -70 \\ 9 \\ (-) \\ (+) \\ (-) $		6 -5 3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	36 -60 61 - <i>m</i> n
$ \begin{array}{c} 12 & -5 \\ 12 & -10 & 3 \\ 12 & -10 & 3 \\ 12 & -10 & 3 \\ 12 & -10 & 3 \\ 12 & -10 & 3 \\ 12 & -10 & 3 \\ 12 & -10 & 3 \\ 12 & -10 & 3 \\ 12 & -10 & 3 \\ 12 & -10 & 3 \\ 12 & -10 & 3 \\ 12 & -10 & 3 \\ 13 & 36 & -30 & 9 \\ (-) & (+) & (-) \\ 10 & 0 \\ 38 & 36 & -30 & 9 \\ (-) & (+) & (-) \\ 10 & 0 \\ 11 & -8 & m & n & 16 \\ 1 & (-) \\ 2 & -4 & -8x^3 + mx^2 + nx + 16 & 16 & is a perfect square. \\ 1 & 1 & -4 & 4 \\ 1 & -8 & m & n & 16 \\ 1 & (-) \\ 2 & -4 & -8 & 16 \\ (+) & (-) \\ 2 & -8 & 4 & -16 & n & 16 \\ 1 & (-) \\ 2 & -8 & 4 & -16 & n & 16 \\ 1 & (-) \\ 2 & -8 & 4 & -16 & n & 16 \\ 1 & (-) \\ 2 & -8 & 4 & -16 & n & 16 \\ 8 & -32 & 16 \\ (-) & (-) & 0 \\ 8m - 16 = 8 & and n = -32 \\ m = 16 + 8 & and n = -32 \\ m = 24 & and n = -32 \\ m = 24 & and n = -32 \\ m = 24 & and n = -32 \\ \hline TWO MARKS QUESTIONS \\ \hline UNT - 3 : ALGEBRA - MATRICES \\ \hline Hamatrix has 16 elements, what are the possible orders it can have? \\ \hline Solution: \\ The possible orders of a matrix has 16elements are \\ 1 \times 16, 16 \times 1, 2 \times 8, 8 \times 2, 4 \times 4 \\ \hline 16 \times 10^{-1}, 10 \times 1, 2 \times 8, 8 \times 2, 4 \times 4 \\ \hline $		36
$12 -5 = -60 - 61 = -60 - 25 = (+) (-) = 0$ $12 -10 -3 = 36 - m - n = 36 - 30 - 9 = (-) (+) (-) = 0$ $38)x^{4} - 8x^{3} + mx^{2} + nx + 16 = is a perfect square, then find the values of m, n.$ Solution:- Given, $x^{4} - 8x^{3} + mx^{2} + nx + 16 = 16$ is a perfect square. 1 -4 -4 = 4 = 1 = 1 -4 -4 = 1 = 1 -4 = 1 = 1 -4 = 1 = 1 -4 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =		(-)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12 -5	5 -60 61
$12 -10 \ 3 \qquad (+) \ (-) \\ \hline 36 \ -m \ n \\ \hline 36 \ -30 \ 9 \\ (-) \ (+) \ (-) \\ \hline 0 \\ \hline \\$		-60 25
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(+) (-)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12 -10 3	36 <i>-m</i> n
$(-) (+) (-)$ 0 $\therefore m = 30 \text{ and } n = 9$ $38) x^4 - 8x^3 + mx^2 + nx + 16 \text{ is a perfect square, then find the values of } m, n.$ Solution:- Given, $x^4 - 8x^3 + mx^2 + nx + 16$ 16 is a perfect square. 1 -4 -4 -4 -1 = 1 -4 -4 -4 -1 = 1 -4 -4 -4 -1 = 1 -4 -4 -4 -1 = 1 -4 -4 -4 -1 = 1 -4 -4 -4 -1 = 1 -4 -4 -4 -1 = 1 -4 -4 -4 -1 = 1 -4 -4 -4 -1 = 1 -4 -4 -4 -1 = 1 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4		36 -30 9
$\frac{0}{(2)}$ $\frac{1}{38} n^{4} - 8x^{3} + mx^{2} + nx + 16$ is a perfect square, then find the values of m, n . Solution:- Given, $x^{4} - 8x^{3} + mx^{2} + nx + 16$ 16 is a perfect square. $\frac{1 - 4 - 4}{1 - 8 - m - 16}$ $\frac{1}{(-)}$ $2 - 4 - \frac{-8 - m}{-8 - 16}$ $\frac{-16}{(+) -(-)}$ $2 - 8 - 4 - \frac{-8 - m}{-8 - 16}$ $\frac{-16}{(+) -(-)}$ $2 - 8 - 4 - \frac{-8 - m}{-8 - 16}$ $\frac{-16}{(-) - (+) - (-)}$ $\frac{-16}{0}$ $\frac{-16}{(-) - (+) - (-)}$ $\frac{-16}{(-) - (+) -$		(-) (+) (-)
$\therefore m = 30 \text{ and } n = 9$ $38) x^4 - 8x^3 + mx^2 + nx + 16 \text{ is a perfect square, then find the values of } m, n.$ Solution:- Given, $x^4 - 8x^3 + mx^2 + nx + 16$ 16 is a perfect square. $1 1 -4 4$ $1 1 -8 m n 16$ $1 (-)$ $2 -4 -8 m$ $-8 16$ $(+) (-)$ $2 -8 4 -16 n 16$ $8 -32 16$ $(-) (+) (-)$ 0 $\&m - 16 = 8 \text{ and } n = -32$ $m = 16 + 8 \text{ and } n = -32$ $m = 24 \text{ and } n = -32$ TWO MARKS QUESTIONS $UNIT - 3 : ALGEBRA - MATRICES$ $44) If a matrix has 16 elements, what are the possible orders it can have?$ $Solution:-$ The possible orders of a matrix has 16 elements are $1 \times 16, 16 \times 1, 2 \times 8, 8 \times 2, 4 \times 4$		0
38) $x^4 - 8x^3 + mx^2 + nx + 16$ is a perfect square, then find the values of m , n . Solution: Given, $x^4 - 8x^3 + mx^2 + nx + 16$ 16 is a perfect square. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0 0	m = 30 and $n = 9$
Solution: Given, $x^4 - 8x^3 + mx^2 + nx + 16$ 16 is a perfect square. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$38) x^4 - 8x^3 + mx^2 + nx + 16 \text{is}$	s a perfect square, then find the values of m , n .
$\frac{1}{1} -4 -4$ $\frac{1}{1} -8 -8 -n -16$ $\frac{1}{(-)}$ $2 -4 -8 -8 -3 -16$ $\frac{-8}{(+)} -6 -16$ $\frac{-16}{(-)} -16$ $\frac{-16}{(-$	<u>Solution:</u> <u>Given</u> , $x^4 - 8x^3 +$	$+mx^2 + nx + 16$ 16 is a perfect square.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
1 1 -8 m n 10 $1 (-) 10 10 10 10 10 10 10 1$	1 [$\frac{1}{1}$ $\frac{-4}{4}$ $\frac{4}{1}$ $\frac{1}{2}$ $\frac{2}{10}$ $\frac{1}{10}$ \frac
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1 - 6 m n 10
$2 -4$ $2 -4$ $-8 n$ $-8 16$ $(+) (-)$ $2 -8 4$ $m n 16$ $8 -32 16$ $(-) (+) (-)$ 0 $m -16 = 8 \text{ and } n = -32$ $m = 16 + 8 \text{ and } n = -32$ $m = 24 \text{ and } n = -32$ $TWO \text{ MARKS QUESTIONS}$ $UNIT - 3 : ALGEBRA - MATRICES$ $44) \text{ If a matrix has 16 elements, what are the possible orders it can have?}$ $Solution:$ The possible orders of a matrix has 16 elements are $1 \times 16, 16 \times 1, 2 \times 8, 8 \times 2, 4 \times 4$		(-)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 -4	-8 m
$\begin{array}{c} \begin{array}{c} & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & $	2 1	-8 16
$2 -8 4$ $m - 16 - 16$ $8 -32 -8 4$ $(-) (+) (-)$ $(-) (+) (-)$ 0 $m - 16 = 8 \text{ and } n = -32$ $m = 16 + 8 \text{ and } n = -32$ $m = 24 \text{ and } n = -32$ $TWO \text{ MARKS QUESTIONS}$ $UNIT - 3 : \text{ ALGEBRA - MATRICES}$ $44) \text{ If a matrix has 16 elements, what are the possible orders it can have?}$ $Solution:$ The possible orders of a matrix has 16 elements are $1 \times 16, 16 \times 1, 2 \times 8, 8 \times 2, \ 4 \times 4$		(+) $(-)$
$2 -8 4$ $-16 n 16$ $8 -32 16$ $(-) (+) (-)$ 0 $3m - 16 = 8 \text{ and } n = -32$ $m = 16 + 8 \text{ and } n = -32$ $m = 24 \text{ and } n = -32$ TWO MARKS QUESTIONS $\frac{\text{UNIT - 3 : ALGEBRA - MATRICES}}{44) \text{ If a matrix has 16 elements, what are the possible orders it can have?}$ $\frac{1 \times 16, 16 \times 1, 2 \times 8, 8 \times 2, 4 \times 4}{16 \times 1000 \text{ cm}^{-1} c$	_	m
$8 -32 16$ $(-) (+) (-)$ 0 $8m - 16 = 8 and n = -32$ $m = 16 + 8 and n = -32$ $m = 24 and n = -32$ TWO MARKS QUESTIONS $UNIT - 3 : ALGEBRA - MATRICES$ $44) If a matrix has 16 elements, what are the possible orders it can have? Solution: The possible orders of a matrix has 16 elements are 1 \times 16, 16 \times 1, 2 \times 8, 8 \times 2, 4 \times 4$	2 - 8 4	-16 n 16
$(-) (+) (-)$ 0 $3m - 16 = 8 \text{ and } n = -32$ $m = 16 + 8 \text{ and } n = -32$ $m = 24 \text{ and } n = -32$ TWO MARKS QUESTIONS $UNIT - 3 : ALGEBRA - MATRICES$ $44) \text{ If a matrix has 16 elements, what are the possible orders it can have?}$ $44) \text{ If a matrix has 16 elements, what are the possible orders it can have?}$ $50 \text{ Interms of a matrix has 16 elements are}$ $1 \times 16, 16 \times 1, 2 \times 8, 8 \times 2, \ 4 \times 4$		8 -32 16
0 $m = 16 = 8 \text{ and } n = -32$ $m = 16 + 8 \text{ and } n = -32$ $m = 24 \text{ and } n = -32$ TWO MARKS QUESTIONS $UNIT - 3 : ALGEBRA - MATRICES$ $44) \text{ If a matrix has 16 elements, what are the possible orders it can have?}$ $44) \text{ If a matrix has 16 elements, what are the possible orders it can have?}$ $50 \text{ If a matrix has 16 elements are } 1 \times 16, 16 \times 1, 2 \times 8, 8 \times 2, 4 \times 4$		(-) (+) (-)
$m = 16 + 8 \text{ and } n = -32$ $m = 16 + 8 \text{ and } n = -32$ $m = 24 \text{ and } n = -32$ TWO MARKS QUESTIONS $\frac{\text{UNIT} - 3 : \text{ALGEBRA - MATRICES}}{\text{44}) \text{ If a matrix has 16 elements, what are the possible orders it can have?}$ $\frac{\text{Solution:-}}{\text{The possible orders of a matrix has 16 elements are}$ $1 \times 16, 16 \times 1, 2 \times 8, 8 \times 2, 4 \times 4$		0
$m = 16 + 8 \text{ and } n = -32$ $m = 24 \text{ and } n = -32$ TWO MARKS QUESTIONS $\underline{\text{UNIT - 3 : ALGEBRA - MATRICES}}$ 44) If a matrix has 16 elements, what are the possible orders it can have? $\underline{\text{Solution:-}}$ The possible orders of a matrix has 16elements are $1 \times 16, 16 \times 1, 2 \times 8, 8 \times 2, \ 4 \times 4$	* <i>m</i> –	-16 = 8 and $n = -32$
$m = 24 \text{ and } n = -32$ TWO MARKS QUESTIONS $\underbrace{\text{UNIT - 3 : ALGEBRA - MATRICES}}_{44) \text{ If a matrix has 16 elements, what are the possible orders it can have?}$ $\underbrace{\text{Solution:-}}_{1 \times 16, 16 \times 1, 2 \times 8, 8 \times 2, 4 \times 4}$	m =	= 16 + 8 and $n = -32$
TWO MARKS QUESTIONS UNIT - 3 : ALGEBRA - MATRICES 44) If a matrix has 16 elements, what are the possible orders it can have? Solution:- The possible orders of a matrix has 16elements are 1×16 , 16×1 , 2×8 , 8×2 , 4×4 45. If a matrix has 19 elements matrix the possible orders if is the second	r	m = 24 and $n = -32$
UNIT - 3 : ALGEBRA - MATRICES44) If a matrix has 16 elements, what are the possible orders it can have?Solution:-The possible orders of a matrix has 16 elements are 1×16 , 16×1 , 2×8 , 8×2 , 4×4 45) If a matrix has 18 elements much are the neurilla we have it is it in a feature of the second	TWO	MARKS QUESTIONS
44) If a matrix has 16 elements, what are the possible orders it can have? Solution:- The possible orders of a matrix has 16elements are 1×16 , 16×1 , 2×8 , 8×2 , 4×4 45) If a matrix has 18 elements much are the new it has be a With this is in the second	<u>UNIT - 3</u>	: ALGEBRA - MATRICES
Solution:- The possible orders of a matrix has 16elements are 1×16 , 16×1 , 2×8 , 8×2 , 4×4 45) If a matrix has 18 alements what are the new it has it as a 2 Winst if it has a 19 alements what are the new it has a 2 Winst if it has a 19 alements what are the new it has a 19 alements what are the new it has a 19 alements what are the new it has a 19 alements what are the new it has a 19 alements what are the new it has a 19 alements what are the new it has a 19 alements what are the new it has a 19 alements what are the new it has a 19 alements what are the new it has a 19 alements what are the new it has a 19 alements what are the new it has a 19 alements what are the new it has a 19 alements what are the new it has a 19 alements what are the new it has a 19 alements what are the new it has a 19 alements what are the new it has a 19 alements what are the new it has a 19 alement what are the new it has a 19 alement what are the new it has a 19 alement what are the new it has a 19 alement what are the new it has a 19 alement what are the new it has a 19 alement what are the new it has a 19 alement what are the new it has a 19 alement what are the new it has a 19 alement whet are the new it has a 19 alement whet are the new it has a 19 alement whet are the new it has a 19 alement whet are the new it has a 19 alement whet are the new it has a 19 alement whet are the new it has a 19 alement whet are the new it has a 19 alement whet are the new it has a 19 alement whet are the new it has a 19 alement whet are the new it has a 19 alement whet are the new it has a 19 alement whet are the new it has a 19 alement whet are the new it has a 19 alement whet are the new it has a 19 alement whet are the new it has a 19 alement whet are the new it has a 19 alement whet are the new it has a 19 alement whet are the new it has a 19 alement whet are 19 alement whet are the new it has 19 alement whet ar	44) If a matrix has 16 elements, wh	hat are the possible orders it can have?
The possible orders of a matrix has 16elements are 1×16 , 16×1 , 2×8 , 8×2 , 4×4 45) If a matrix has 18 alements what are the new it has it as 1 are 2. What if it has 6	Solution:-	
$\frac{1 \times 10}{10} = \frac{10 \times 1}{10} \times \frac{10 \times 1}{10} \times \frac{10 \times 1}{10} = \frac{10 \times 1}{10} \times \frac{10 \times 1}{10$	The possible ord	ders of a matrix has 16elements are
45) IT a matrix has 18 elements, what are the possible orders it can have? What it it has 6	1×16 , 45) If a matrix has 18 elements, whe	at are the possible orders it can have? What if it has 6

44

elements? Solution:-The possible orders of a matrix The possible orders of a matrix has 18 elements are has 6 elements are 1×18 18×1 1×6 6×1 2×9 2×3 3×2 9×2 3×6 6×3 46) Construct a 3 × 3 matrix whose elements are $a_{ii} = i^2 j^2$. Solution:-<u>WKT</u>, The general form of a matrix having order 3 X 3 is $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$ <u>**Given**</u>, $a_{ij} = i^2 j^2$ $\begin{array}{c} a_{11} = 1^2 1^2 = 1 \times 1 = 1 \\ a_{12} = 1^2 2^2 = 1 \times 4 = 4 \\ a_{13} = 1^2 3^2 = 1 \times 9 = 9 \end{array} \qquad \begin{array}{c} a_{21} = 2^2 1^2 = 4 \times 1 = 4 \\ a_{22} = 2^2 2^2 = 4 \times 4 = 16 \\ a_{23} = 2^2 3^2 = 4 \times 9 = 36 \\ \begin{pmatrix} 1 & 4 & 9 \\ 4 & 16 & 36 \end{pmatrix} \end{array}$ $\therefore \text{ The required matrix is, } A = \begin{pmatrix} 1 & 4 & 9 \\ 4 & 16 & 36 \end{pmatrix}$ $a_{31} = 3^2 1^2 = 9 \times 1 = 9$ $a_{32} = 3^2 2^2 = 9 \times 4 = 36$ $a_{33} = 3^2 3^2 = 9 \times 9 = 81$ 47) Construct a 3 × 3 matrix whose elements are $A = (a_{ij}) = |i - 2j|$ Solution:-<u>**Solution:**</u> <u>WKT</u>, The general form of a matrix having order 3 X 3 is $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$ **<u>Given</u>**, $a_{ii} = |i - 2j|$ $a_{23} = |2 - 2(3)| = |2 - 6| = |-4| = 4$ $a_{11} = |1 - 2(1)| = |1 - 2| = |-1| = 1$ $a_{12} = |1 - 2(2)| = |1 - 4| = |-3| = 3$ $a_{31} = |3 - 2(1)| = |3 - 2| = |1| = 1$ $a_{13} = |1 - 2(3)| = |1 - 6| = |-5| = 5$ $a_{32} = |3 - 2(2)| = |3 - 4| = |-1| = 1$ $a_{33} = |3 - 2(3)| = |3 - 6| = |-3| = 3$ $a_{21} = |2 - 2(1)| = |2 - 2| = |0| = 0$ $a_{22} = |2 - 2(2)| = |2 - 4| = |-2| = 2$ \therefore The required matrix is, $A = \begin{pmatrix} 1 & 3 & 5 \\ 0 & 2 & 4 \\ 1 & 1 & 3 \end{pmatrix}$ 48) Construct a 3 × 3 matrix whose elements are $A = a_{ij} = \frac{(i+j)^3}{3}$. Solution:-<u>WKT</u>, The general form of a matrix having order 3 X 3 is $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{21} & a_{22} & a_{23} \end{pmatrix}$ **<u>Given</u>**, $a_{ij} = \frac{(i+j)^3}{2}$ $a_{23} = \frac{(2+3)^3}{3} = \frac{(5)^3}{3} = \frac{125}{3}$ $a_{11} = \frac{(1+1)^3}{3} = \frac{(2)^3}{3} = \frac{8}{3}$ $a_{31} = \frac{(3+1)^3}{2} = \frac{(4)^3}{3} = \frac{64}{3}$ $a_{12} = \frac{(1+2)^3}{3} = \frac{(3)^3}{3} = \frac{27}{3} = 9$

45

www.Trb Tnpsc.Com

$a_{12} = \frac{(1+3)^3}{(1+3)^3} = \frac{(4)^3}{(1+3)^3} = \frac{64}{(1+3)^3}$	$a_{22} = \frac{(3+2)^3}{(3+2)^3} = \frac{(5)^3}{(5+2)^3} = \frac{(5+2)^3}{(5+2)^3} = \frac{(5+2)^3}{(5$	125
		3
$a_{a1} = \frac{(2+1)^3}{(2+1)^3} = \frac{(3)^3}{(2+1)^3} = \frac{27}{(2+1)^3} = 9$	$a_{aa} = \frac{(3+3)^3}{(3+3)^3} = \frac{(6)^3}{(3+3)^3} = \frac{(6)^3}{(3+3$	$=\frac{216}{2}=72$
$a_{21} = \frac{1}{3} = \frac{1}{3} = \frac{1}{3} = \frac{1}{3} = \frac{1}{3}$	$3^{33} - 3^{-3} - 3^{-3}$	3 7 2
$(2+2)^3 (4)^3 64$		
$a_{22} = \frac{1}{3} = \frac{1}{3} = \frac{1}{3}$		
<u>/ 8</u>	$9 \frac{64}{}$	
3	3	
\therefore The required matrix is, $A = \begin{bmatrix} 9 \end{bmatrix}$	$\frac{04}{3}$ $\frac{125}{3}$	
64	$\frac{125}{72}$	
3	3 72/	
ONE MAR	K QUESTIONS	
<u>UNIT - 4</u>	: GEOMETRY	
51) If in triangles ABC and EDF, $\frac{AB}{AB} = \frac{BC}{AB}$	then they will be	
DE FD		Ans:- $\angle B = \angle D$
similar, when		
52) In ΔLMN , $\angle L = 60^{\circ}$, $\angle M = 50^{\circ}$. If Δ	$\Delta LMN \sim \Delta PQR$ then the	500
value of $\angle R$ is		Ans:- 70°
53) If $\triangle ABC$ is an isosceles triangle with \angle	$C = 90^{\circ}$ and AC = 5	
cm, then AB is		Ans:- $5\sqrt{2}$ cm
54) In a given figure ST \parallel QR, PS = 2	a	
cm and $SQ = 3$ cm. Then the ratio	s	
of the area of $\triangle POR$ to the area		Ans:- 25 : 4
of $APST$ is		
р	TR	
55) The perimeters of two similar triangles	$\triangle ABC$ and $\triangle PQR$ are	
36 cm and 24 cm respectively. If PQ =	=10 cm, then the length	Ans:- 15 cm
of AB is		
Slip	<u>Test - 11</u>	
I Choose the most suitable answer from the gi	ven four alternatives and w	rite the option code with
the corresponding answer.		(3 x 1 = 3)
1) If in triangles ABC and EDF, $\frac{AB}{DE} = \frac{BC}{ED}$ then	they will be similar, when	
(A) $\angle B = \angle E$ (B) $\angle A = \angle D$ (C)	$\angle B = \angle D$ (D) $\angle A = \angle$	F
2) The perimeters of two similar triangles ΔAB	C and ΔPQR are 36 cm and	d 24 cm respectively. If
PQ=10 cm, then the length of AB is	C C	1 2
(A) $6\frac{2}{cm}$ (B) $\frac{10\sqrt{6}}{cm}$ (C) 6	$56\frac{2}{5}$ (D) 15 cm	
(1) r_{3} (D) r_{3} (C)	I_{MN} ADOD than the	value of (D is
5) III $\Delta LMN, \ ZL = 60^{\circ}, \ ZM = 50^{\circ}.$ II Δ	$LMN \sim \Delta PQR$ then the 20° (D) 110°	value of ZR is
(A) 40 (B) 70 (C) 3	(D) 110	$(2 \times 2 - 4)$
4) If a matrix has 18 elements what are the possible	le orders it can have? What it	$(2 \times 2 - 4)$ f it has 6 elements?
5) Construct a 3×3 matrix whose elements are A	$ = (a_{ii}) = i - 2i $	in hub o cromonts.
III Answer the following:-		$(1 \times 5 = 5)$
6) $36x^4 - 60x^3 + 61x^2 - mx + n$ is a perfect so	mare, then find the values of	m_{1} n_{2}
IV Answer the following:-	toure, then the the values of	$(1 \times 8 = 8)$
7) Draw a circle of diameter 6cm from a point	P, which is 8cm away from	its centre. Draw the two
tangents PA and PB to the circle and measure t	heir lengths.	
	-	

]	DAY –	- 14					
	SPECIAL G	RAPH	$[\mathbf{S} - \mathbf{D}]$	IREC	ΓVAR	IATIC	<u>)N</u>		
4) A	garment shop announces a flat 5	0% disc	ount on	every p	urchase	of item	s for the	eir custom	ers. Draw
th	e graph for the relation between	the Marl	ked Pric	e and th	e Disco	unt. Her	nce find		
(i)	the marked price when a cu	stomer g	gets a di	iscount	of ₹3250) (from	graph)		
(ii	the discount when the mark	ed price	is ₹250)0					
Soluti	<u>on</u> :-	-							
VARI	ATION:- Direct Variation.								
TABL	<u>.Æ</u> :-								
	Marked Price	1000	2000	2000	1000	5000	6000	7000	
	$(\mathrm{Rs.})(x)$	1000	2000	3000	4000	5000	0000	7000	
	Discount	500	1000	1500	2000	2500	2000	2500	
	(Rs.)(y)	300	1000	1300	2000	2300	3000	3300	
CONS	STANT OF VARIATION:-								
	$k = \frac{y}{2} = \frac{500}{500}$	_ 1							
	$\kappa = \frac{1}{x} = \frac{1}{1000}$	$\overline{2}$							
EQUA	$\underline{\mathbf{TION}}: y = kx$								
	$v = \frac{1}{r} r$								
DOD	$y = 2^{x}$								
POIN'	<u>IS</u> :-		4 = 0.03	(1000	0000	(= 0 0 0	0=00)		
COLL	(1000, 500), (2000, 1000)), (3000	,1500)	,(4000	,2000),	(5000,	2500)		
<u>SCAL</u>	<u>E</u> :-	1000							
	x - axis : 1 cm = 1000 units								
	y - axis : 1 cm = 500 units								
FRON	<u>A THE GRAPH,</u>	TTT			1.		32250		,
(i)	If $y = 3250$ then $x = 6500$.	When	a custor	ner gets	a disco	ount of a	3250	the marke	a price is
	Ks. 6500	1174				5 001	1.	. D 40	50
(ii)	If $x = 2500$ then $y = 1250$.	Wher	the ma	rked pri	ce 1s ₹2	500the	discount	t 1s Rs. 12	50.

47

www.Trb Tnpsc.Com

$$A^{2} = A \times A = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix} \times \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix} = \begin{bmatrix} (1 & -1) & \begin{pmatrix} 1 \\ 2 \end{pmatrix} & (1 & -1) & \begin{pmatrix} -1 \\ 3 \end{bmatrix} \\ (2 & 3) & \begin{pmatrix} 1 \\ 2 \end{pmatrix} & (2 & 3) & \begin{pmatrix} -1 \\ 3 \end{pmatrix} \end{bmatrix}$$
$$= \begin{pmatrix} 1 - 2 & -1 - 3 \\ 2 + 6 & -2 + 9 \end{pmatrix} = \begin{pmatrix} -1 & -4 \\ 8 & 7 \end{pmatrix}$$
$$A = 4 \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} 4 & -4 \\ 8 & 12 \end{pmatrix}$$
$$SI_{2} = 5 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 0 \\ 8 & 12 \end{pmatrix}$$
$$SI_{2} = 5 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 0 \\ 8 & 7 \end{pmatrix} + \begin{pmatrix} 4 & -4 \\ -8 & -12 \end{pmatrix} + \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix}$$
$$= \begin{pmatrix} -1 - 4 + 5 & -4 + 4 + 0 \\ 8 - 8 + 0 & 7 - 12 + 5 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
$$= 0$$
$$\& A^{2} - 4A + 5I_{2} = 0$$
$$Hence proved.$$
$$41) \text{ If } A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & -1 & 1 \end{pmatrix} \text{ and } B = \begin{pmatrix} 2 & -1 \\ -1 & 4 \\ 0 & 2 \end{pmatrix} \text{ verify that } (AB)^{T} = B^{T}A^{T}. \text{ [Sep-20]}$$
$$Solution:-$$
$$LHS:-$$
$$AB = \begin{pmatrix} 1 & 2 & 1 \\ 2 & -1 & 1 \end{pmatrix} \times \begin{pmatrix} 2 & -1 \\ -1 & 4 \\ 0 & 2 \end{pmatrix} = \begin{bmatrix} (1 & 2 & 1) & \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix} & (1 & 2 & 1) & \begin{pmatrix} -1 \\ 4 \\ 2 \end{pmatrix} \end{bmatrix}$$
$$= \begin{pmatrix} 2 - 2 + 0 & -1 + 8 + 2 \\ 4 + 1 + 0 & -2 - 4 + 2 \end{pmatrix} = \begin{pmatrix} 0 & 9 \\ 5 & -4 \end{pmatrix}$$
$$(AB)^{T} = \begin{pmatrix} 0 & 5 \\ 9 & -4 \end{pmatrix} \rightarrow (1)$$
$$\frac{RHS:-}{B^{T}} = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 4 & 2 \end{pmatrix} \text{ and } A^{T} = \begin{pmatrix} 1 & 2 \\ 2 & -1 \\ 1 & 1 \end{pmatrix}$$

49

www.Trb Tnpsc.Com

50

www.Trb Tnpsc.Com

Solution::

$$A^{T} = \begin{pmatrix} 5 & 1 & 3 \\ 3 & 9 & 2 \end{pmatrix}$$
so) If $A = \begin{pmatrix} \sqrt{7} & -3 \\ -\sqrt{5} & 2 \\ \sqrt{3} & -5 \end{pmatrix}$ then find the transpose of (-A). [PTA-2, Sep-20]
Solution::

$$-A = \begin{pmatrix} -\sqrt{7} & 3 \\ \sqrt{5} & -2 \\ -\sqrt{3} & 5 \end{pmatrix}$$
The transpose of (-A) = (-A)^{T} = $\begin{pmatrix} -\sqrt{7} & \sqrt{5} & -\sqrt{3} \\ 3 & -2 & 5 \end{pmatrix} = \begin{pmatrix} -\sqrt{7} & \sqrt{5} & -\sqrt{3} \\ 3 & -2 & 5 \end{pmatrix}$
The transpose of (-A) = (-A)^{T} = $\begin{pmatrix} -\sqrt{7} & \sqrt{5} & -\sqrt{3} \\ 3 & -2 & 5 \end{pmatrix} = \begin{pmatrix} -\sqrt{7} & \sqrt{5} & -\sqrt{3} \\ 3 & -2 & 5 \end{pmatrix}$
The transpose of (-A) = (-A)^{T} = \begin{pmatrix} -\sqrt{7} & \sqrt{5} & -\sqrt{3} \\ 3 & -2 & 5 \end{pmatrix} = \begin{pmatrix} -\sqrt{7} & \sqrt{5} & -\sqrt{3} \\ 3 & -2 & 5 \end{pmatrix}
The transpose of (-A) = (-A)^{T} = \begin{pmatrix} -\sqrt{7} & \sqrt{5} & -\sqrt{3} \\ 3 & -2 & 5 \end{pmatrix} = \begin{pmatrix} -\sqrt{7} & \sqrt{5} & -\sqrt{3} \\ 3 & -2 & 5 \end{pmatrix}
Solution:
Solution::

$$A^{T} = \begin{pmatrix} 5 & 2 & 2 \\ -\sqrt{17} & 0.7 & \frac{5}{2} \\ 2 & 0.7 & 3 \\ 2 & \frac{5}{2} & 1 \end{pmatrix}$$

$$(A^{T})^{T} = A$$
Hence verified.
52) If $A = \begin{pmatrix} 7 & 8 & 6 \\ 1 & 3 & 9 \\ -4 & 3 & -1 \end{pmatrix}$ and $B = \begin{pmatrix} 4 & 11 & -3 \\ -1 & 2 & 4 \\ 7 & 5 & 0 \end{pmatrix}$
then find 2A + B. [PTA-3]
Solution ::

$$2A + B = 2 \begin{pmatrix} 7 & 8 & 6 \\ 1 & 3 & 9 \\ -4 & 3 & -1 \end{pmatrix} + \begin{pmatrix} 4 & 11 & -3 \\ -1 & 2 & 4 \\ 7 & 5 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 14 & 16 & 12 \\ 2 & 6 & 18 \\ -8 & 6 & -2 \end{pmatrix} + \begin{pmatrix} -1 & 2 & 4 \\ 7 & 5 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 14 + 4 & 16 + 11 & 12 - 3 \\ -8 & 6 & -2 \end{pmatrix} + \begin{pmatrix} -1 & 2 & 4 \\ 7 & 5 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 14 + 4 & 16 + 11 & 12 - 3 \\ -8 & 7 & 6 + 5 & -2 + 0 \end{pmatrix}$$

$$= \begin{pmatrix} 18 & 27 & 9 \\ 1 & 8 & 22 \\ -1 & 11 & -2 \end{pmatrix}$$
Solution $A = \begin{pmatrix} 0 & 4 & 9 \\ 8 & 3 & 7 \end{pmatrix}$ and $B = \begin{pmatrix} 7 & 3 & 8 \\ 1 & 4 & 9 \end{pmatrix}$ then find $3A - 9B$. [PTA-5]

<u>Solution :-</u>	
$3A - 9B = 3\begin{pmatrix} 0 & 4 & 9 \\ 8 & 3 & 7 \end{pmatrix} - 9\begin{pmatrix} 7 & 5 & 8 \\ 1 & 4 & 9 \end{pmatrix}$	
(0 12 27) (63 27 72)	
$=\begin{pmatrix} 24 & 9 & 21 \end{pmatrix} - \begin{pmatrix} 9 & 36 & 81 \end{pmatrix}$	
(0-63 12-27 27-72)	
$= \begin{pmatrix} 24 - 9 & 9 - 36 & 21 - 81 \end{pmatrix}$	
$=\begin{pmatrix} -63 & -15 & -45\\ 15 & -27 & -60 \end{pmatrix}$	~ (7)
ONE MARK QUESTIONS	
UNIT - 4 : GEOMETRY	
56) If in $\triangle ABC$, DE BC, AB = 3.6 cm, AC = 2.4 cm and AD = 2.1	
cm then the length of AE is	Ans:- 1.4 cm
57) In a $\triangle ABC$, AD is the bisector of $\angle BAC$. If $AB = 8$ cm, $BD = 6$ cm	
and $DC = 3cm$. The length of the side AC is	Ans:- 4 cm
58) In the adjacent figure, $\angle BAC =$	Ama
90° and $AD \perp BC$ then	Alls:- $BD CD - 4D^2$
	$DD \cdot CD = MD$
59) Two poles of heights 6 m and 11 m stand vertically on a plane	
ground. If the distance between their feet is 12 m, what is the	Ans:- 13 m
distance between their tops?	
60) In the given figure, $PR = 26$ cm,	
$QR = 24 \text{ cm}, \ \angle PAQ = 90^{\circ}, PA$	
= 6 cm and QA = 8 cm. Find	Ans:- 75
ZPQR.	
Slip Test - 12	
I Choose the most suitable answer from the given four alternatives and wr	ite the option code with
the corresponding answer. 1) If in $AABC$, DE DC AB 2 (corr AC 2 (corr AB 2 (corr	$(3 \times 1 = 3)$
1) If in ΔABC , $DE \parallel BC$, $AB = 3.0$ cm, $AC = 2.4$ cm and $AD = 2.1$ cm then (A) 1.4 cm (B) 1.8 cm (C) 1.2 cm (D) 1.05 cm	the length of AE 1s
2) In the adjacent figure, $\angle BAC = 90^{\circ}$ and $AD \perp BC$ then	-
(A) $BD . CD = BC^2$ (B) $AB . AC = BC^2$	
(C) $BD \cdot CD = AD^2$ (D) $AB \cdot AC = AC^2$	
(C) $BD \cdot CD = AD^2$ (D) $AB \cdot AC = AC^2$ B D C 3) Two poles of heights 6 m and 11 m stand vertically on a plane ground. If the	e distance between their
 (C) BD . CD = AD² (D) AB . AC = AC² B D C C C C B D C C C C D C C C C C D C C C D C C C D C D C D C C C D C C C D C D C C C D C<!--</td--><td>e distance between their</td>	e distance between their
(C) $BD . CD = AD^2$ (D) $AB . AC = AC^2$ B D C C 3) Two poles of heights 6 m and 11 m stand vertically on a plane ground. If th feet is 12 m, what is the distance between their tops? (A) 13 m (B) 14 m (C) 15 m (D) 12.8 m	e distance between their
(C) $BD . CD = AD^2$ (D) $AB . AC = AC^2$ B D C C 3) Two poles of heights 6 m and 11 m stand vertically on a plane ground. If th feet is 12 m, what is the distance between their tops? (A) 13 m (B) 14 m (C) 15 m (D) 12.8 m II Answer the following:-	e distance between their $(2 \times 2 = 4)$
(C) $BD . CD = AD^2$ (D) $AB . AC = AC^2$ B D C B D C C S S S S S S S S S S S S S	e distance between their $(2 \times 2 = 4)$
(C) $BD . CD = AD^2$ (D) $AB . AC = AC^2$ B D C B D C C B D C C B D C C B D C C B D C C B D C C C B D C C B D C C C C C C C C C C C C C C	e distance between their $(2 \times 2 = 4)$
(C) $BD \cdot CD = AD^2$ (D) $AB \cdot AC = AC^2$ B D C 3) Two poles of heights 6 m and 11 m stand vertically on a plane ground. If the feet is 12 m, what is the distance between their tops? (A) 13 m (B) 14 m (C) 15 m (D) 12.8 m II Answer the following:- 4) If $A = \begin{pmatrix} 0 & 4 & 9 \\ 8 & 3 & 7 \end{pmatrix}$ and $B = \begin{pmatrix} 7 & 3 & 8 \\ 1 & 4 & 9 \end{pmatrix}$ then find $3A - 9B$. 5) If $A = \begin{pmatrix} \sqrt{7} & -3 \\ -\sqrt{5} & 2 \end{pmatrix}$ then find the transpose of $(-A)$.	e distance between their $(2 \times 2 = 4)$
(C) $BD . CD = AD^2$ (D) $AB . AC = AC^2$ B D C B D C C B D C C B D C C B D C C C S C C S S (A) 13 m (B) 14 m (C) 15 m (D) 12.8 m II Answer the following:- 4) If $A = \begin{pmatrix} 0 & 4 & 9 \\ 8 & 3 & 7 \end{pmatrix}$ and $B = \begin{pmatrix} 7 & 3 & 8 \\ 1 & 4 & 9 \end{pmatrix}$ then find $3A - 9B$. 5) If $A = \begin{pmatrix} \sqrt{7} & -3 \\ -\sqrt{5} & 2 \\ \sqrt{3} & -5 \end{pmatrix}$ then find the transpose of $(-A)$.	e distance between their $(2 \times 2 = 4)$

6) If A = (1 -1)/(2 3) then prove that A² - 4A + 5I₂ = 0. **IV Answer the following:** (1 x 8 = 8)
7) A garment shop announces a flat 50% discount on every purchase of items for their customers. Draw the graph for the relation between the Marked Price and the Discount. Hence find

(i) the marked price when a customer gets a discount of ₹3250 (from graph)
(ii) the discount when the marked price is ₹2500.

www.Trb Tnpsc.Com

$$\begin{split} AB &= \begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix} x \begin{pmatrix} 1 & 2 \\ -4 & 2 \end{pmatrix} \\ &= \begin{bmatrix} (1 & 1) & \begin{pmatrix} 1 \\ -4 \end{pmatrix} & (1 & 1) & \begin{pmatrix} 2 \\ 2 \\ -1 & 3 \end{pmatrix} & \begin{pmatrix} 1 \\ -4 \end{pmatrix} & (-1 & 3) & \begin{pmatrix} 2 \\ 2 \\ 2 \\ -1 \end{pmatrix} \\ &= \begin{bmatrix} (1 & 1) & \begin{pmatrix} -7 & 6 \\ 3 & 2 \\ -1 & 3 \end{pmatrix} & \begin{pmatrix} -7 & 6 \\ 2 \\ -1 & 3 \end{pmatrix} & \begin{pmatrix} -7 & 6 \\ 2 \\ -1 & 3 \end{pmatrix} \\ &= \begin{bmatrix} (1 & 1) & \begin{pmatrix} -7 & 6 \\ -1 & 3 \end{pmatrix} & \begin{pmatrix} -7 & 6 \\ 2 \\ -1 & 3 \end{pmatrix} & \begin{pmatrix} -7 & 6 \\ 2 \\ -1 & 3 \end{pmatrix} & \begin{pmatrix} -7 & 1 \\ 2 \\ -1 & 3 \end{pmatrix} & \begin{pmatrix} -7 & 3 \\ -1 & 3 \end{pmatrix} \\ &= \begin{pmatrix} -7 + 3 & 6 + 2 \\ -7 + 9 & -6 + 6 \end{pmatrix} \\ &= \begin{pmatrix} -7 + 3 & 6 + 2 \\ -1 & 3 \end{pmatrix} \\ &= \begin{pmatrix} -7 + 3 & 6 + 2 \\ -7 + 9 & -6 + 6 \end{pmatrix} \\ &= \begin{pmatrix} -7 + 3 & 6 + 2 \\ -4 & 1 \end{pmatrix} \\ &= \begin{pmatrix} -7 + 3 & 6 + 2 \\ -7 + 9 & -6 + 6 \end{pmatrix} \\ &= \begin{pmatrix} -7 + 3 & 6 + 2 \\ -4 & 1 \end{pmatrix} \\ &= \begin{pmatrix} -7 + 3$$

55

www.Trb Tnpsc.Com

56

$$AC - BC = \begin{pmatrix} 4 & 4 \\ 5 & 6 \end{pmatrix} - \begin{pmatrix} 8 & 0 \\ 7 & 10 \end{pmatrix}$$

$$= \begin{pmatrix} 4 & 4 \\ -8 & 4 + 0 \\ 5 - 7 & 6 - 10 \end{pmatrix}$$

$$= \begin{pmatrix} -4 & 4 \\ -2 & -4 \end{pmatrix} \Rightarrow (2)$$

$$\therefore \text{ from (1) and (2) we see that (A - B)C = AC - BC$$

TWO MARKS QUESTIONS
UNT - 3 : ALGEBRA - MATRICES

$$54) \text{ If } A = \begin{pmatrix} 1 & 9 \\ 8 & -3 \end{pmatrix}, B = \begin{pmatrix} 5 & 7 \\ 3 & 3 \\ 8 & -3 \end{pmatrix}, \text{ then verify that}$$

(i) $A + B = B + A$ (ii) $A + (-A) = (-A) + A = 0.$
Solution :
(i) $A + B = \begin{pmatrix} 1 & 9 \\ 3 & 4 \\ 8 & -3 \end{pmatrix} + \begin{pmatrix} 5 & 7 \\ 3 & 3 \\ 1 & 0 \end{pmatrix}$

$$= \begin{pmatrix} 1 + 5 & 9 + 7 \\ 3 + 3 & 4 + 3 \\ 8 + 1 & -3 + 0 \end{pmatrix}$$

$$= \begin{pmatrix} 6 & 16 \\ 6 & 7 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} 5 & 7 \\ 3 & 3 \\ 8 & -3 \end{pmatrix}$$

$$= \begin{pmatrix} 5 & 7 \\ 5 + 1 & 7 + 9 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} -3 & -4 \\ 1 & 9 \\ -3 \end{pmatrix}$$

 $B + A = \begin{pmatrix} 5 & 7 \\ 3 & 3 + 4 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -1 & -9 \\ -3 & -4 \\ -8 & 3 \end{pmatrix}$

$$= \begin{pmatrix} 6 & 16 \\ 6 & 7 \\ -3 & -4 \\ -8 & 3 \end{pmatrix}$$

 $A + (-A) = \begin{pmatrix} 1 & 9 \\ 3 & 4 \\ 1 & -1 & 9 - 9 \\ -3 & -4 \\ -3 & -4 \\ -8 & -3 \end{pmatrix}$

$$= \begin{pmatrix} 0 & 0 \\ 3 & -3 + -4 \\ -8 & -3 \\ -8 & -3 + 3 \\ -8 & -3 + 3 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ -0 & - \rightarrow (1)$$

57

www.Trb Tnpsc.Com

point?	Ans:- two
63) The two tangents from an exterior points P to a circle with	Ans:- 110°
centre at O are PA and PB. $\angle APB = 70^{\circ}$ then the value of	
$\angle AOB$ is	
64) In figure CP and CQ are tangents to a circle with centre at O. ARB is another tangent touching the circle at R. If CP = 11 cm and BC = 7 cm, then the length of BR is P	Ans:- 4 cm
65) In figure if PR is tangent to the circle at P and O is the centre of the circle, then $\angle POQ$ is	Ans:- 120°
Slip Test - 13	
I Choose the most suitable answer from the given four alternatives and wri	te the option code with
the corresponding answer.	$(3 \times 1 = 3)$
1) How many tangents can be drawn to the circle from an exterior po	int?
(A) one (B) two (C) infinite (D) zero	
2) The two tangents from an exterior points P to a circle with centre at O are I (A) 1000 (D) 1100 (C) 1200	PA and PB. $\angle APB = 70^{\circ}$
then the value of $\angle AOB$ is (A) 100° (B) 110° (C) 120°	(D) 130°
 another tangent touching the circle at R. If CP = 11 cm and BC = 7 cm, then the length of BR is (A) 6 cm (B) 5 cm (C) 8 cm (D) 4 cm 	
II Answer the following:-	$(2 \times 2 = 4)$
4) If $A = \begin{pmatrix} 5 & -4 \\ 6 & -5 \end{pmatrix}$ then prove that $A^2 = I$.	
5) If $A = \begin{pmatrix} 1 & 9 \\ 3 & 4 \\ 8 & -3 \end{pmatrix}$, $B = \begin{pmatrix} 5 & 7 \\ 3 & 3 \\ 1 & 0 \end{pmatrix}$ then verify that $A + (-A) = (-A) + A =$	0.
III Answer the following:-	$(1 \times 5 = 5)$
6) If $A = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$ and $C = \begin{pmatrix} -7 & 6 \\ 2 & 2 \end{pmatrix}$ then prove that $A(B)$	
	+ C) = AB + AC.
IV Answer the following:-	+ C) = AB + AC. (1 x 8 = 8)
 IV Answer the following:- 7) Draw the two tangents from a point which is 10 cm away from the centre of 	+ C) = AB + AC. (1 x 8 = 8) a circle of radius 5 cm.

Kindly Send Me Your Key Answer to Our email id - Padasalai.net@gmail.com

FIVE MARKS QUESTIONS
UNIT - 3 : ALGEBRA - MATRICES
46) If $A = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}$ and $B = \begin{pmatrix} 4 & 0 \\ 1 & 5 \end{pmatrix}$ then prove that $(A - B)^T = B^T - A^T$.
Solution:-
LHS:-
$A - B = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} - \begin{pmatrix} 4 & 0 \\ 1 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} + \begin{pmatrix} -4 & 0 \\ -1 & -5 \end{pmatrix} = \begin{pmatrix} 1 - 4 & 2 + 0 \\ 1 - 1 & 3 - 5 \end{pmatrix}$ $= \begin{pmatrix} -3 & 2 \\ 0 & -2 \end{pmatrix}$
$(A-B)^{T} = \begin{pmatrix} -3 & 2 \\ 0 & -2 \end{pmatrix}^{T} = \begin{pmatrix} -3 & 0 \\ 2 & -2 \end{pmatrix} \longrightarrow (1)$
<u>RHS</u> :-
$A^{T} = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}^{T} = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} \text{\acute{AuU}~} \tilde{U} \tilde{U} \tilde{U} \tilde{U} \tilde{U} \tilde{U} \tilde{U} U$
$A^T - B^T = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix} - \begin{pmatrix} 4 & 1 \\ 2 & 5 \end{pmatrix}$
$\begin{pmatrix} 2 & 3' & (0 & 5') \\ (1 & 1) & (-4 & -1) \end{pmatrix}$
$= \begin{pmatrix} 2 & 3 \end{pmatrix} + \begin{pmatrix} 0 & -5 \end{pmatrix}$
$= \begin{pmatrix} 1-4 & 1-1 \end{pmatrix}$
$\binom{2}{2} + 0 \binom{3}{2} - 5^{j}$
$A^{T} - B^{T} = \begin{pmatrix} -3 & 0 \\ 2 & -2 \end{pmatrix} \rightarrow (2)$
\therefore from (1) and (2) we see that $(A - B)^T = A^T - B^T$
$(4 \ 3 \ 1) (2 \ 3 \ 4) (8 \ 3 \ 4)$
47) If $A = \begin{pmatrix} 2 & 3 & -8 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 9 & 2 \end{pmatrix}$ and $C = \begin{pmatrix} 1 & -2 & 3 \end{pmatrix}$ then
1 0 -4/ $-7 1 -1/$ $2 4 -1/$
prove that $A + (B + C) = (A + B) + C$.
Solution:-
$(2 \ 3 \ 4) \ (8 \ 3 \ 4) \ (2+8 \ 3+3 \ 4+4)$
$B + C = \begin{pmatrix} 2 & 3 & 2 \\ 1 & 9 & 2 \end{pmatrix} + \begin{pmatrix} 3 & -2 & 3 \\ 1 & -2 & 3 \end{pmatrix} = \begin{pmatrix} 2 + 3 & -3 & -3 \\ 1 + 1 & 9 - 2 & 2 + 3 \end{pmatrix}$
$\begin{pmatrix} -7 & 1 & -1 \end{pmatrix} \begin{pmatrix} 2 & 4 & -1 \end{pmatrix} \begin{pmatrix} -7 + 2 & 1 + 4 & -1 - 1 \end{pmatrix}$
$\begin{pmatrix} 10 & 6 & 8 \\ 0 & -7 & -7 \end{pmatrix}$
$= \begin{pmatrix} 2 & 7 & 5 \\ -7 & -7 & 5 \end{pmatrix}$
$\begin{pmatrix} -5 & 5 & -2 \\ /4 & 3 & 1 \end{pmatrix}$ $(10 & 6 & 8 \end{pmatrix}$ $(4 + 10 & 3 + 6 & 1 + 8)$
$A + (B + C) = \begin{pmatrix} 1 & 3 & -8 \\ 2 & 3 & -8 \end{pmatrix} + \begin{pmatrix} 10 & 0 & 0 \\ 2 & 7 & 5 \end{pmatrix} = \begin{pmatrix} 1 + 10 & 3 + 0 & 1 + 0 \\ 2 + 2 & 3 + 7 & -8 + 5 \end{pmatrix}$
$\begin{pmatrix} 1 & 0 & -4 \end{pmatrix}$ $\begin{pmatrix} -5 & 5 & -2 \end{pmatrix}$ $\begin{pmatrix} 1 -5 & 0 + 5 & -4 - 2 \end{pmatrix}$
$= \begin{pmatrix} 1 & 5 & 5 \\ 4 & 10 & -3 \end{pmatrix} \longrightarrow (1)$
-4 5 -6/
DHS.
<u>MID</u> :-

61

$$\begin{aligned} A + B = \begin{pmatrix} 4 & 3 & 1 \\ 2 & 3 & -8 \\ 1 & 0 & -4 \end{pmatrix} + \begin{pmatrix} 2 & 3 & 4 \\ 1 & 9 & 2 \\ -7 & 1 & -1 \end{pmatrix} = \begin{pmatrix} 4 + 2 & 3 + 3 & 1 + 4 \\ 2 + 1 & 3 + 9 & -8 + 2 \\ 1 - 7 & 0 + 1 & -4 - 1 \end{pmatrix} \\ = \begin{pmatrix} 6 & 6 & 5 \\ 3 & -6 & -6 \\ -6 & 1 & -5 \end{pmatrix} \\ (A + B) + C = \begin{pmatrix} 6 & 6 & 5 \\ 3 & 12 & -6 \\ -6 & 1 & -5 \end{pmatrix} + \begin{pmatrix} 8 & 3 & 4 \\ 1 & -2 & 3 \\ 2 & 4 & -1 \end{pmatrix} = \begin{pmatrix} 6 + 8 & 6 + 3 & 5 + 4 \\ 3 + 1 & 12 - 2 & -6 + 3 \\ -6 + 2 & 1 + 4 & -5 - 1 \end{pmatrix} \\ = \begin{pmatrix} 14 & 9 & 9 \\ 4 & 10 & -3 \\ -4 & 5 & -6 \end{pmatrix} \rightarrow (2) \\ \therefore \text{ from (1) and (2) we see that } A + (B + C) = (A + B) + C \\ \hline 48) \text{ If } A = \begin{pmatrix} \cos \theta & 0 \\ 0 & \cos \theta \end{pmatrix}, B = \begin{pmatrix} \sin \theta & 0 \\ 0 & \sin \theta \end{pmatrix} \quad \text{ then show that } A^2 + B^2 = I_2 \\ \hline \text{[PTA-2]} \\ \hline \text{Solution:} \\ A^2 = A \times A = \begin{pmatrix} \cos 0 & 0 \\ 0 & \cos \theta \end{pmatrix} (\cos 0 & 0 \\ (0 & \cos \theta) & (\cos 0 & 0 \\ 0 & \cos \theta) \end{pmatrix} \\ = \begin{pmatrix} (\cos^2 \theta + 0 & 0 + 0 \\ 0 + 0 & 0 + \cos^2 \theta \end{pmatrix} \\ = \begin{pmatrix} \cos^2 \theta + 0 & 0 + 0 \\ 0 & \cos^2 \theta \end{pmatrix} B^2 = B \times B \\ = \begin{pmatrix} \sin \theta & 0 \\ 0 & \sin^2 \theta \\ 0 & \sin^2 \theta \end{pmatrix} (0 & \sin \theta) \begin{pmatrix} 0 \\ \sin \theta \end{pmatrix} \\ = \begin{pmatrix} (\sin^2 \theta + 0 & 0 + 0 \\ 0 + 0 & 0 + \sin^2 \theta \\ 0 & \sin^2 \theta \end{pmatrix} \\ = \begin{pmatrix} (\sin^2 \theta + 0 & 0 + 0 \\ 0 + 0 & 0 + \sin^2 \theta \end{pmatrix} \\ = \begin{pmatrix} (\sin^2 \theta + 0 & 0 + 0 \\ 0 + 0 & 0 + \sin^2 \theta \end{pmatrix} \\ = \begin{pmatrix} (\sin^2 \theta + 0 & 0 + 0 \\ 0 + 0 & \cos^2 \theta + (\sin^2 \theta & 0 \\ 0 & \sin^2 \theta \end{pmatrix} \\ A^2 + B^2 = \begin{pmatrix} \cos^2 \theta + 0 \\ 0 + 0 \\ 0 + 0 \\ 0 + 0 \\ 0 + 0 \\ 0 + 0 \\ 0 + 0 \\ 0 + 0 \\ 0 \end{bmatrix} = \begin{pmatrix} 1 & 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \\ = \begin{pmatrix} I & 0 \\ 0 \\ 0 \\ I \\ I \end{pmatrix}$$

62

 $=\frac{1}{2}(27-27)$ \therefore The given points are collinear. **ONE MARK QUESTIONS UNIT - 5 : COORDINATE GEOMETRY** 66) The area of triangle formed by the points (-5, 0), (0, -5) and Ans:- 25 sq.units (5,0) is 67) A man walks near a wall, such that the distance between him Ans:- x = 10and the wall is 20 units. Consider the wall to be the Y axis. The path travelled by the man is 68) The straight line given by the equation x = 11 is Ans:parallel to Y – axis Ans:- 9 69) If (5,7), (3,p) and (6,6) are collinear, then the value of p is 70) The point of intersection of 3x - y = 4 and x + y = 8 is Ans:- (3,5) Slip Test - 14 I Choose the most suitable answer from the given four alternatives and write the option code with the corresponding answer. $(3 \times 1 = 3)$ 1) The area of triangle formed by the points (-5,0), (0,-5) and (5,0) is (D) none of these (A) 0 sq.units (B) 25 sq.units (C) 5 sq.units 2) If (5,7), (3,p) and (6,6) are collinear, then the value of p is (A) 3 (B) 6 (C) 9(D) 12 3) The point of intersection of 3x - y = 4 and x + y = 8 is (A) (5,3) (B) (2,4) (C) (3,5) (D) (4,4) $(2 \ge 2 = 4)$ **II** Answer the following:-4) If the area of the triangle formed by the vertices A(-1,2), B(k,-2) and C(7,4) (taken in 22 sq.units, find the value of k. order) is 5) Show that the given points are collinear. P(-1.5, 3), Q(6, -2), R(-3, 4). **III Answer the following:-** $(1 \times 5 = 5)$ 6) If $A = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}$ and $B = \begin{pmatrix} 4 & 0 \\ 1 & 5 \end{pmatrix}$ then prove that $(A - B)^T = B^T - A^T$. IV Answer the following:- $(1 \times 8 =$ 8) 7) Draw the graph of xy = 24, x, y > 0, Using the graph find, y when x = 3 and **(i)** x when y = 6. **(ii)**

65

[PTA-5, Sep-20, Aug-22, Apr-23]

D

Е 1 С

	$\frac{AB}{AD} = \frac{AC}{AE}$	Corresponding sides are proportional	
	$\frac{AD + DB}{AD} = \frac{AE + EC}{AE}$	Split AB and AC using the points D and E	-
	$1 + \frac{DB}{AD} = 1 + \frac{EC}{AE}$	On simplification	
	$\frac{DB}{AD} = \frac{EC}{AE}$	Cancelling 1 on both sides	
	$\frac{\overline{AD}}{\overline{DB}} = \frac{\overline{AE}}{\overline{EC}}$	Taking reciprocals	K

Hence proved.

50) <u>Angle Bisector Theorem (ABT)</u>:-Statement:-

The internal bisector of an angle of a triangle divides the opposite side internally in the ratio of the corresponding sides containing the angle.

Given:-

In $\triangle ABC$, *AD* is the internal bisector.

To Prove:-

$$\frac{AB}{AC} = \frac{BD}{DC}$$

Construction:-

Draw a line through C parallel to AB.

Extend AD to meet the line through C at E.

Proof:-

No	Statement	Reason			
1.	$\angle AEC = \angle BAE = \angle 1$	Two parallel lines cut by a transversal make alternate angles equal			
2.	ΔACE is an isosceles $AC = CE \rightarrow (1)$	In $\triangle ACE$, $\angle CAE = \angle CEA$			
3.	$\Delta ABD \sim \Delta ECD$ $\frac{AB}{CE} = \frac{BD}{CD}$	By AA Similarity			
4.	$\frac{AB}{AC} = \frac{BD}{CD}$	From (1) $AC = CE$			
Hence Proved.					

51) PYTHAGORAS THEOREM:-

[PTA-1, Sep-21, Jun-23]

A

D

Statement:-

In a right angled triangle, the square of the hypotenuse is equal to the sum of the squares on the other two sides.

R

Given:-

In $\triangle ABC$, $\angle A = 90^{\circ}$

To Prove:-

$$AB^2 + AC^2 = BC^2$$

Construction:-

Draw $AD \perp BC$

Proof:-

	No	Statement	Reason			
	1.	Compare $\triangle ABC$ and $\triangle DBA$ $\angle B$ is common. $\angle BAC = \angle BDA = 90^{\circ}$ Therefore, $\triangle ABC \sim \triangle DBA$ $\frac{AB}{BD} = \frac{BC}{AB}$ $AB^2 = BC \times BD \rightarrow (1)$	Given $\angle BAC = 90^{\circ}$ and by construction $\angle BDA = 90^{\circ}$ By AA Similarity			
	2.	Compare $\triangle ABC$ and $\triangle DAC$ $\angle C$ common. $\angle BAC = \angle ADC = 90^{\circ}$ Therefore, $\triangle ABC \sim \triangle DAC$ $\frac{BC}{AC} = \frac{AC}{DC}$ $AC^2 = BC \times DC \rightarrow (2)$	Given $\angle BAC = 90^{\circ}$ and by construction $\angle BDA = 90^{\circ}$ By <i>AA</i> Similarity			
(1) + (2): $AB^{2} + AC^{2} = BC \times BD + BC \times DC$ $= BC(BD + DC)$ $= BC \times BC = BC^{2}$ Hence Proved						
		TWO MARKS	QUESTIONS			
UNIT - 5 : COORDINATE GEOMETRY						
60) Find the slope of a line joining the points (14, 10) and (14, -6) [Sep-20] Solution:- <u>Given</u> , $(x_1, y_1) = (14, 10)$ and $(x_2, y_2) = (14, -6)$ WKT Slope $m = \frac{y_2 - y_1}{y_1 - y_1}$						
	$x_2 - x_1$					

$$\therefore \text{ Slope, } m = \frac{-6-10}{14-14} = \frac{-16}{0} = \infty$$

The slope is undefined.

61) Find the slope of a line joining the points $(5, \sqrt{5})$ with the origin. [Aug-22, Jun-23] Solution:-

$$(x_1, y_1) = (5, \sqrt{5}) \text{ and } (x_2, y_2) = (0, 0)$$

WKT, Slope, $m = \frac{y_2 - y_1}{x_2 - x_1}$
∴ Slope, $m = \frac{0 - \sqrt{5}}{0 - 5} = \frac{\sqrt{5}}{\sqrt{5}\sqrt{5}} = \frac{1}{\sqrt{5}}$

62) If the line passes r through the points (-2, 2), (5, 8) and the line s passes through the points (-8, 7), (-2, 0). Is the line r perpendicular to s? [M-22, A-22]

Solution:-

Slope = $\frac{y_2 - y_1}{x_2 - x_1}$

Slope of a straight line r 8 - 2 6	$\begin{array}{c} x_1 \to -2 \\ y_1 \to 2 \end{array}$	$\begin{array}{c} x_2 \rightarrow 5\\ y_2 \rightarrow 8 \end{array}$
$m_1 = \frac{1}{5+2} = \frac{1}{7}$ Slope of a straight line <i>s</i>		
$m_2 = \frac{\ddot{0} - 7}{-2 + 8} = \frac{-7}{6}$	$\begin{array}{c} x_1 \to -8 \\ y_1 \to 7 \end{array}$	$\begin{array}{c} x_2 \to -2 \\ y_2 \to 0 \end{array}$
$m_1 \times m_2 = \frac{6}{7} \times \frac{-7}{6} = -1$		5

 \therefore The straight lines r and s are perpendicular.

63) If the line passes p through the points (3, -2) and (12, 4) and the line q passes through the points (6, -2) and (12, 2). Is the line p parallel to q? [May-22, Aug-22] Solution:-

Slope
$$= \frac{y_2 - y_1}{x_2 - x_1}$$

Slope of a straight line p
 $m_1 = \frac{4 + 2}{12 - 3} = \frac{6}{9} = \frac{2}{3}$
Slope of a straight line q
 $m_2 = \frac{2 + 2}{12 - 6} = \frac{4}{6} = \frac{2}{3}$
 $m_1 = m_2 = \frac{2}{3}$
 $(x_1, y_1) = (3, -2)$
 $(x_1, y_1) = (12, 4)$
 $(x_1, y_1) = (6, -2)$
 $(x_1, y_1) = (12, 2)$

 \therefore The straight lines p and q are parallel.

ONE MARK QUESTIONS				
UNIT - 5 : COORDINATE GEOMETRY				
71) The slope of the line joining (12, 3), (4, <i>a</i>) is $\frac{1}{8}$. Then value of ' <i>a</i> ' is	Ans:- 2			
72) The slope of the line which is perpendicular to line joining the points $(0, 0)$ and $(-8, 8)$ is	Ans:- 1			
73) If slope of the line PQ is $\frac{1}{\sqrt{3}}$ then the slope of the perpendicular	Ans:- $-\sqrt{3}$			

bisector of PO is						
74) If A is a point on the Y axis whose ordinate is 8 and B is a point						
on the X axis whose abscissa is 5 then the equation of the line	Ans:- $8x + 5y = 40$					
AB is						
75) The equation of a line passing through the origin and						
perpendicular to the line $7x - 3y + 4 = 0$ is	Ans:- $3x + 7y = 0$					
Slip Test - 15	-					
I Choose the most suitable answer from the given four alternatives and w	rite the option code with					
the corresponding answer. $(3 \times 1 = 3)$						
1) The equation of a line passing through the origin and perpendicular to the	line $7x - 3y + 4 = 0$ is					
(A) $7x - 3y + 4 = 0$ (B)	3x - 7y + 4 = 0					
(C) $3x + 7y = 0$ (D) $7x - 3y = 0$ (D) The slope of the line which is perpendicular to line is initial the per-	into $(0, 0)$ and $(0, 0)$ is					
2) The slope of the line which is perpendicular to line joining the point $(A) = 1$ (D) 1 (D)	(0, 0) and $(-0, 0)$ is					
$(A) -1$ (B) 1 (C) $\frac{1}{3}$ (D)	-8					
3) If A is a point on the Y axis whose ordinate is 8 and B is a point on the X then the equation of the line A B is	axis whose abscissa is 5					
(A) $8x + 5y = 40$ (B) $8x - 5y = 40$ (C) $x = 8$ (D)	v = 5					
$(1) \ 0x + 3y = 10 \qquad (2) \ 0x - 3y = 10 \qquad (3) \ x = 0 \qquad (2)$	y = 5					
II Answer the following:- $(2 \times 2 = 4)$						
4) If the line passes p through the points $(3, -2)$ and $(12, 4)$ and the line q	passes through the points					
(6, -2) and $(12, 2)$. Is the line p parallel to q?						
5) Find the slope of a line joining the points $(5, \sqrt{5})$ with the origin.						
III Answer the following:- 6) State and Prove Pythagoras theorem	$(1 \times 5 = 5)$					
b) State and Frove Tythagoras theorem.						
IV Answer the following:- $(1 \times 8 = 8)$						
7) Take a point which is 11 cm away from the centre of a circle of radius 4 cm and draw the two						
tangents to the circle from that point.						

DAY – 18 WEEKLY TEST - 3

www.Trb Tnpsc.Com

<u>501011011:-</u>			
Given, $(x_1, y_1) = A(-5,7)$; $(x_2, y_2) = B(-4, k)$;			
$(x_3, y_3) = C(-1, -6); (x_4, y_4) = D(4,5)$			
Area of a quadrilateral = 72 Sq. units $x_2 \rightarrow x_3 \rightarrow x_4 \rightarrow x_1$			
Area of the quadrilateral = $\frac{1}{2} \{y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_4 \\ y_1 \}$			
$72 = \frac{1}{2} \left\{ \begin{array}{c} -5 \\ 7 \end{array} \right\} \xrightarrow{-4}_{k} \xrightarrow{-1}_{-6} \xrightarrow{4}_{5} \xrightarrow{-5}_{7} \right\}$			
$2 \ge 72 = -5k + 24 - 5 + 28 + 28 + k + 24 + 25$			
144 = -4k + 129 - 5			
144 = -4k + 124			
4k = 124 - 144			
4k = -20			
20			
$k = \frac{1}{4}$			
k = -5			
TWO MARKS QUESTIONS			
<u>UNIT - 5 : COORDINATE GEOMETRY</u>			
(54) Calculate the slope and y intercept of the straight line $8x-7y+6=0$. [Sep-21]			
54) Calculate the slope and y intercept of the straight line $8x-7y+6=0$. [Sep-21] Solution:-			
54) Calculate the slope and y intercept of the straight line $8x-7y+6=0$. [Sep-21] Solution:- The given straight line, $8x - 7y + 6 = 0$			
54) Calculate the slope and y intercept of the straight line $8x-7y+6=0$. [Sep-21] Solution:- The given straight line, $8x - 7y + 6 = 0$ -7y = -8x - 6			
54) Calculate the slope and y intercept of the straight line $8x-7y+6=0$. [Sep-21] Solution:- The given straight line, $8x - 7y + 6 = 0$ -7y = -8x - 6 7y = 8x + 6			
54) Calculate the slope and y intercept of the straight line $8x-7y+6=0$. [Sep-21] Solution:- The given straight line, $8x - 7y + 6 = 0$ -7y = -8x - 6 7y = 8x + 6 $y = \frac{8}{7}x + \frac{6}{7}$			
54) Calculate the slope and y intercept of the straight line $8x-7y+6=0$. [Sep-21] Solution:- The given straight line, $8x - 7y + 6 = 0$ -7y = -8x - 6 7y = 8x + 6 $y = \frac{8}{7}x + \frac{6}{7}$ Compare this with $y = mx + c$, we see that			
54) Calculate the slope and y intercept of the straight line $8x-7y+6=0$. [Sep-21] Solution:- The given straight line, $8x - 7y + 6 = 0$ -7y = -8x - 6 7y = 8x + 6 $y = \frac{8}{7}x + \frac{6}{7}$ Compare this with $y = mx + c$, we see that Slope, $m = \frac{8}{7}$ and y - intercept, $c = \frac{6}{7}$			
54) Calculate the slope and y intercept of the straight line $8x-7y+6=0$. [Sep-21] Solution:- The given straight line, $8x - 7y + 6 = 0$ -7y = -8x - 6 7y = 8x + 6 $y = \frac{8}{7}x + \frac{6}{7}$ Compare this with $y = mx + c$, we see that Slope, $m = \frac{8}{7}$ and y - intercept, $c = \frac{6}{7}$ 55) Find the intercepts made by the line $3x - 2y - 6 = 0$ on the co-ordinate axes.			
Solution:- Solution:- The given straight line, $8x - 7y + 6 = 0$ -7y = -8x - 6 7y = 8x + 6 $y = \frac{8}{7}x + \frac{6}{7}$ Compare this with $y = mx + c$, we see that Slope, $m = \frac{8}{7}$ and y - intercept, $c = \frac{6}{7}$ i5) Find the intercepts made by the line $3x - 2y - 6 = 0$ on the co-ordinate axes. [Sep-21]			
Solution:- Solution:- The given straight line, $8x - 7y + 6 = 0$ -7y = -8x - 6 7y = 8x + 6 $y = \frac{8}{7}x + \frac{6}{7}$ Compare this with $y = mx + c$, we see that Slope, $m = \frac{8}{7}$ and y - intercept, $c = \frac{6}{7}$ is) Find the intercepts made by the line $3x - 2y - 6 = 0$ on the co-ordinate axes. [Sep-21] Solution:-			
Solution:- Solution:- The given straight line, $8x - 7y + 6 = 0$ -7y = -8x - 6 7y = 8x + 6 $y = \frac{8}{7}x + \frac{6}{7}$ Compare this with $y = mx + c$, we see that Slope, $m = \frac{8}{7}$ and y - intercept, $c = \frac{6}{7}$ (Sep-21) Solution:- The given straight line, $3x - 2y - 6 = 0$			
54) Calculate the slope and y intercept of the straight line $8x-7y+6=0$. [Sep-21] Solution:- The given straight line, $8x - 7y + 6 = 0$ -7y = -8x - 6 7y = 8x + 6 $y = \frac{8}{7}x + \frac{6}{7}$ Compare this with $y = mx + c$, we see that Slope, $m = \frac{8}{7}$ and y - intercept, $c = \frac{6}{7}$ 55) Find the intercepts made by the line $3x - 2y - 6 = 0$ on the co-ordinate axes. [Sep-21] Solution:- The given straight line, $3x - 2y - 6 = 0$ 3x - 2y = 6			
Solution:- Solution:- The given straight line, $8x - 7y + 6 = 0$ -7y = -8x - 6 7y = 8x + 6 $y = \frac{8}{7}x + \frac{6}{7}$ Compare this with $y = mx + c$, we see that Slope, $m = \frac{8}{7}$ and y - intercept, $c = \frac{6}{7}$ $\overline{(55)}$ Find the intercepts made by the line $3x - 2y - 6 = 0$ on the co-ordinate axes. [Sep-21] Solution:- The given straight line, $3x - 2y - 6 = 0$ 3x - 2y = 6 $\frac{3x - 2y}{2} = 1$			
54) Calculate the slope and y intercept of the straight line $8x-7y+6=0$. [Sep-21] Solution:- The given straight line, $8x - 7y + 6 = 0$ -7y = -8x - 6 7y = 8x + 6 $y = \frac{8}{7}x + \frac{6}{7}$ Compare this with $y = mx + c$, we see that Slope, $m = \frac{8}{7}$ and y - intercept, $c = \frac{6}{7}$ is) Find the intercepts made by the line $3x - 2y - 6 = 0$ on the co-ordinate axes. [Sep-21] Solution:- The given straight line, $3x - 2y - 6 = 0$ 3x - 2y = 6 $\frac{3x - 2y}{6} = 1$ 3x - 2y			
54) Calculate the slope and y intercept of the straight line $8x-7y+6=0$. [Sep-21] Solution:- The given straight line, $8x - 7y + 6 = 0$ -7y = -8x - 6 7y = 8x + 6 $y = \frac{8}{7}x + \frac{6}{7}$ Compare this with $y = mx + c$, we see that Slope, $m = \frac{8}{7}$ and y - intercept, $c = \frac{6}{7}$ 55) Find the intercepts made by the line $3x - 2y - 6 = 0$ on the co-ordinate axes. [Sep-21] Solution:- The given straight line, $3x - 2y - 6 = 0$ 3x - 2y = 6 $\frac{3x - 2y}{6} = 1$ $\frac{3x}{6} - \frac{2y}{6} = 1$			

$\frac{1}{2} + \frac{1}{-3} = 1$			
Compare this with $\frac{x}{a} + \frac{y}{b} = 1$, we see that			
x - intercept, $a = 2$ and			
y - intercept, $b = -3$			
66) Show that the straight lines $2x + 3y = 8 = 0$ and $4x + 3y = 8 = 0$	+ 6y + 18 = 0 are parallel.		
Solution:-			
$Slope = \frac{\cos \sin \sin \cos x}{\cos \sin \sin \cos y}$			
Slope of the line $2x + 3y + 8 = 0$ is, $m_1 = \frac{-2}{3}$			
Slope of the line $4x + 6y + 18 = 0$ is, $m_2 = \frac{-4}{6} = \frac{-2}{3}$			
Here, $m_1 = m_2 = \frac{-2}{3}$			
\therefore Two lines are parallel.			
67) Show that the straight lines $3x - 5y + 7 = 0$ a	and $15x + 9y + 4 = 0$ are		
perpendicular. [PIA-3]	NU I		
Solution: <u>WKT</u> , Slope of $ax + by + c = 0$ is, $m = \frac{-a}{b}$			
Slope of the line $3x - 5y + 7 = 0$ is, $m_1 = \frac{-3}{-5} = \frac{3}{5}$			
Slope of the line $15x + 9y + 4 = 0$ is, $m_2 = \frac{-3}{9} = \frac{-5}{2}$	5		
$\therefore m_1 \times m_2 = \frac{3}{5} \times \frac{-5}{2} = -1$			
\therefore Two lines are perpendicular.			
68) Show that the straight lines $x - 2y + 3 = 0$	and $6x + 3y + 8 = 0$ are		
perpendicular.			
Colutions	[PTA-5]		
Solution: - WKT Slope of $au + bu + a = 0$ is $m = -a$			
<u>WKI</u> , slope of $ax + by + c = 0$ is, $m = \frac{b}{b}$			
Slope of the line $x - 2y + 3 = 0$ is, $m_1 = \frac{1}{-2} = \frac{1}{2}$			
Slope of the line $6x + 3y + 8 = 0$ is, $m_2 = \frac{-6}{3} = -2$			
$\therefore m_1 \times m_2 = \frac{1}{2} \times (-2) = -1$			
∴ Two lines are perpendicular.			
ONE MARK QUESTIONS			
UNIT - 5 : COORDINATE GEO	METRY		
76) Consider four straight lines			
(i) $l_1: 3y = 4x + 5$ (ii) $l_2: 4y = 3x - 1$	Ans:- l_2 and l_4 are		
(iii) $l_3: 4y + 3x = 7$ (iv) $l_4: 4x + 3y = 2$ Which of the following statement is true?	perpendicular		
which of the following statement is true? 77) A straight line has equation $8y - 4x \pm 21$ Which of	Ans:- The slone is 0.5 and		
the following is true?	y-intercept 2.6		
78) When proving that a quadrilateral is a trapezium, it is	Ans:- Two parallel and two		

necessary to show	non-parallel sides
79) When proving that a quadrilateral is a parallelogram by	Ans:- The slopes of two pair
using slopes you must find	of opposite sides
80) (2, 1) is the point of intersection of two lines	Ans:- $x + y = 3$; $3x + y = 7$
Slip Test - 16	
I Choose the most suitable answer from the given four alternativ	es and write the option code with
the corresponding answer.	$(3 \times 1 = 3)$
1) When proving that a quadrilateral is a trapezium, it is necessary to	show
(A) Two sides are parallel (B) Two parallel and two non-p	arallel sides
(C) Opposite sides are parallel (D) All sides are of equal length	1
2) When proving that a quadrilateral is a parallelogram by using slop	es you must find
(A) The slopes are parallel (B) The slopes of two pair of op	oposite sides
(C) The lengths of all sides (D) Both the lengths and slopes	of two sides
3) (2, 1) is the point of intersection of two lines	
(A) $x - y - e = 0$; $3x - y - 7 = 0$ (B) $x + y = 3$; $3x + y$	= 7
(C) $3x + y = 3$; $x + y = 7$ (D) $x + 3y - 3 = 0$; x	-y-7=0
II Answer the following:-	$(2 \ge 2 = 4)$
4) Find the intercepts made by the line $3x - 2y - 6 = 0$ on the	e co-ordinate axes.
5) Show that the straight lines $x - 2y + 3 = 0$ and $6x + 3y + 8 =$	0 are perpendicular.
III Answer the following:-	$(1 \times 5 = 5)$
6) If vertices of a quadrilateral are at $A(-5,7)$, $B(-4,k)$, $C(-1,-1)$	6) and; $D(4,5)$ and its area is
72 sq.units. Find the value of k .	
IV Answer the following:-	$(1 \times 8 = 8)$
7) Draw the two tangents from a point which is 5 cm away from the	centre of a circle of diameter 6 cm.
Also, measure the lengths of the tangents.	

$\mathbf{DAY} - 20$						
SPECIAL GRAPHS – INDIRECT VARIATION						
6) A company initially started with 40 workers to complete the work by 150 days. Later, it decided to						
fasten up the work increasing the number of workers as shown below.						
	Number of workers (x)	40	50	60	75	-
	Number of $days(y)$	150	120	100	80	
(i) Graph the ab	ove data and identify the type of	of variati	on.			·
(ii) From the gr	raph, find the number of days	require	d to co	mplete	the wo	ork if the company
decides to op	ot for 120 workers?					
(iii) If the work h	as to be completed by 200 days	s, how m	any wor	kers are	e require	ed?
Solution:-						
VARIATION: Indire	ct Variation.					
TABLE:-						1
	Number of workers (x)	40	50	60	75	
	Number of $days(y)$	150	120	100	80	
POINTS:-						
(40, 150), (50, 120), (60, 100), (75, 80)						
CONSTANT OF VARIATION:-						
$k = x40 \ge 150 = 6000$						

Area of the parking
$$=\frac{1}{2} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} \begin{pmatrix} x_3 \\ y_3 \end{pmatrix} \begin{pmatrix} x_4 \\ y_4 \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 2 \\ 2 \end{pmatrix} \begin{pmatrix} x_1 \\ 5 \end{pmatrix} \begin{pmatrix} x_2 \\ 9 \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \begin{pmatrix} x_2 \\ 2 \end{pmatrix} = \frac{1}{2} (10 + 45 + 28 + 2 - 10 - 20 - 9 - 14) = \frac{1}{2} (85 - 53) = \frac{32}{2} = 16$$
 Square feet
Given, Construction tare per square feet = Rs.1300.
 \therefore Total cost for constructing the parking lot = 16 × 1300 = Rs.20800
58) In the fig. the quadrilateral swimming pool shown is surroundedby concrete patio. Find
the area of the patio. **[PTA-2]**
Solution:
Given,
 $(x_1, y_1) = A(-4, -8)$
 $(x_2, y_2) = B(8, -4)$
 $(x_3, y_3) = C(6, 10)$
 $(x_4, y_4) = D(-10, 6)$
Area of the quadrilateral ABCD = $\frac{1}{2} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} \begin{pmatrix} x_3 \\ y_2 \end{pmatrix} \begin{pmatrix} x_4 \\ y_4 \end{pmatrix} \begin{pmatrix} x_4 \\ y_4 \end{pmatrix} \begin{pmatrix} x_4 \\ y_4 \end{pmatrix} \begin{pmatrix} x_5 \\ y_2 \end{pmatrix} \begin{pmatrix} x_5 \\ y_4 \end{pmatrix} \begin{pmatrix} x_5 \\ y_5 \end{pmatrix}$

Area of the quadrilateral EFGH =
$$\frac{1}{2} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} \begin{pmatrix} x_3 \\ y_2 \end{pmatrix} \begin{pmatrix} x_4 \\ y_4 \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$$

= $\frac{1}{2} \begin{bmatrix} -3 \\ -5 \end{pmatrix} \begin{pmatrix} -6 \\ -2 \end{pmatrix} \begin{pmatrix} -3 \\ -2 \end{pmatrix} \begin{pmatrix} -3 \\ -2 \end{pmatrix} \begin{pmatrix} -3 \\ -5 \end{pmatrix} \begin{pmatrix} -3 \\ -5 \end{pmatrix}$
= $\frac{1}{2} (6 + 42 + 12 + 30 + 30 + 6 + 42 + 12)$
= $\frac{180}{2}$
= 90 Sq. units
The area of the patio = Area of the Quadrilateral **ABCD** - Area of the Quadrilateral **EFGH**
= 212 - 90
= 122 Sq.units.
59) The floor of a hall is covered with identical tiles which as in the shapes of
triangles. One such triangle has the vertices at $(-3, 2), (-1, -1)$ and
 $(1, 2)$. If the floor of the hall is completely by 110 tiles, find the area of
the floor.
Solution:
Given, $(x_1, y_1) = (-3, 2), (x_2, y_2) = (-1, -1), (x_3, y_3) = (1, 2)$
Area of a tile = $\frac{1}{2} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} \begin{pmatrix} x_3 \\ y_3 \end{pmatrix} \begin{pmatrix} x_4 \\ y_4 \end{pmatrix}$
= $\frac{1}{2} \begin{pmatrix} -3 \\ -1 \end{pmatrix} \begin{pmatrix} -1 \\ 2 \end{pmatrix} \begin{pmatrix} -1 \\$

Solution:-

AB = Kite flying height from the ground = 75 m AC = Length of the thread = x

(2) A road is nanked on entire side by continuous rows of nouses of neight 4 $\sqrt{3}$ m with no space in between them. A pedestrian is standing on the median of the road facing a row house. The angle of elevation from the pedestrian to the top of the house is 30⁰. Find the width of the road.

Solution:-

www.Trb Tnpsc.Com

82

(iii) If the work has to be completed by 200 days, how many workers are required?

22
$2 x \frac{1}{7} x r x 14 = 88$
$r = \frac{88}{2}$
$r = \frac{1}{2 \times 22 \times 2}$
r = 1 cm
$\therefore \text{ Diameter of the cylinder } = 2r = 2 \times 1 = 2 \text{ cm}$
5500 sq. cm. Find its radius and height. [Aug-22, Apr-23]
Solution:-
<u>Given</u> , $r: h = 5:7$
Let the radius $r = 5x$ and the height $h = 7x$
<u>Given</u> ,
Curved surface area of a right circular cylinder = 5500 sq. cm $\Rightarrow 2\pi rh = 5500$
$2 \times \frac{22}{2} \times 5r \times 7r = 5500$
$2 \times \frac{7}{7} \times 3x \times 7x = 3300$
$x^2 = \frac{5500}{2}$
$\begin{array}{r} 2 \times 22 \times 5 \\ r^2 - 25 \end{array}$
x = 23 r = 5
\therefore Radius of the cylinder = 5x = 5 × 5 = 25 cm
Height of the cylinder = $7x = 7 \times 5 = 35$ cm
78) If the total surface area of a cone of radius 7 cm is 704 cm ² , then find its slant height.
[Aug-22]
Solution:-
Given , Radius, $r = 7$ cm
Total surface area of a cone = 704 cm^2
<u>WKT</u> , Total surface area of a cone $= \pi r(l + r)$
$\Rightarrow \pi r(l+r) = 704$
$\frac{22}{2} \times 7 \times (l+7) = 704$
7 704
$l + 7 = \frac{704}{22}$
l + 7 = 32
l = 32 - 7
l = 25 cm
79) Find the diameter of a sphere whose surface area is 154 m ² . [Sep-20]
Solution:-
WKT , Surface area of a sphere $= 4\pi r^2$
Let the radius of a sphere be r .
<u>Given</u> , Surface area of a sphere = 154 m^2
$4\pi r^2 = 154$
$4 \times \frac{22}{2} \times r^2 = 154$
7

$r^{2} = \frac{154 \times 7}{4 \times 22}$ $r^{2} = \frac{7 \times 7}{2 \times 2}$ $r^{2} = \frac{7 \times 7}{2 \times 2}$ $r = \frac{7}{2}$ $\therefore \text{ Diameter of a sphere} = 2r = 2 \times \frac{7}{2} = 7 \text{ cm}$ 80) If the base area of a hemispherical solid is 1386 sq. metres, then find its total surface area? [Sep-20, Apr-24] Solution:- Given , Base area of a hemispherical solid = 1386sq. m $\Rightarrow \pi r^{2} = 1386$ $\therefore \text{ Total surface area hemispherical solid } = 3\pi r^{2}$			
$r^{2} = \frac{7 \times 7}{2 \times 2}$ $r^{2} = \frac{7}{2 \times 2}$ $r = \frac{7}{2}$ $\therefore \text{ Diameter of a sphere} = 2r = 2 \times \frac{7}{2} = 7 \text{ cm}$ 80) If the base area of a hemispherical solid is 1386 sq. metres, then find its total surface area? [Sep-20, Apr-24] Solution:- Given , Base area of a hemispherical solid = 1386 sq. m $\Rightarrow \pi r^{2} = 1386$ $\therefore \text{ Total surface area hemispherical solid } = 3\pi r^{2}$			
$r^{2} = \frac{7}{2 \times 2}$ $r = \frac{7}{2}$ $\therefore \text{ Diameter of a sphere} = 2r = 2 \times \frac{7}{2} = 7 \text{ cm}$ 80) If the base area of a hemispherical solid is 1386 sq. metres, then find its total surface area? [Sep-20, Apr-24] <u>Solution:-</u> <u>Given</u> , Base area of a hemispherical solid = 1386sq. m $\Rightarrow \pi r^{2} = 1386$ $\therefore \text{ Total surface area hemispherical solid } = 3\pi r^{2}$			
$r = \frac{7}{2}$ \therefore Diameter of a sphere= $2r = 2 x \frac{7}{2} = 7$ cm 80) If the base area of a hemispherical solid is 1386 sq. metres, then find its total surface area? Solution:- <u>Given</u> , Base area of a hemispherical solid = 1386sq. m $\Rightarrow \pi r^2 = 1386$ \therefore Total surface area hemispherical solid = $3\pi r^2$			
$r = \frac{1}{2}$ $\therefore \text{ Diameter of a sphere} = 2r = 2 \text{ x} \frac{7}{2} = 7 \text{ cm}$ 80) If the base area of a hemispherical solid is 1386 sq. metres, then find its total surface area? [Sep-20, Apr-24] <u>Solution:-</u> <u>Given</u> , Base area of a hemispherical solid = 1386sq. m $\Rightarrow \pi r^2 = 1386$ $\therefore \text{ Total surface area hemispherical solid } = 3\pi r^2$			
∴ Diameter of a sphere= $2r = 2 x \frac{7}{2} = 7$ cm 80) If the base area of a hemispherical solid is 1386 sq. metres, then find its total surface area? [Sep-20, Apr-24] Solution:- <u>Given</u> , Base area of a hemispherical solid = 1386sq. m $\Rightarrow \pi r^2 = 1386$ ∴ Total surface area hemispherical solid = $3\pi r^2$			
 80) If the base area of a hemispherical solid is 1386 sq. metres, then find its total surface area? [Sep-20, Apr-24] Solution:- Given, Base area of a hemispherical solid = 1386sq. m ⇒ πr² = 1386 ∴ Total surface area hemispherical solid = 3πr² 			
area? [Sep-20, Apr-24] Solution:- <u>Given</u> , Base area of a hemispherical solid = 1386sq. m $\Rightarrow \pi r^2 = 1386$ \therefore Total surface area hemispherical solid = $3\pi r^2$			
Solution:- <u>Given</u> , Base area of a hemispherical solid = 1386sq. m $\Rightarrow \pi r^2 = 1386$ \therefore Total surface area hemispherical solid = $3\pi r^2$			
<u>Given</u> , Base area of a hemispherical solid = 1386sq. m $\Rightarrow \pi r^2 = 1386$ \therefore Total surface area hemispherical solid = $3\pi r^2$			
$\Rightarrow \pi r^2 = 1386$ $\therefore \text{ Total surface area hemispherical solid} = 3\pi r^2$			
\therefore Total surface area hemispherical solid = $3\pi r^2$			
- 2 - 1200			
$= 5 \times 1580$ - 4158 sq m			
(1130 sq. m) 81) Find the volume of a cylinder whose height is 2 m and whose base area is 250 m ²			
[Sep-21, Apr-24]			
Solution:-			
Given , Height, $h = 2$ m			
Base area of a cylinder = 250 m^2			
$\pi r^2 = 250 \text{ m}^2$			
$\therefore \text{ Volume of a cylinder} = \pi r^2 h$			
$= 250 \times 2$			
$= 500 \text{ m}^3$			
UNE MARK QUESTIONS			
UNIT - 6 : TRIGONOMETRY			
36) If $\sin\theta = \cos\theta$, then $2\tan^2\theta + \sin^2\theta - 1$ is equal to Ans:- $\frac{3}{2}$			
37) If $x = atan\theta$ and $y = bsec\theta$ then Ans:- $\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$			
$(1 + tan\theta + sec\theta)(1 + cot\theta - cosec\theta) \text{ is equal to} \qquad \text{Ans:- 2}$			
$39) a cot \theta + b cosec \theta = p \text{ and } b cot \theta + a cosec \theta = q \text{ then } p^2 - $			
q^2 is equal to Ans:- $b^2 - a^2$			
$\frac{1}{2}$ $\frac{1}$			
is $\sqrt{3}$: 1, then the angle of elevation of the sun has measure Alis:- 60			
<u>SIIP 16SU - 18</u> I Choose the most suitable answer from the given four alternatives and write the option code with			
the corresponding answer. $(3 \times 1 = 3)$			
1) If $x = atan\theta$ and $y = bsec\theta$ then			
(A) $\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$ (B) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (C) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (D) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$			
2) $acot\theta + bcosec\theta = p$ and $bcot\theta + acosec\theta = q$ then $p^2 - q^2$ is equal to (A) $a^2 - b^2$ (B) $b^2 - a^2$ (C) $a^2 + b^2$ (D) $b - a$			
(A) $a^2 - b^2$ (B) $b^2 - a^2$ (C) $a^2 + b^2$ (D) $b - a$			
(A) $a^2 - b^2$ (B) $b^2 - a^2$ (C) $a^2 + b^2$ (D) $b - a$ 3) If the ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation			
(A) $a^2 - b^2$ (B) $b^2 - a^2$ (C) $a^2 + b^2$ (D) $b - a$ 3) If the ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has measure (A) 45° (B) 30° (C) 90° (D) 60° [I Answer the following:-			

 $(1 \times 8 = 8)$

- The radius and height of a cylinder are in the ratio 5:7 and its curved surface area is 5500 sq. cm. **4**) Find its radius and height.
- 5) If the base area of a hemispherical solid is 1386 sq. meters, then find its total surface area? $(1 \times 5 = 5)$

III Answer the following:-

6) Two ships are sailing in the sea on either sides of a lighthouse. The angle of elevation of the top of the lighthouse as observed from the ships are 30° and 45° respectively. If the lighthouse is 200 m high, find the distance between the two ships. ($\sqrt{3} = 1.732$).

IV Answer the following:-

7) Draw a tangent to the circle from the point P having radius 3.6 cm, and centre at O. Point P is at a distance 7.2 cm from the centre.

In the right triangle $\triangle BDC$,	
$tan45^{\circ} = \frac{CD}{CD}$	
$1 = \frac{n}{n}$	
y = h	
y = h	
<u>Given</u> , Distance between the two ships $= 200 \left(\frac{1}{\sqrt{3}}\right)$	
$(\sqrt{3} + 1)$	
$x + y = 200\left(\frac{\sqrt{3}+1}{\sqrt{3}}\right)$	
$\frac{h}{h} + h = 200\left(\frac{\sqrt{3}+1}{1}\right)$	
$\sqrt{3}$ $n = 200 \left(\sqrt{3} \right)$	
$h + \sqrt{3}h$ $(\sqrt{3} + 1)$	
$\frac{1}{\sqrt{3}} = 200(\frac{1}{\sqrt{3}})$	
$h + \sqrt{3}h = 200(\sqrt{3} + 1)$	
$h(1+\sqrt{3}) = 200(\sqrt{3}+1)$	
$h = \frac{200(\sqrt{3}+1)}{\sqrt{3}}$	
$(\sqrt{3}+1)$	
h = 200 m	
\therefore Height of the lighthouse = 200 m	wor
fixed at the top of a 30m high building are 45° and 60° respectively. Find the bei	ight
of the tower. ($\sqrt{3} = 1.732$) [May-22]	Biit
Solution :-	
BC = Height of the building = 30 m	
CD = Height of the tower = h	
Let $AB = x$	
In the right triangle $\triangle ABC$,	
$tan45^{\circ} = \frac{BC}{AB}$	
30 at a start and a start a st	
$1 = \frac{1}{x}$	
x = 30	
45° 60°	
In the right triangle $\triangle ABD$, A x B	
$tan60^{\circ} = \frac{DD}{AB}$	
ab = 30 + h	
$\sqrt{3} = \frac{1}{x}$	
$x\sqrt{3} = 30 + h$	

 $h = \frac{50(1.268)}{3}$ $h = \frac{63.4}{3}$ h = 21.13 m \therefore Height of the tree, h = 21.13 m**TWO MARKS QUESTIONS UNIT - 7 : MENSURATION** 82) The volume of a solid right circular cone is 11088 cm³. If its height is 24 cm then find the radius of the cone. [PTA-1, Jun-23] Solution:-**<u>WKT</u>**, Volume of a solid right circular cone $=\frac{1}{3}\pi r^2 h$ Given, Height, h = 24 cm Let the radius be rVolume of a solid right circular cone = 11088 cm³ $\Rightarrow \frac{1}{3}\pi r^2 h = 11088$ $\frac{1}{3} \times \frac{22}{7} \times r^2 \times 24 = 11088$ $r^{2} = \frac{11088 \times 3 \times 7}{22 \times 24}$ $r^{2} = 441$ $r^2 = 21 \times 21$ $r = 21 \, \mathrm{cm}$ \therefore Radius of the cone, r = 21 cm 83) The ratio of the volumes of two cones is 2:3. Find the ratio of their radii of the height of second cone is double the height of the first. Solution:-Given, $\frac{\text{Cone -2}}{\text{Radius}} = r_2$ **Cone -1:-**Radius = r_1 . Height = $2h_1$ Height = h_1 <u>Given</u>, The ratio of the volumes of two cones = 2:3 $\frac{1}{3}\pi r_1^2 h_1 : \frac{1}{3}\pi r_2^2 2h_1 = 2:3$ $\frac{\frac{1}{3}\pi r_1^2 h_1}{\frac{1}{3}\pi r_2^2 2h_1} = \frac{2}{3}$ $\frac{r_1^2}{r_2^2} = \frac{4}{3}$ $\frac{r_1}{r_2} = \frac{2}{\sqrt{3}}$ 92

$r_1: r_2 = 2: \sqrt{3}$			
84) The volumes of two cones of same base radius are 3600 cm ³ and 5040 cm ³ . Find the			
ratio of height. [P]	[A-4, May-22]		
Solution:-			
Given.			
Cone-1:- Cone-1:-			
$\frac{1}{\text{Radius}} = r$			
Height = h_1 Height = h_2			
Given , Volumes of two cones of same base radius = $3600 : 5040$			
$\frac{-}{3}\pi r^2 h_1: \frac{-}{3}\pi r^2 h_2 = 3600:5040$			
$\frac{1}{2}\pi r^2 h$ 2000			
$\frac{3}{3}$ $\frac{3}{1}$ $\frac{1}{1}$ $\frac{3600}{10}$			
$\frac{1}{2}\pi r^2 h_2 = \frac{5040}{2}$			
h_{1}^{3} 360			
$\frac{1}{h_{0}} = \frac{1}{504}$			
$h_2 = 504$			
$\frac{n_1}{n_1} = \frac{30}{42}$			
$h_2 42$	7		
$\frac{n_1}{n_1} = \frac{3}{7}$			
h_2 /			
$n_1: n_2 = 5: 7$			
ONE MARK QUESTIONS			
UNIT - 6 : TRIGONOMETRY			
91) The electric pole subtends an angle of 30° at a point on the same			
level as its foot. At a second point 'b'metres above the first, the	Ans:- $\frac{b}{-}$		
depression of the foot of the tower is 60° . The height of the	3		
tower (in metres) is equal to			
92) A tower is 60 m height. Its shadow is x metres shorter when the			
sun's altitude is 45° than when it has been 30° , then x is equal	Ans:- 43.92 m		
to			
93) The angle of depression of the top and bottom of 20 m tall			
building from the top of a multistoried building are 30° and	Ans:- 30, $10\sqrt{3}$		
60° respectively. The height of the multistoried building and the			
distance between two buildings (in metres) is			
94) Two persons are standing 'x'metres apart from each other and			
the height of the first person is double that of the other. If from	. x		
the middle point of the line joining their feet an observer finds	Ans:- $\frac{1}{2\sqrt{2}}$		
the angular elevations of their tops to be complementary, then			
the height of the shorter person (in metres) is			
95) The angle of elevation of a cloud from a point h metres above a	h(1+tanR)		
lake is β . The angle of depression of its reflection in the lake is	Ans:- $\frac{n(1+tan\beta)}{1-tan\beta}$		
45°. The height of location of the cloud from the lake is	•		

	Slip Test - 19			
Ι	I Choose the most suitable answer from the given four alternatives and write the option code with			
th	the corresponding answer. $(3 \times 1 = 3)$			
1)	A tower is 60 m height. Its shadow is x metres shorter when the sun's altitude is 45° than when it			
	has been 30° , then x is equal to			
	(A) 41.92 m (B) 43.92 m (C) 43 m (D) 45.6 m			
2)	The angle of depression of the top and bottom of 20 m tall building from the top of a multistoried			
	building are 30° and 60° respectively. The height of the multistoried building and the distance			
	between two buildings (in metres) is			
	(A) $20, 10\sqrt{3}$ (B) $30, 5\sqrt{3}$ (C) $20, 10$ (D) $30, 10\sqrt{3}$			
3)	The angle of elevation of a cloud from a point h metres above a lake is β . The angle of depression of			
	its reflection in the lake is 45° . The height of location of the cloud from the lake is			
	(A) $\frac{h(1+tan\beta)}{1-tan\beta}$ (B) $\frac{h(1-tan\beta)}{1+tan\beta}$ (C) $h \tan(45^{\circ}-\beta)$ (D) None of these			
II	Answer the following:- $(2 \times 2 = 4)$			
4)	The volume of a solid right circular cone is 11088 cm ³ . If its height is 24 cm then find the radius of			
	the cone.			
5)	5) The volumes of two cones of same base radius are 3600 cm^3 and 5040 cm^3 . Find the ratio of height.			
III	III Answer the following:- $(1 \times 5 = 5)$			
6)	6) From a point on the ground, the angles of elevation of the bottom and top of a tower fixed at the top			
of a 30m high building are 45° and 60° respectively. Find the height of the tower. ($\sqrt{3} = 1.732$).				
IV Answer the following:- $(1 \times 8 = 8)$				
7)	The following table shows the data about the number of pipes and the time taken to fill the same tank.			
	No. of Pipes (<i>x</i>) 2 3 6 9			
	Time taken(y) (in minutes)45301510			
	Draw the graph for the above data and hence			
	(i) find the time taken to fill the tank when five pipes are used			
	(ii) Find the number of pipes when the time is 9 minutes.			

find the volume of the frustum. [PTA-5, Sep-21, Apr-24] Solution:-Given, R = 28 cmr = 7 cmh = 45 cmVolume of the frustum = $\frac{\pi h}{3}(R^2 + r^2 + Rr)$ $=\frac{\overset{3}{22} \times 45}{7 \times 3} (28^{2} + 7^{2} + 28 \times 7)$ $=\frac{22 \times 15}{7}(784 + 49 + 196)$ $=\frac{22 \times 15 \times 1029}{7}$ $= 22 \times 15 \times 147$ = 48510 cu.cm \therefore Volume of the frustum = 48510 cu.cm 68) A container open at the top is in the form of a frustum of a cone of height 16 cm with radii of its lower and upper ends are 8 cm and 20 cm respectively. Find the cost of milk which can completely fill a container at the rate of Rs.40 per litre. [May-22] Solution:-Given, R = 20 cm, r = 8 cm, h = 16 cm Volume of the frustum = $\frac{\pi h}{3}(R^2 + r^2 + Rr)$ $=\frac{\frac{32 \times 16}{7 \times 3}}{(20^2 + 8^2 + 20 \times 8)}$ $=\frac{352}{21}(400+64+160)$ $=\frac{352 \times 624}{21}$ 21 352 × 208 = ____7 $=\frac{7321\acute{6}}{7}$ = 10459.4 cu.cm $=\frac{10459.4}{1000}$ litres [: 1000 cu.cm = 1 litre] = 10.4594 litres **Given**, Cost of 1 litre milk = Rs.40The cost of milk which can completely fill a container $= Rs.40 \times 10.4594$ = Rs.418.38

TWO MARKS QUESTIONS UNIT - 7 : MENSURATION

85) The radius of a spherical balloon increases from 12 cm to 16 cm as air being pumped into it. Find the ratio of the surface area of the balloons in the two cases. [May-22]

Solution:-

<u>Given</u>, $r_1 = 12 \text{ cm}$, $r_2 = 16 \text{ cm}$

96

Ratio at the surface area at the halloons in the two cases	Patie of the surface area of the balloons in the two cases			
Ratio of the surface area of the balloons in the two cases $A\pi r^2$				
$=\frac{1771}{4\pi m^2}$				
$4\pi r_1^2$ $4\pi v 12 v 12$				
$=\frac{4\pi \times 12 \times 12}{4\pi \times 16}$				
$\begin{array}{c} 4\pi \times 16 \times 16 \\ 9 \end{array}$				
$=\frac{1}{16}$				
= 9 : 16				
86) If the ratio of radii of two spheres is 4:7 find the ratio	of their volumes			
	Apr-23]			
Solution:-	-F1			
$\frac{\text{Solution.}}{\text{Circon}} r + r = 4 + 7$				
<u>Given</u> , $T_1: T_2 = 4 : 7$				
The ratio of the volume of two spheres $=\frac{3\pi r_1}{4}$				
$\frac{-\pi r_2}{3}$				
$\frac{1}{3} \times \pi \times 4 \times 4 \times 4$	< 4			
$=\frac{3}{4}$. 7			
$\overline{3} \times \pi \times 7 \times 7$				
$=\frac{64}{3}$				
343				
= 64:343				
ONE MARK QUESTIONS				
UNIT - 7 : MENSURATION				
96) The curved surface area of a right circular cone of height 15 cm				
so) The curved sufface and of a right encentar cone of height 15 cm	2			
and base diameter 16 cm is	Ans:- 136 π cm ²			
 and base diameter 16 cm is 97) If two solid hemispheres of same base radius <i>r</i> units are joined 	Ans:- $136\pi \ cm^2$			
 and base diameter 16 cm is 97) If two solid hemispheres of same base radius <i>r</i> units are joined together along their bases, then curved surface area of this new 	Ans:- $136\pi \ cm^2$ Ans:- $4\pi r^2 cm^2$			
 (and base diameter 16 cm is (97) If two solid hemispheres of same base radius <i>r</i> units are joined together along their bases, then curved surface area of this new solid is 	Ans:- $136\pi \ cm^2$ Ans:- $4\pi r^2 cm^2$			
 and base diameter 16 cm is 97) If two solid hemispheres of same base radius <i>r</i> units are joined together along their bases, then curved surface area of this new solid is 98) The height of a right circular cone whose radius 5 cm and slant 	Ans:- $136\pi \ cm^2$ Ans:- $4\pi r^2 cm^2$			
 and base diameter 16 cm is 97) If two solid hemispheres of same base radius <i>r</i> units are joined together along their bases, then curved surface area of this new solid is 98) The height of a right circular cone whose radius 5 cm and slant height is 13 cm will be 	Ans:- $136\pi \ cm^2$ Ans:- $4\pi r^2 cm^2$ Ans:- $12 \ cm$			
 and base diameter 16 cm is 97) If two solid hemispheres of same base radius <i>r</i> units are joined together along their bases, then curved surface area of this new solid is 98) The height of a right circular cone whose radius 5 cm and slant height is 13 cm will be 99) If the radius of the base of a right circular cylinder is halved keeping the same height, then the ratio of the volume of the 	Ans:- $136\pi \ cm^2$ Ans:- $4\pi r^2 cm^2$ Ans:- $12 \ cm$			
 and base diameter 16 cm is 97) If two solid hemispheres of same base radius <i>r</i> units are joined together along their bases, then curved surface area of this new solid is 98) The height of a right circular cone whose radius 5 cm and slant height is 13 cm will be 99) If the radius of the base of a right circular cylinder is halved keeping the same height, then the ratio of the volume of the cylinder thus obtained to the volume of original cylinder is 	Ans:- $136\pi \ cm^2$ Ans:- $4\pi r^2 cm^2$ Ans:- $12 \ cm$ Ans:- $1:4$			
 and base diameter 16 cm is 97) If two solid hemispheres of same base radius <i>r</i> units are joined together along their bases, then curved surface area of this new solid is 98) The height of a right circular cone whose radius 5 cm and slant height is 13 cm will be 99) If the radius of the base of a right circular cylinder is halved keeping the same height, then the ratio of the volume of the cylinder thus obtained to the volume of original cylinder is 	Ans:- $136\pi \ cm^2$ Ans:- $4\pi r^2 cm^2$ Ans:- $12 \ cm$ Ans:- $1:4$			
 and base diameter 16 cm is 97) If two solid hemispheres of same base radius <i>r</i> units are joined together along their bases, then curved surface area of this new solid is 98) The height of a right circular cone whose radius 5 cm and slant height is 13 cm will be 99) If the radius of the base of a right circular cylinder is halved keeping the same height, then the ratio of the volume of the cylinder thus obtained to the volume of original cylinder is 100) The total surface area of a cylinder whose radius is ¹/₃ of its 	Ans:- $136\pi \ cm^2$ Ans:- $4\pi r^2 cm^2$ Ans:- $12 \ cm$ Ans:- $1:4$			
 and base diameter 16 cm is 97) If two solid hemispheres of same base radius <i>r</i> units are joined together along their bases, then curved surface area of this new solid is 98) The height of a right circular cone whose radius 5 cm and slant height is 13 cm will be 99) If the radius of the base of a right circular cylinder is halved keeping the same height, then the ratio of the volume of the cylinder thus obtained to the volume of original cylinder is 100) The total surface area of a cylinder whose radius is ¹/₃ of its height is 	Ans:- $136\pi \ cm^2$ Ans:- $4\pi r^2 cm^2$ Ans:- $12 \ cm$ Ans:- $1:4$ Ans:- $1:4$			
 (a) The call for summer and of a right checklar cone of height to call and base diameter 16 cm is (97) If two solid hemispheres of same base radius <i>r</i> units are joined together along their bases, then curved surface area of this new solid is (98) The height of a right circular cone whose radius 5 cm and slant height is 13 cm will be (99) If the radius of the base of a right circular cylinder is halved keeping the same height, then the ratio of the volume of the cylinder thus obtained to the volume of original cylinder is (100) The total surface area of a cylinder whose radius is ¹/₃ of its height is 	Ans:- $136\pi \ cm^2$ Ans:- $4\pi r^2 cm^2$ Ans:- $12 \ cm$ Ans:- $1:4$ Ans:- $1:4$			
 (a) (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	Ans:- $136\pi \ cm^2$ Ans:- $4\pi r^2 cm^2$ Ans:- $12 \ cm$ Ans:- $1:4$ Ans:- $1:4$ Ans:- $\frac{8\pi h^2}{9}$ sq.units the the option code with $(3 \times 1 - 3)$			
 (a) (a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b	Ans:- $136\pi \ cm^2$ Ans:- $4\pi r^2 cm^2$ Ans:- $12 \ cm$ Ans:- $1:4$ Ans:- $\frac{8\pi h^2}{9}$ sq.units te the option code with (3 x 1 = 3) uneter 16 cm is			
 and base diameter 16 cm is 97) If two solid hemispheres of same base radius <i>r</i> units are joined together along their bases, then curved surface area of this new solid is 98) The height of a right circular cone whose radius 5 cm and slant height is 13 cm will be 99) If the radius of the base of a right circular cylinder is halved keeping the same height, then the ratio of the volume of the cylinder thus obtained to the volume of original cylinder is 100) The total surface area of a cylinder whose radius is ¹/₃ of its height is Slip Test - 20 I Choose the most suitable answer from the given four alternatives and writthe corresponding answer. 1) The curved surface area of a right circular cone of height 15 cm and base dia (A) 60π cm² (B) 68π cm² (C) 120π cm² (D) 136π cm² 	Ans:- $136\pi \ cm^2$ Ans:- $4\pi r^2 cm^2$ Ans:- $12 \ cm$ Ans:- $1:4$ Ans:- $1:4$ Ans:- $\frac{8\pi h^2}{9}$ sq.units the the option code with (3 x 1 = 3) ameter 16 cm is			
 and base diameter 16 cm is 97) If two solid hemispheres of same base radius <i>r</i> units are joined together along their bases, then curved surface area of this new solid is 98) The height of a right circular cone whose radius 5 cm and slant height is 13 cm will be 99) If the radius of the base of a right circular cylinder is halved keeping the same height, then the ratio of the volume of the cylinder thus obtained to the volume of original cylinder is 100) The total surface area of a cylinder whose radius is ¹/₃ of its height is Slip Test - 20 I Choose the most suitable answer from the given four alternatives and writthe corresponding answer. 1) The curved surface area of a right circular cone of height 15 cm and base dia (A) 60π cm² (B) 68π cm² (C) 120π cm² (D) 136π cm² 2) The height of a right circular cone whose radius 5 cm and slant height is 13 cm 	Ans:- $136\pi \ cm^2$ Ans:- $4\pi r^2 cm^2$ Ans:- $12 \ cm$ Ans:- $1:4$ Ans:- $\frac{8\pi h^2}{9}$ sq.units te the option code with (3 x 1 = 3) uneter 16 cm is m will be			
and base diameter 16 cm is 97) If two solid hemispheres of same base radius <i>r</i> units are joined together along their bases, then curved surface area of this new solid is 98) The height of a right circular cone whose radius 5 cm and slant height is 13 cm will be 99) If the radius of the base of a right circular cylinder is halved keeping the same height, then the ratio of the volume of the cylinder thus obtained to the volume of original cylinder is 100) The total surface area of a cylinder whose radius is $\frac{1}{3}$ of its height is Slip Test - 20 I Choose the most suitable answer from the given four alternatives and write the corresponding answer. 1) The curved surface area of a right circular cone of height 15 cm and base dia (A) $60\pi \ cm^2$ (B) $68\pi \ cm^2$ (C) $120\pi \ cm^2$ (D) $136\pi \ cm^2$ 2) The height of a right circular cone whose radius 5 cm and slant height is 13 cm (A) $12 \ cm$ (B) $10 \ cm$ (C) $13 \ cm$ (D) 5 cm	Ans:- $136\pi \ cm^2$ Ans:- $4\pi r^2 cm^2$ Ans:- $12 \ cm$ Ans:- $1:4$ Ans:- $1:4$ Ans:- $\frac{8\pi h^2}{9}$ sq.units the the option code with (3 x 1 = 3) uneter 16 cm is m will be			

(A) $\frac{9\pi h^2}{8}$ sq.units (B) $24\pi h^2$ sq.units (C) $\frac{8\pi h^2}{9}$ sq.units (D) $\frac{56\pi h^2}{9}$ sq.units
II Answer the following:- $(2 \times 2 = 4)$
4) The radius of a spherical balloon increases from 12 cm to 16 cm as air being pumped into it. Find the
ratio of the surface area of the balloons in the two cases.
5) If the ratio of radii of two spheres is $4:7$, find the ratio of their volumes.
III Answer the following:- $(1 \times 5 = 5)$
 6) If the radii of the circular ends of a frustum which is 45 cm high are 28 cm and 7 cm, find the volume of the frustum. IV Answer the following:- (1 x 8 = 8)
7) Draw a circle of radius 4 cm. At a point L on it draw a tangent to the circle using the alternate segment.

DAY – 24 WEEKLY TEST - 4

98

Solution :-			
<u>Aluminium sphere :-</u>	Cylinder :-		
Radius, $r = 12$ cm	Radius, $r = 8$ cm		
Volume $=\frac{4}{2}\pi r^3$	Height, $= h \operatorname{cm}$		
4	Volume = $\pi r^2 h$		
$=\frac{1}{3}\times\pi\times(12)^3$	$=\pi \times r^2 \times h$		
$= \frac{4}{- \times \pi \times 12 \times 12 \times 12}$	$=\pi \times 8 \times 8 \times n$		
3			
$= 4 \times \pi \times 4 \times 12 \times 12$			
Here, Volume of the cylinder =	Volume of the aluminium sphere		
$\pi \times 8 \times 8 \times h =$	$= 4 \times \pi \times 4 \times 12 \times 12$		
h =	$\frac{4 \times \pi \times 4 \times 12 \times 12}{2}$		
	$\pi \times 8 \times 8$		
n =	350 cm		
TWO MARK	S OUESTIONS		
UNIT - 8 : STATISTI	CS AND PROBABILITY		
87) Find the range and coefficient of range of	the following data : [Apr-24]		
25, 67, 48, 53, 18, 39, 44.			
Solution	6		
Given Largest value $L = 67$ · Smallest value	alue $S = 18$		
Given , Largest value, $L = 07$, Sinanest value, $R = 1 - S = 67 - 18 - 49$	and $5 - 10$		
Coefficient of Penge $= \frac{L-S}{2} = \frac{67}{3}$	18 - 49 - 0 = 76		
Coefficient of Range $= \frac{1}{L+S} = \frac{1}{67+18} = \frac{1}{85} = 0.576$			
88) Find the range and coefficient of range of the following data :			
63,89,98,125,79,108,117,68.	[Sep-20, Apr-23]		
Solution:-			
<u>Given</u> , Largest value, $L = 125$; Sma	llest value, $S = 63$		
Range = $L - S = 125 - 63 = 62$			
Coefficient of Range $=\frac{L-3}{L+5} = \frac{125-63}{125+63} = \frac{31}{94} = \frac{62}{188} = 0.33$			
89) Find the range and coefficient of range of the following data :			
43.5, 13.6, 18.9, 38.4, 61.4, 29.8.			
Solution:-			
Given , Largest value, $L = 61.4$; Smallest value, $S = 13.6$			
Range = $L - S = 61.4 - 13.6 = 47.8$			
Coefficient of Range = $\frac{L-S}{L+S} = \frac{61.4-13.6}{61.4+13.6} = \frac{47.8}{75} = 0.64$			
90) If the range and the smallest value of a s	et of data are 36.8 and 13.4 respectively, then		
find the largest value.			
Solution:-			
<u>Given</u> , Range = 36.8; Smallest value, $S = 13.4$; Largest value = L			

<u>WKT</u> , Range = $L - S$										
36.8 = L - 13.4										
36.8 + 13.4 = L										
L = 50.2										
91) The range of a set of data is 13.67 and the largest value is 70	0.08. Find the smallest									
value.	[PTA-4]									
Solution:-										
<u>Given</u> , Range= 13.67 ; Largest value , $L = 70.08$; Smallest value = S										
WKT, Range $= L - S$										
13.67 = 70.08 - S										
S = 70.08 - 13.67										
S = 56.41										
ONE MARK OUESTIONS										
UNIT - 7 : MENSURATION										
101) In a hollow cylinder the sum of the external and internal										
radii is 14 cm and the width is 4 cm. If its height is 20 cm, the	Ans:- $1120\pi cm^3$									
volume of the material in it is										
102 If the radius of the base of a cone is tripled and the height is										
doubled then the volume is	Ans:- made 18 times									
103) The total surface area of hemi-sphere is how much times the										
square of its radius	Ans:- 3π									
104 A solid sphere of radius rcm is melted and cast into a shape										
of a solid cone of same radius. The height of the cone is	Ans:- $4x$ cm									
105) A frustum of a right circular cone is of height 16 cm with										
radii of its ands as 8 cm and 20 cm. Then the volume of the	Ans. 3328 π cm ³									
frustum is										
Slip Tost 21										
I Choose the most suitable answer from the given four alternatives and wri	te the ontion code with									
the corresponding answer.	$(3 \times 1 = 3)$									
1) The total surface area of hemi-sphere is how much times the square of	its radius.									
(A) π (B) 4π (C) 3π (D) 2π										
2) A solid sphere of radius x cm is melted and cast into a shape of a solid cone of x and x cm is melted and cast into a shape of a solid cone of x and x and x cm is melted and cast into a shape of a solid cone of x and x	of same radius. The height									
of the cone is (D) the cone is (D) the cone is (D) and (D) and (D) of the cone is (D) and $(D$										
(A) $3x$ cm (B) x cm (C) $4x$ cm (D) $2x$ cm 3) If the radius of the base of a cone is tripled and the height is doubled then	the volume is									
(A) made 6 times (B) made 18 times (C) made 12 times (D) unchange	zed									
II Answer the following:-	$(2 \times 2 = 4)$									
4) Find the range and coefficient of range of the following data : 43.5, 13.6, 18	8.9, 38.4, 61.4, 29.8.									
5) The range of a set of data is 13.67 and the largest value is 70.08. Find the sm	allest value.									
III Answer the following:-	$(1 \times 5 = 5)$									
6) A metallic sphere of radius 16cm is melted and recast into small spheres can be obtained?	eres each of radius 2									
IV Answer the following:-	$(1 \times 8 = 8)$									
7) Draw a circle of radius 4.5 cm. At a point L on it draw a tangent to alternate segment.	o the circle using the									

www.Trb Tnpsc.Com

				-							
	x	$d = x - \overline{x}$	d^2	\bar{x}	$=\frac{\sum x}{\sum x}$						
	38	5	25		n 231						
	40	7	49		$=\frac{231}{7}$		∴ Co	-efficient	of variatio	on,	
	34	1	1		= 33			$C.V = \frac{\sigma}{-}$	× 100 %		
	31	-2	4	Here,				x	60		
	28	-5	25	\sum	$d^2 = 15$	4		$=\frac{4.0}{3}$	$\frac{59}{3} \times 100$		
	26	-7	49		n = 7			469			
	34	1	1	-	$\overline{\Sigma}$	J2		$=\frac{10}{3}$	3		
	$\sum d^2 = 154$			$\therefore \sigma = \sqrt{\frac{\sum d^2}{n}} = \sqrt{22}$				= 14.21 %			
	= 4.69										
TWO MARKS QUESTIONS											
		UNI	T - 8	: STAT	ISTICS	AND	PROBA	BILITY			
92)]	Find th	e range of the	e follo	wing distri	ibution.	r]	PTA-6]		_	
		Age (in year	rs)	16-18	18-20	20-	22 22-	24 24-2	6 26–28		
	N	umber of stu	dents	0	4	6	8	2	2		
Sol	ution:	<u>-</u>									
Here, Note:- If the frequency of initial class is zero,											
Largest value, $L = 28$ then the next class will be considered for the											
Smallest value, $S = 18$ calculation of range.											
$\frac{\mathbf{VV}\mathbf{K}\mathbf{I}}{=28-18}$											
= 10 vers											
93)]	Find th	e range of the	e follo	wing distri	ibution.						
	Income 400-450 450-500 500-550 550-600 600-					600-650					
	N	umber of wor	kers	8	12	T	30	21	6		
Sol	ution:										
Giv	ven,	- Largest value	L =	650							
Smallest value , $S = 400$											
Range = L - S = 650 - 400 = 250											
94)]	If the s	standard devia	ation o	f a data is	4.5 and i	if eac	hvalue o	f the data i	s decreased	l by 5,	
1	then fi	nd the new st	andard	deviation	•						
Solution:-											
<u>Given</u> , Standard deviation, $\sigma = 4.5$											
WF	<u>KT</u> , We	e see that the	standa	rd deviation	on will no	ot cha	ange whe	n we subtr	act some fi	xed	
con	stant k	to all the val	ues.		4 5						
\therefore New standard deviation, $\sigma = 4.5$											

104

www.Padasalai.Net www.Trb Tnpsc.Com 95) If the standard deviation of a data is 3.6 and each value of the data is divided by 3, then find the new variance and new standard deviation. Solution:-Given, Standard deviation, $\sigma = 3.6$ **WKT**, We see that when we multiply each data by some fixed constant k the standard deviation also get multiplied by k. New standard deviation, $\sigma = \frac{3.6}{3} = 1.2$:. New variance, $\sigma^2 = (1.2)^2 = 1.44$ 96) The standard deviation of 20 observations is $\sqrt{6}$. If each observation is multiplied by 3, find the standard deviation and variance of the resulting observations. **[PTA-1]** Solution:-Standard deviation, $\sigma = \sqrt{6}$ Given, Each observation is multiplied by 3 New standard deviation $= 3\sqrt{6}$... New variance = $(3\sqrt{6})^2 = 9 \ge 6 = 54$ **ONE MARK QUESTIONS UNIT - 7 : MENSURATION** A shuttle cock used for playing badminton has the Ans:- frustum of a cone and 106) shape of the combination of a hemisphere A spherical ball of radius r_1 units is melted to make 8 new 107) Ans:- 2:1 identical balls each of radius r_2 units. Then $r_1 : r_2$ is Ans:- $\frac{4}{2}\pi$ The volume (in cm^3) of the greatest sphere that can be cut 108) off from a cylindrical log of wood of base radius 1 cm and height 5 cm is The height and radius of the cone of which the frustum is a 109) Ans:- 1:2 part are h_1 units and r_1 units respectively. Height of the frustum is h_2 units and radius r_2 units. If $h_2: h_1 = 1:2$ then, $r_1: r_2$ is The ratio of the volumes of a cylinder, a cone and a sphere, 110) Ans:- 3:1:2 if each has the same diameter and same height is <u>Slip Test – 22</u> I Choose the most suitable answer from the given four alternatives and write the option code with the corresponding answer. $(3 \times 1 = 3)$ 1) A spherical ball of radius r_1 units is melted to make 8 new identical balls each of radius r_2 units. Then $r_1 : r_2$ is (A) 2:1 (B) 1 : 2 (C) 4 : 1(D) 1:4 2) A shuttle cock used for playing badminton has the shape of the combination of (B) a hemisphere and a cone (A) a cylinder and a sphere (C) a sphere and a cone (D) frustum of a cone and a hemisphere 3) The ratio of the volumes of a cylinder, a cone and a sphere, if each has the same diameter and same height is (A) 1:2:3 (B) 2:1:3 (C) 1:3:2 (D) 3:1:2 II Answer the following:- $(2 \times 2 = 4)$

105

106
$S = \{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (2$ (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6),(5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)n(S) = 36:. Let A be the event of getting the sum of outcome values equal to 4. $A = \{(1,3), (2,2), (3,1)\}$ n(A) = 3 $P(A) = \frac{n(A)}{n(S)} = \frac{3}{36} = \frac{1}{12}$ Let *B* be the event of getting the sum of outcome values greater than 10. $B = \{(5,6), (6,5), (6,6)\}$ n(B) = 3 $P(B) = \frac{n(B)}{n(S)} = \frac{3}{36} = \frac{1}{12}$ Let C be the event of getting the sum of outcome values less than 13. Here, C = Sn(C) = n(S) = 36 $P(C) = \frac{n(C)}{n(S)} = \frac{36}{36} = 1$ 75) Two unbiased dice are rolled once. Find the probability of getting (i) the doublet (equal numbers on both dice) (ii) the product as a prime number (iii) the sum as a prime number (iv) the sum as 1. [Sep-20, Aug-22] Solution :- $S = \{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (2$ (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6),(5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6):. n(S) = 36Let A be the event of getting the doublet. (i) $A = \{(1,1), (2,2), (3,3), (4,4), (5,5), (6,6)\}$ n(A) = 6 $P(A) = \frac{n(A)}{n(S)} = \frac{6}{36} = \frac{1}{6}$ Let B be the event of getting the product as a prime number. **(ii)** $B = \{(1,2), (1,3), (1,5), (2,1), (3,1), (5,1)\}$ n(B) = 6 $P(B) = \frac{n(B)}{n(S)} = \frac{6}{36} = \frac{1}{6}$ Let C be the event of getting the sum as a prime number. (iii) $C = \left\{ \begin{pmatrix} 1,1 \end{pmatrix}, (1,2), (1,4), (1,6), (2,1), (2,3), (2,5), (3,2), \\ (3,4), (4,1), (4,3), (5,2), (5,6), (6,1), (6,5) \\ \end{pmatrix} \right\}$ n(C) = 15 $P(C) = \frac{n(C)}{n(S)} = \frac{15}{36} = \frac{5}{12}$

Let *D* be the event of getting the sum as 1. (iv) $D = \{ \}$ n(D) = 0 $P(D) = \frac{n(D)}{n(S)} = 0$ 76) Two dice of blue clor and grey color are rolled simultaneously. Write all the outcomes of this. What is the probability of getting the following addition of numbers rolled on the dice? (i) 8 (ii) 13 (iii) less than or equal to 12. [GMO, PTA-2] Solution :- $S = \{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (2$ (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6),(5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)n(S) = 36... Let A be the event of getting the sum of outcome values equal to 8. **(i)** $A = \{(2,6), (3,5), (4,4), (5,3), (6,2)\}$ n(A) = 5 $P(A) = \frac{n(A)}{n(S)} = \frac{5}{36}$ Let B be the event of getting the sum of outcome values equal to 13. (ii) $B = \{ \}$ n(B) = 0 $P(B) = \frac{n(B)}{n(S)} = \frac{0}{36} = 0$ Let C be the event of getting the sum of outcome values less than or equal to (iii) 12. C = Sn(C) = 36 $P(C) = \frac{n(C)}{n(S)} = \frac{36}{36} = 1$ 77) Three fair coins are tossed together. Find the probability of getting (i) all heads (ii) at least one tail (iii) at most one head (iv) at most two tails. **[PTA-5]** Soln:-Sample Space, $S = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$ n(S) = 8Let A be the event of getting all heads. (i) $A = \{HHH\}$ n(A) = 1 $P(A) = \frac{n(A)}{n(S)} = \frac{1}{8}$ Let *B* be the event of getting at least one tail. (ii)

108

2

$$B = \{HHT, HTH, HTT, THH, THT, TTH, TTT\}$$

$$n(B) = 7$$

$$P(B) = \frac{n(B)}{n(S)} = \frac{7}{8}$$
(ii) Let *C* be the event of getting at most one head.

$$C = \{HTT, THT, TTH, TTT\}$$

$$n(C) = 4$$

$$P(C) = \frac{n(C)}{n(S)} = \frac{4}{8} = \frac{1}{2}$$
(iv) Let *D* be the event of getting at most two tails.

$$D = \{HHH, HHT, HTH, HTT, THH, THT, TTH\}$$

$$n(D) = 7$$

$$P(D) = \frac{n(D)}{n(S)} = \frac{7}{8}$$
TWO MARKS QUESTIONS IUNT - 8 : STATISTICS AND PROBABILITY 97) Find the standard deviation of first natural numbers. **[PTA-6, Jun-23] Solution: WKT**. The standard deviation of first natural numbers, $\sigma = \sqrt{\frac{n^2 - 1}{12}}$

$$\therefore \sigma = \sqrt{\frac{21^2 - 1}{12}} = \sqrt{\frac{441 - 1}{12}} = \sqrt{\frac{440}{12}} = \sqrt{36.67} = 6.06$$
98) The standard deviation and coefficient of variation of a data are 1.2 and 25.6 respectively. Find the value of mean. **[PTA-3] Solution: Given**, $\bar{x} = 25.6$, $C.V = 18.75$
WKT. $C.V = \frac{\sigma}{x} \times 100\%$

$$18.75 = \frac{\sigma}{25.6} \times 100$$

$$18.75 = \frac{\pi}{25.6} \times 100$$

$$18.75 = 12.5$$
WKT

$$C.V = \frac{\sigma}{x} \times 100\%$$

www.Padasalai.Net

www.Trb Tnpsc.Com

$C V = \frac{6.5}{2} \times 100 = \frac{650}{6} = \frac{6500}{5} = 52.04$	
$C.V = \frac{1}{12.5} \times 100 = \frac{1}{12.5} = \frac{1}{125} = \frac{52}{125}$	
100) The standard deviation and coefficient of variation of respectively. Find the value of mean.	a data are 1.2 and 25.6
Solution:-	
$\underline{\text{Given}}, \sigma = 1.2, C.V = 25.6$	
$\underline{\mathbf{WKT}}, \qquad C.V = \frac{\sigma}{\bar{x}} \ge 100\%$	
$25.6 = \frac{1.2}{\bar{x}} \ge 100$	
$\bar{x} = \frac{1.2 \ge 100}{25.6} = \frac{120}{25.6} = 4.6875$	
101) If the mean and coefficient of variation of a data are 15	and 48 respectively, the
find the value of standard deviation.	
Solution:-	
5000000000000000000000000000000000000	
<u>Siven</u> , $x = 15, 0.7 = 40$ WKT $C V = \frac{\sigma}{2} \times 100\%$	
$\underline{\mathbf{WKI}}, \mathbf{C}.\mathbf{V} = \frac{1}{\bar{x}} \times 10070$	
$48 = \frac{3}{15} \times 100$	
48 x 15	
$\overline{100} = \sigma$	
$\sigma = \frac{720}{720} = 7.2$	
$0 = \frac{100}{100} = 7.2$	
ONE MARK QUESTIONS	
UNIT - 8 : STATISTICS AND PROBAB	<u>ILITY</u>
111) Which of the following is not a measure of dispersion?	Ans:-
110 The second data 1.4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	Arithmetic Mean
112) The range of the data $8, 8, 8, 8, 8, \ldots, 8$ is	Ans:- U
113) The sum of an deviations of the data from its mean is	Alls:- Zero
deviations is 3. The sum of squares of all deviations is	Ans:- 160900
115) Variance of first 20 natural numbers is	Ans:- 33.25
Slin Test - 23	7 million 000 million
I Choose the most suitable answer from the given four alternatives and	write the option code with
the corresponding answer.	$(3 \times 1 = 3)$
1) Which of the following is not a measure of dispersion?	(D) Variance
(A) Kange (B) Standard Deviation (C) Arithmetic Mean (2) The range of the data 8 8 8 8 8 8 is	(A) 0
(B) 1 (C) 8 (D) 3	
3) The mean of 100 observations is 40 and their standard deviations is 3. T	The sum of squares of all
deviations is (P) 160000 (C) 160000 (D) 20000	(A) 40000
II Answer the following:-	$(2 \times 2 = 4)$

110

- 4) Find the standard deviation of first 21 natural numbers.
- 5) If the mean and coefficient of variation of a data are 15 and 48 respectively, the find the value of standard deviation.
- III Answer the following:-
- 6) Two unbiased dice are rolled once. Find the probability of getting(i) the doublet (equal numbers on both dice) (ii) the product as a prime number
- (iii) the sum as a prime number (iv) the sum as 1.

IV Answer the following:-

7) Draw a circle of radius 3 cm. Take a point P on this circle and draw a tangent at P. (Using the centre)

DAY – 28

SPECIAL GRAPHS – INDIRECT VARIATION

1) Nishanth is the winner in a Marathon race of 12 km distance. He ran at the uniform speed of 12 km/hr and reached the destination in 1 hour. He was followed by Aradhana, Jeyanth, Sathya and Swetha with their respective speed of 6 km/hr, 4 km/hr, 3 km/hr and 2 km/hr. And, they covered the distance in 2 hrs, 3 hrs, 4 hrs and 6 hours respectively.

Draw the speed-time graph and use it to find the time taken to Kaushik with his speed of 2.4 km/hr. **Solution**:-

VARIATION:- Direct Variation.

TABLE:-

Speed(x)(Km/Hr)	12	6	4	3	2
Time(y)(Hour)	1	2	3	4	6

POINTS:-

(12, 1), (6, 2), (4, 3), (3, 4), (2, 6)

CONSTANT OF VARIATION

 $k = xy = 12 \ge 12 \ge 12$

EQUATION:-

 $\begin{aligned} xy &= k\\ xy &= 12 \end{aligned}$

SCALE:-

x - axis : 1 cm = 1 unit y - axis : 1 cm = 1 unit

From the graph,

If x = 2.4, then y = 5. Kaushik takes 5 hrs with a speed of 2.4 km/hr

- $(1 \times 5 = 5)$
- $(1 \times 8 = 8)$

$$P(A \cap B) = \frac{n(A \cap B)}{n(5)} = \frac{3}{36}$$

 \therefore By the addition theorem on probability, $P(A \cup B) = P(A) + P(B) - P(A \cap B)$
 $= \frac{18}{36} + \frac{5}{36} - \frac{3}{36}$
 $= \frac{18 + 5 - 3}{36}$
 $= \frac{20}{36}$
 $= \frac{5}{9}$
79) Two dice are rolled together. Find the probability of getting a doublet or sum of faces as 4.
Solution:
 $S = \{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)\}$
 $\therefore n(S) = 36$
Let A be the event of getting a doublet.
 $A = \{(1,1), (2,2), (3,3), (4,4), (5,5), (6,6)\}$
 $n(A) = 6$
 $P(A) = \frac{n(A \cap B)}{n(S)} = \frac{6}{36}$
Let B be the event of getting the sum of faces as 4.
 $B = \{(1,3), (2,2), (3,1)\}$
 $n(B) = 3$
 $P(B) = \frac{n(B)}{n(S)} = \frac{3}{36}$
Here, $A \cap B = \{(2,2)\}$
 $n(A \cap B) = \frac{n(A \cap B)}{n(S)} = \frac{1}{36}$
 \therefore By the addition theorem on probability, $P(A \cup B) = P(A) + P(B) - P(A \cap B)$
 $= \frac{\frac{6}{36} + \frac{3}{36} - \frac{1}{36}$
 $= \frac{6}{36}$
 $= \frac{8}{36}$

113

 $=\frac{2}{9}$ 80) If two dice are rolled, then find the probability of getting the product of face value 6 or the difference of face value 5. Solution :- $S = \{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (2$ (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6),(5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)n(S) = 36... Let A be the event of getting the product of face value 6. $A = \{(1, 6), (2, 3), (3, 2), (6, 1)\}$ n(A) = 4 $P(A) = \frac{n(A)}{n(S)} = \frac{4}{36}$ Let *B* be the event of getting the difference of face value 5. $B = \{(1,6), (6,1)\}$ n(B) = 2 $P(B) = \frac{n(B)}{n(S)} = \frac{2}{36}$ $A \cap B = \{(1,6), (6,1)\}$ Here, $n(A \cap B) = 2$ $P(A \cap B) = \frac{n(A \cap B)}{n(S)} = \frac{2}{36}$: By the addition theorem on probability, $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $\frac{4}{\frac{36}{4}} + \frac{2}{\frac{36}{36}} - \frac{2}{\frac{36}{36}}$ **TWO MARKS QUESTIONS UNIT - 8 : STATISTICS AND PROBABILITY** Express the sample space for rolling two dice using tree diagram. 102) Solution:-.

Let A be the event of getting different faces on the coins. $A = \{HT, TH\}$ n(A) = 2 $P(A) = \frac{n(A)}{n(S)} = \frac{2}{4} = \frac{1}{2}$ In a two children family, find the probability that there is at least one girl in 106) a family. Solution:-Sample Space, $S = \{BB, BG, GB, GG\}$ n(S) = 4Let A be the event of getting at least one girl in a family. $A = \{BG, GB\}$ n(A) = 2 $P(A) = \frac{n(A)}{n(S)} = \frac{2}{4} = \frac{1}{2}$ A coin is tossed thrice. What is the probability of getting two consecutive 107) tails? Solution:- $S = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$ n(S) = 8Let A be the event of getting two consecutive tails. $A = \{HTT, TTH, TTT\}$ n(A) = 3 $P(A) = \frac{n(A)}{n(S)} = \frac{3}{8}$ **ONE MARK QUESTIONS** UNIT - 8 : STATISTICS AND PROBABILITY The standard deviation of a data is 3. If each value is 116) Ans:- 225 multiplied by 5 then the new variance is x, y, z is p then the standard 117) If the standard deviation of deviation of 3x + 5, 3y + 5, 3z + 5 is Ans:- 3pIf the mean and coefficient of variation of a data are 4 and 118) Ans:- 3.5 87.5% then the standard deviation is **Ans:** P(A) > 1119) Which of the following is incorrect? Ans:-The probability a red marble selected at random from a jar 120) containing p red, q blue and r green marbles is Slip Test - 24 I Choose the most suitable answer from the given four alternatives and write the option code with the corresponding answer. $(3 \times 1 = 3)$ 1) If the standard deviation of x, y, z is p then the standard deviation of 3x + 5, 3y + 5, 3z + 5 is (A) 3p + 5(B) 3p (C) p + 5(D) 9p + 152) If the mean and coefficient of variation of a data are 4 and 87.5% then the standard deviation is (B) 3 (A) 3.5 (C) 4.5 (D) 2.5 3) Which of the following is incorrect?

(D) $P(A) + P(\bar{A}) = 1$ (B) $0 \le P(A) \le 1$ (C) $P(\varphi) = 0$ (A) P(A) > 1II Answer the following:- $(2 \ge 2 = 4)$ 4) A coin is tossed thrice. What is the probability of getting two consecutive tails? 5) Write the sample space for selecting two balls from a bag conaining 6 balls numbered 1 to 6 (using tree diagram) **III Answer the following:-** $(1 \times 5 = 5)$ 6) If two dice are rolled, then find the probability of getting the product of face value 6 or the difference of face value 5. IV Answer the following:- $(1 \times 8 = 8)$ 7) Nishanth is the winner in a Marathon race of 12 km distance. He ran at the uniform speed of 12 km/hr and reached the destination in 1 hour. He was followed by Aradhana, Jeyanth, Sathya and Swetha with their respective speed of 6 km/hr, 4 km/hr, 3 km/hr and 2 km/hr. And, they covered the distance in 2 hrs, 3 hrs, 4 hrs and 6 hours respectively. Draw the speed-time graph and use it to find the time taken to Kaushik with his speed of 2.4 km/hr. **DAY - 29 PRACTICAL GEOMETRY - TANGENTS** 15) Draw a circle of radius 3.4 cm. Take a point P on this circle and draw a tangent at P. (Using the centre) Solution:-Gven, Radius = 3.4 cm ROUGH DIAGRAM 3.4 cm T' R т $\cdot TPT'$ is the required tangent. **FIVE MARKS QUESTIONS** UNIT - 8 : STATISTICS AND PROBABILITY 81) A box contains cards numbered 3, 5, 7, 9, ..., 35, 37. A card is drawn at random from the box. Find the probability that the drawn card have either multiples of 7 or a prime number.

Soln:- $S = \{3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37\}$ \therefore n(S) = 18Let A be the event of getting the drawn card have multiples of 7. $A = \{7, 21, 35\}$ n(A) = 3 $P(A) = \frac{n(A)}{n(S)} = \frac{3}{18}$ Let *B* be the event of getting the drawn card have a prime number. $B = \{3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37\}$ n(B) = 11 $P(B) = \frac{n(B)}{n(S)} = \frac{11}{18}$ Also, $A \cap B = \{7\}$ $n(A \cap B) = 1$ $P(A \cap B) = \frac{n(A \cap B)}{n(S)} = \frac{1}{18}$ By the addition theorem on probability, $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $= \frac{5}{18} + \frac{11}{18} - \frac{1}{18}$ $= \frac{3+11-1}{18}$ $= \frac{14-1}{18}$ $=\frac{13}{18}$ 82) Three unbiased coins are tossed once. Find the probability of getting atmost 2 tails or at least 2 heads. Soln:- $S = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$ $\therefore n(S) = 8$

Let A be the event of getting at most 2 tails.

 $A = \{HHH, HHT, HTH, HTT, THH, THT, TTH\}$

n(A) = 7

$$P(A) = \frac{n(A)}{n(S)} = \frac{7}{8}$$

Let B be the event of getting at least 2 heads.

 $B = \{HHH, HHT, HTH, THH\}$

118

n(B) = 4 $P(B) = \frac{n(B)}{n(S)} = \frac{4}{8}$ Also, $A \cap B = \{HHH, HHT, HTH, THH\}$ $n(A \cap B) = 4$ $P(A \cap B) = \frac{n(A \cap B)}{n(S)} = \frac{4}{8}$ By the addition theorem on probability, $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $=\frac{7}{8}+\frac{4}{8}-\frac{4}{8}$ 83) In class of 50 students, 28 opted for NCC, 30 opted for NSS and 18 opted for NCC and NSS. One of the students is selected at random. Find the probability that, The selected student opted for NCC but not NSS (i) The selected student opted for NSS but not NCC (ii) The selected student opted for exactly one of them. [PTA-1, PTA-4, May-22] (iii) Solution:-A = Students opted for NCC; B = Students opted for NSS n(S) = 50, n(A) = 28, n(B) = 30, $n(A \cap B) = 18$ Given, B 28-18/18 30-18 =10 =12 Probablity that the selected student opted for NCC but not NSS, (i) $only) = \frac{10}{50} = \frac{1}{5}$ P(AProbablity that the selected student opted for NSS but not NCC **(ii)** $P(B \text{ only}) = \frac{12}{50} = \frac{6}{25}$ Probablity that the selected student opted for exactly one of them (iii) $P(A \text{ only}) + P(B \text{ only}) = \frac{10}{50} + \frac{12}{50} = \frac{10 + 12}{50} = \frac{22}{50} = \frac{10}{50} = \frac{1$ 11 25 **TWO MARKS QUESTIONS UNIT - 8 : STATISTICS AND PROBABILITY** A die is rolled and a coin is tossed simultaneously. Find the probability that the die 108) shows an odd number and the coin shows a head. [Sep-21, Jun-23]

Solution:-

Sample Space, $S = \{1H, 1T, 2H, 2T, 3H, 3T, 4H, 4T, 5H, 5T, 6H, 6T\}$ n(S) = 12Let A be the event of getting the die shows an odd number and the coin shows a head. $A = \{1H, 3H, 5H\}$ n(A) = 3 $\therefore P(A) = \frac{n(A)}{n(S)} = \frac{3}{12} = \frac{1}{4}$ What is the probability that a leap year selected at random will contain 53 Saturdays. 109) Solution:-[Apr-24] Leap year 366 = 52 weeks + 2 days $S = \{(sun,mon), (mon, tue), (tue.wed), (wed,thu), (thu,fri), (fri,sat), (sat,sun)\}$ n(S) = 7 $A = \{\text{getting 53 Saturdays in a leap year}\} = \{(\text{fri,sat}), (\text{sat,sun})\}$ n(A) = 2 $P(A) = \frac{n(A)}{n(S)} = \frac{2}{7}$ If P(A) = 0.37, P(B) = 0.42, $P(A \cap B) = 0.09$ then, find $P(A \cup B)$. 110) Solution:-Given, P(A) = 0.37, P(B) = 0.42, $P(A \cap B) = 0.09$ $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ = 0.37 + 0.42 - 0.09 = 0.79 - 0.09 = 0.7If $P(A) = \frac{2}{3}$, $P(B) = \frac{2}{5}$, $P(A \cap B) = \frac{1}{3}$ then find $P(A \cap B)$ [PTA-1] 111) Solution:-**Given**, P(A) = 0.37, P(B) = 0.42, $P(A \cap B) = 0.09$ $P(A \cap B) = P(A) + P(B) - P(A \cup B)$ $=\frac{2}{3}+\frac{2}{5}-\frac{1}{2}$ $=\frac{10+6-5}{15}$ $=\frac{16-5}{15}$ $=\frac{11}{15}$ The probability of happening of an event A is 0.5 and that of B is 0.3. If A and B are 112)

mutually exclusive events, then the probability that neither A nor B happen.

Solution:-

<u>Given</u>, P(A) = 0.5, P(B) = 0.3, $P(A \cap B) = 0$ <u>WKT</u>, $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

120

$P(A \cup B) = 0.5 + 0.3 - 0 = 0.8$	
• The probability that neither A nor B happen, $= P(\overline{A \cup B})$	
$= 1 - P(A \cup B)$	
= 1 - 0.8	
= 0.2	
ONE MARK QUESTIONS	
<u>UNIT - 8 : STATISTICS AND PROBABILITY</u>	
121) A page is selected at random from a book. The probability that the digit at units place of the page number chosen is less than 7 is	Ans: - $\frac{7}{10}$
122) The probability of getting a job for a person is $\frac{x}{3}$. If the probability of	f Ans:- 1
not getting the job is $\frac{1}{3}$ then the value of x is	
123) Kamalam went to play a lucky draw contest. 135 tickets of the lucky	
draw were sold. If the probability of Kamalam winning is $\frac{1}{9}$, then the	Ans:- 15
number of tickets bought by Kamalam is	
124) If a letter is chosen at random from the English alphabets $\{a, b, c, n\}$ then the probability that the letter chosen precedes x	Ans:- $\frac{23}{26}$
(a, b, c,, 2), then the probability that the fetter chosen precedes x (125) A purse contains 10 notes of Rs 2000, 15 notes of Rs 500 and 25 notes	
of Rs.200. One note is drawn at random. What is the probability that the	Ans:- $\frac{4}{-}$
note is either a Rs.500 note of Rs.200 note?	5
Slip Test - 25	·
Choose the most suitable answer from the given four alternatives and write the opt	ion code with the
$\mathbf{S} \mathbf{X}$ (S \mathbf{X}) A page is selected at random from a book. The probability that the digit at units place c	$\mathbf{I} = \mathbf{J}$
chosen is less than 7 is(A) $\frac{3}{42}$ (B) $\frac{7}{42}$ (C) $\frac{3}{2}$ (J)	D) $\frac{7}{2}$
) If a letter is chosen at random from the English alphabets $\{a, b, c,, z\}$, then the probab	bility that the letter
chosen precedes $x(A) \frac{12}{12}$ (B) $\frac{1}{12}$ (C) $\frac{23}{27}$ (D) $\frac{3}{27}$	
) The probability of getting a job for a person is $\frac{x}{2}$. If the probability of not getting the	job is $\frac{2}{2}$ then the
value of x is(A) 2 (B) 1 (C) 3 (J	D) 1.5
I Answer the following:-	$(2 \mathbf{x} 2 = 4)$
b) If $P(A) = \frac{2}{3}$, $P(B) = \frac{2}{5}$, $P(A \cap B) = \frac{1}{3}$ then find $P(A \cap B)$.	
5) What is the probability that a leap year selected at random will contain 53 Saturdays.	
II Answer the following:-	$(1 \times 5 = 5)$
) Three unbiased coins are tossed once. Find the probability of getting at most 2 tails or at	t least 2 heads.
V Answer the following:-	$(1 \times 8 = 8)$
T) Draw a circle of radius 3.4 cm. Take a point P on this circle and draw a tangent at P. ((Using the centre)

DAY – 30 WEEKLY TEST - 5

TENTH STANDARD – MATHEMATICS - FORMULAE

UNIT - 1 : RELATIONS AND FUNCTIONS

1) If f and g are any two functions, then in general $f \circ g \neq g \circ f$. (So, composition of functions is not commutative.) 2) If f, g and h are any three functions, then $f \circ (g \circ h) = (f \circ g) \circ h$. (Composition of three functions is always associative) UNIT - 2 : NUMBERS AND SEQUENCES Euclid's division lemma :-If a and b are two positive integers then there exist unique integers q and $a = bq + r, 0 \le r < |b|.$ r such that Fundamental theorem of arithmetic :-Every composite number can be expressed as a product of primes and this factorization is unique except for the order in which the prime factors occur. Arithmetic Progression (A.P) :-General Form : $a, a + d, a + 2d, a + 3d, \dots \dots$ (i) n - th term, $t_n = a + (n-1)d$. **(ii)** Here n = first term, d = common difference $= t_2 - t_1$ Number of terms, $n = \left(\frac{l-a}{d}\right) + 1$. Here, *l* is the last term. (iii) Three non-zero numbers a, b, c are in A.P, if and only if 2b = a + c. (**iv**) Three consecutive terms of an A.P : a - d, a, a + d. **(v)** Four consecutive terms of an A.P. a - 3d, a - d, a + d, a + 3d. (vi) Sum to first *n* terms of an A.P. is (vii) $S_n = \frac{n}{2} [2a + (n-1)d]$ $S_n = \frac{n}{2} (a+l)$ (i) (ii) Geometric Progression (G.P) :-General form : $a, ar, ar^2, ar^3, ar^4, ar^5, \dots \dots$ (i) n – th term, $t_n = ar^{n-1}$, (ii) Here, $a = \text{first term}, r = \text{common ratio} = \frac{t_2}{t_1}$ Three non-zero numbers a, b, c are in G.P, if and only if $b^2 = ac$. (iii) Three consecutive terms of an A.P : $\frac{a}{r}$, a, ar. (iv) Sum to first n terms of an G.P. is, (v) $S_n = \frac{a(r^{n}-1)}{r-1} \qquad (if \quad r > 1)$ $S_n = \frac{a(1-r^n)}{1-r} \qquad (if \quad r < 1)$ $S_n = na \qquad (if \quad r = 1)$ (i) (ii) (iii) Sum to infinite terms of a G.P, (vi) $S_{\infty} = \frac{a}{1-r} \left(-1 < r < 1\right)$ **Special Series** :-122

The sum of first n natural numbers is, (i) $1 + 2 + 3 + \dots + n = \sum_{n=1}^{\infty} n = \frac{n(n+1)}{2}$ The sum of squares of first n natural numbers is. **(ii)** $1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \sum n^{2} = \frac{n(n+1)(2n+1)}{6}$ The sum of squares of first n natural numbers is, (iii) $1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \sum n^{3} = \left(\frac{n(n+1)}{2}\right)^{2}$ The sum of first n odd natural numbers is, (iv) (a) $1 + 3 + 5 + \cdots n$ terms $= n^2$ (b) $1 + 3 + 5 + \dots + l = \left(\frac{l+1}{2}\right)^2$, Here *l* is the last term. UNIT - 3 : ALGEBRA **IDENTITIES** :- $\overline{(a+b)^2} = a^2 + 2ab + b^2$ (i) $(a-b)^2 = a^2 - 2ab + b^2$ **(ii)** $(a+b)(a-b) = a^2 - b^2$ (iii) $a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2})$ (iv) $a^{3} + b^{3} = (a + b)^{3} - 3ab(a + b)$ **(v)** $a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})$ (vi) $a^{3} - b^{3} = (a - b)^{3} + 3ab(a - b)$ (vii) any two polynomials then, $f(x) \ge g(x) = G.C.D$ If f(x)and g(x)are X L.C.M. **QUADRATIC EQUATIONS:-**The roots of the quadratic equation $ax^2 + bx + c = 0$, $(a \neq 0)$ are given by $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ **(i)** Nature of roots, $\Delta = b^2 - 4ac$ (ii) $\Delta = b^2 - 4ac$ Nature of roots $\Delta > 0$ Real and unequal. $\Delta = 0$ Real and equal. Unreal or imaginary. $\Delta < 0$ (iii) If α and β are the two roots of the quadratic equation, $ax^2 + bx + c = 0$, then Sum of the roots, $\alpha + \beta = \frac{-b}{a}$ Product of the roots, $\alpha\beta = \frac{c}{a}$ 123

If α and β are the two roots of the quadratic equation, then the equation is (iv) given by x^2 – (Sum of the roots) x + Product of the roots = 0 $x^2 - (\alpha + \beta)x + \alpha\beta = 0.$ That is. SOME MORE USEFUL IDENTITIES: **(v)** $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$ (i) (ii) $\alpha^{3} + \beta^{3} = (\alpha + \beta)^{3} - 2\alpha\beta$ (iii) $\alpha^{3} + \beta^{3} = (\alpha + \beta)^{3} - 3\alpha\beta(\alpha + \beta)$ (iii) $\alpha - \beta = \sqrt{(\alpha + \beta)^{2} - 4\alpha\beta}$ (iv) $\alpha^{4} + \beta^{4} = (\alpha^{2} + \beta^{2})^{2} - 2\alpha^{2}\beta^{2}$ Finding the Nature of Solution of Quadratic Equations Graphically:-Number of points of Nature of Graphs intersection of X - axissolutions ÂΥ Real and un 2 equal 1 Real and equal Unrel or 0 Imaginary. x **MATRICES** :-The general 3 X 3 matrix is given by, $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$ (i) A unit matrix of order 2 X 2 is, $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ **(ii)** If A, B and C are any three matrices, then (iii) (1) A + B = B + A (Commutative property of matrix addition) (2) (A + B) + C = A + (B + C) (Associative property of matrix addition) (3) A + O = O + A = A(Additive Identity) (4) A + (-A) = (-A) + A = 0 (Additive Inverse) (5) In general, $AB \neq BA$ (6) (AB)C = A (BC) (Associative property of matrix multiplication) (7) A(B + C) = AB + AC (Distributive Property)

	(8) $(A + B)C = AC + BC$ (Distributive Property)						
	(9) $(A - B)C = AC - BC$ (Distributive Property)						
	(10) $AI = IA = A$ (Multiplicative Identity)						
	(11) If A and B are the two multiplicative inverse matrices, then $AB = BA = I$.						
	(12) If AB is defined, $(AB)^T = B^T A^T$						
	$(13) (A^T)^T = A$						
	$(14)(A - B)^T = A^T - B^T$						
	$(15)AA^T = I$						
	UNIT - 4 : GEOMETRY						
(i)	Thales Theorem or Basic Proportionality Theorem :-						
	A straight line drawn parallel to a side of triangle intersecting the other two						
	xicex, divides the sides in the same ratio.						
	In $\triangle ABC$, DE BC, then $\frac{AD}{AE} = \frac{AE}{AE}$						
	DB EC						
(;;)	Angle Risector Theorem : -						
(11)	The internal bisector of an angle of a triangle divides the opposite side						
	internally in the ratio of the corresponding sides containing the angle						
	In AABC AD is the internal angle bisector of (A then $AB = BD$						
	In ΔABC , AD is the internal angle disector of ΔA , then $\frac{1}{AC} = \frac{1}{DC}$						
(iii)	Pythagoras Theorem :-						
	In a right angle triangle, the square on the hypotenuse is equal to the sum of						
	the squares on the other two sides.						
(iv)	Alternate Segment Theorem or Tangent-chord Theorem :-						
	If a line touches a circle and from the point of contact a chord is drawn, the						
	angles between the tangent and the chord are respectively equal to the angles in the						
	corresponding alternate segments.						
(v)	<u>Ceva's Theorem :-</u>						
	Let ABC be a triangle and let D , E and F be points on lines BC, CA and						
	AB respectively. Then the cevians AD, BE and CF are concurrent if and						
	only if $\frac{BD}{DC} \times \frac{CE}{EA} \times \frac{AF}{EB} = 1$ where the lengths are directed. This also works for						
	the reciprocal of each of the ratios as the reciprocal of 1 is 1.						
	UNIT - 5 · CO ORDINATE GEOMETRY						
	SECTION FORMULA :-						
• <u>0</u> (i)	Distance between two points $A(r, y_i)$ and $B(r_0, y_0)$ is						
(1)	Distance between two points $M(x_1, y_1)$ and $D(x_2, y_2)$ is,						
	$a = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$						
(ii)	The mid point of the line segment joining $A(x_1, y_1)$ and $B(x_2, y_2)$ is, =						
	$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$						
(iiii)	The coordinates of the centroid G of a triangle with vertices $A(x_1, v_1), B(x_2, v_2)$						
	and $C(x_2, y_2)$ are given by $C = \left(\frac{x_1 + x_2 + x_3}{y_1 + y_2 + y_3}\right)$						
	and $C(\lambda_3, y_3)$ are given by, $C = \left(\frac{3}{3}, \frac{3}{3}\right)$						

125

- The area of a triangle with vertices $A(x_1, y_1), B(x_2, y_2)$ and $C(x_3, y_3)$ is, (iv) $\Delta = \frac{1}{2} \begin{vmatrix} x_1 \\ y_1 \end{vmatrix} \begin{vmatrix} x_2 \\ y_2 \end{vmatrix} \begin{vmatrix} x_3 \\ y_3 \end{vmatrix} \begin{vmatrix} x_1 \\ y_1 \end{vmatrix}$ The area of a quadrilateral with vertices $A(x_1, y_1), B(x_2, y_2), C(x_3, y_3)$ and **(v)** $D(x_4, y_4)$ is, $\Delta = \frac{1}{2} \begin{vmatrix} x_1 \\ y_1 \end{vmatrix} \begin{vmatrix} x_2 \\ y_2 \end{vmatrix} \begin{vmatrix} x_3 \\ y_3 \end{vmatrix} \begin{vmatrix} x_4 \\ y_4 \end{vmatrix} \begin{vmatrix} x_1 \\ y_1 \end{vmatrix}$ If $A(x_1, y_1)$, $B(x_2, y_2)$ and $C(x_3, y_3)$ are collinear points, then, (vi) $\begin{vmatrix} x_1 \\ y_1 \end{vmatrix} \begin{vmatrix} x_2 \\ y_2 \end{vmatrix} \begin{vmatrix} x_3 \\ y_3 \end{vmatrix} \begin{vmatrix} x_1 \\ y_1 \end{vmatrix} = 0$ Slope of a straight line :-If θ is the angle of inclination of a non-vertical straight line, then the **(i)** slope of the straight line is , $m = tan\theta$. If $A(x_1, y_1)$ and $B(x_2, y_2)$ are any two points on a straight line, then the slope (ii) of the straight line is, $m = \frac{y_2 - y_1}{x_2 - x_1}$ If ax + by + c = 0 is the equation of the straight line, then the slope of the (iii) straight line is, $m = \frac{-a}{b}$ Two non-vertical lines are parallel if and only if their slopes are equal. That (iv) is, $m_1 = m_2$ Two non-vertical lines are perpendicular if and only if the product of their **(v)** slopes are equal to -1. That is, $m_1 x m_2 = -1$ Equation of a straight line :-Equation of the *X* – axis is, y = 0(i) Equation of a straight line parallel to *Y* – axis is, y = k(ii) Equation of the Y – axis is, x = 0(iii) Equation of the straight line parallel to Y – axis is, x = k(iv) Equation of the straight line passing through the origin is, y = mx**(v)** Slope – Intercept Form, y = mx + c(**vi**) Slope – Point Form, $y - y_1 = m(x - x_1)$ Two Points Form, $\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$ Intercepts Form, $\frac{x}{a} + \frac{y}{b} = 1$ (vii) (viii) (ix) The equation of the straight line parallel to ax + by + c = 0 is of the form **(x)** x + bv + k = 0.The equation of the straight line perpendicular to ax + by + c = 0 is of the (xi) form bx - ay + k = 0. UNIT - 6 : **TRIGONOMETRY**
- TRIGONOMETRIC IDENTITIES.

126

www.Padasalai.Net

www.Trb Tnpsc.Com

(1) $sin^2\theta + cos^2\theta = 1$ $sin^2\theta = 1 - cos^2\theta$ $cos^2\theta = 1 - sin^2\theta$				(2) $1 + tan^{2}\theta = sec^{2}\theta$ $tan^{2}\theta - sec^{2}\theta = -1$ $sec^{2}\theta - tan^{2}\theta = 1$) -1	(3) $1 + \cot^2 \theta = \csc^2 \theta$ $\cot^2 \theta - \csc^2 \theta = -1$ $\csc^2 \theta - \cot^2 \theta = 1$.		
• <u>TRIGONOMIC RATIOS :-</u> 1) $sin\theta = \frac{OPPOSITE SIDE}{HYPOTENUS}$ 2) $cos\theta = \frac{ADJACENT SIDE}{HYPOTENUS}$ 3) $tan\theta = \frac{OPPOSITE SIDE}{ADJACENT SIDE}$											
	<u>TABLE OF TRIGONOMETRIC RATIOS.</u>										
θ		θ		0°	30°	45°	60°	90°			
		sinθ	$\theta = 0 = \frac{1}{2}$		$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1			
		cosθ)	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0			
tan		tant)	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$ ∞				
			UN	IT	- 7	: M	ENSUR	ATIO	N		
	S.No.	FIGUR	ĽΕ	Curved Surface Area			Tota	l Surface Area	Volume		
	1	CYLINDER	2	2πrh		$2\pi r(h+r)$		$\pi r^2 h$			
	2	CONE		πrl			πr	(l+r)	$\frac{1}{3}\pi r^2h$		
	3	SPHERE			$4\pi r^2$			$4\pi r^2$		$\frac{4}{3}\pi r^3$	
	4	HEMISPHERE			$2\pi r^2$			$3\pi r^2$		$\frac{2}{3}\pi r^3$	
	5	5 FRUSTUM (BUCKET)			$\pi l(R+r)$ $l = \sqrt{h^2 + (R-r)^2}$			$\pi l(R+r) + \\ \pi (R^2 + r^2)$		$\frac{\pi h}{3}(R^2 + r^2 + Rr)$	
	6	HOLLOW CYLINDER	$2\pi(R+r)h$			$\frac{2\pi(R+r)}{(R-r+)h}$		$\pi h(R^2-r^2)$			
	7	HOLLOW SPHERE		$4\pi R^2$		$4\pi(R^2+r^2)$		$\frac{4}{3}\pi(R^3-r^3)$			
	8	8 HOLLOW HEMISPHERE			$2\pi(R^2+r^2)$			$\pi(3)$	$R^2 + r^2$)	$\frac{2}{3}\pi(R^3-r^3)$	
(i) Slant height of the Cone, $l = \sqrt{r^2 + h^2}$ (ii) Radius of the Cone, $r = \sqrt{l^2 - h^2}$											

Height of the Cone, $h = \sqrt{l^2 - r^2}$ (iii) Number of new figures produced by melting, $=\frac{Volume \ of \ melted \ Solid}{Volume \ of \ recasting \ Solid}$ (iv) UNIT - 8 : STATISTICS AND PROBABILITY **STATISTICS :-**Range = Largest Value – Smallest Value (Range = L - S). (i) Co-efficient of Range = $\frac{L-S}{L+S}$. (ii) Average, $\bar{x} = \frac{\sum x}{n}$ (iii) **Standard Deviation for ungrouped data** (σ). (1) Direct Method : $\sigma = \sqrt{\frac{\sum x^2}{n} - \left(\frac{\sum x}{n}\right)^2}$ (iv) (2) Mean Method : $\sigma = \sqrt{\frac{\sum d^2}{n}}$, $d = x - \bar{x}$: $\sigma = \sqrt{\frac{\sum d^2}{n} - \left(\frac{\sum d}{n}\right)^2}$ (3) Assumed Mean Method d = x - A, A = Assumed Mean Standard Deviation for grouped data (σ). **(v)** $\sigma = \sqrt{\frac{\sum f d^2}{\sum f} - \left(\frac{\sum f d}{\sum f}\right)^2}$, d = x - A, A = Assumed Mean The standard deviation of the *n* natural numbers, $\sigma = \sqrt{\frac{n^2 - 1}{12}}$. (vi) Co-efficient of Variation, $C.V = \frac{\sigma}{\bar{x}} \times 100\%$. (vii) **PROBABILITY** :-The probability of an event A is, $P(A) = \frac{n(A)}{n(S)}$ **(i)** P(S) = 1.**(ii)** The probability of sure event A is 1. That is The probability of impossible event A is 0. That is, $P(\phi) = 0$. (iii) **(iv)** The probability value always slies from 0 to 1. That is, $0 \le P(A) \le 1$. The probability of an event not happening is, $P(\bar{A}) = 1 - P(A).$ **(v) ADDITION THEOREM OF PROBABILITY :-**If A and B are any two events, $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ (i) If A and B are any two impossible events, **(ii)** $P(A \cup B) = P(A) + P(B)$ If A, B and C are any three events, (iii) $P(A \cup B \cup C)$ $= P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C) - P(A \cap C)$ $+ P(A \cap B \cap C)$ If A B and C are any three impossible events, (iv) $P(A \cup B \cup C) = P(A) + P(B) + P(C)$ $P(A \text{ only}) = P(A \cap \overline{B}) = P(A) - P(A \cap B)$ and **(v)** $P(B \text{ only}) = P(\overline{A} \cap B) = P(B) - P(A \cap B)$