10 TH MATHEMATICS THEOREMS STUDY MATERIAL

THEOREM 1

THALES THEOREM OR BPT (BASIC PROPORTIONALITY THEOREM)

- 1. STATEMENT
 - **❖** A Straight line drawn Parallel to a side of triangle intersecting the other two sides, divides the sides in the Same ratio.

- 2. GIVEN: In \triangle ABC D and E is a Point on AB and AC
- 3. TO PROVE: $\frac{AD}{DB} = \frac{AE}{EC}$
- 4. CONSTRUCTION: Draw a line $DE \parallel BC$.

S. NO	STATEMENT	REASON
1.	$\angle ABC = \angle ADE = \angle 1$	Corresponding Angles Equal (DE BC)
2.	$\angle ACB = \angle AED = \angle 2$	
3.	$\angle DAE = \angle BAC = \angle 3$	Both Triangle a Common Angle.
	$\triangle ABC \sim \triangle ADE$	By AAA Similarity
4.	$\frac{AB}{AD} = \frac{AC}{AE}$ $\frac{AD + DB}{AD} = \frac{AE + EC}{AE}$ $\frac{AD}{AD} + \frac{DB}{AD} = \frac{AE}{AE} + \frac{EC}{AE}$ $1 + \frac{DB}{AD} = 1 + \frac{EC}{AE}$	Corresponding Sides Proportional Split AB and AC Using Points D and E
		Cancelling 1 on both sides
	$\frac{DB}{AD} = \frac{EC}{AE}$ $\frac{AD}{AE} = \frac{AE}{AE}$	Taking Reciprocals
	DB EC	Hence Proved

THEOREM 2

ABT (ANGLE BISECTOR THEOREM)

- 1. STATEMENT
 - **❖** The Internal Bisector of an angle of a triangle divides the Opposite side Internally in the ratio of the Corresponding sides Containing the Angle.

- 2. GIVEN: In \triangle ABC AD is the Internal Bisector
- 3. TO PROVE: $\frac{AB}{AC} = \frac{BD}{CD}$
- 4. **CONSTRUCTION**: Draw a line Parallel to AB. Extend AD line Through C at E.

Y. SEENTVASAN. M.Sc, B.Ed, PG - TEACHER (MATHS) - 8489880553

S. NO	STATEMENT	REASON
1.	$\angle AEC = \angle BAE = \angle 1$	Two parallel lines Cut a transversal. (Alternate
2.	$\angle ABD = \angle ECD = \angle 2$	Angle s Equal)
3.	\triangle ACE is isosceles $AC = CE (1)$	In $\triangle ACE$, $\angle CAE = \angle CEA$
	$\Delta ABD \sim \Delta ECD$ $\frac{AB}{CE} = \frac{BD}{CD}$	By AAA Similarity
4.	$\frac{CE}{AC} = \frac{CD}{CD}$	From (1) AC = CE Hence Proved

THEOREM 3

PYTHAGORAS THEOREM (BAUDHAYANA THEOREM)

1. STATEMENT

❖ In a Right angle Triangle, the Square on the Hypotenuse is equal to the sum of the Squares on the other Two sides.

- 2. GIVEN: In \triangle ABC \angle A = 90° is the Internal Bisector
- 3. TO PROVE: $AB^2 + AC^2 = BC^2$
- 4. CONSTRUCTION: Draw $AD \perp BC$

S. NO	STATEMENT	REASON		
1.	$\triangle ABC$ and $\triangle DBA$ ($\angle B$ is Common) $\angle BAC = \angle BDA = 90^{\circ}$	Given $\angle BAC = 90^{\circ}$ and $\angle BDA = 90^{\circ}$		
2.		By AA Similarity		
3.	$\triangle ABC$ and $\triangle DAC$ ($\angle C$ is Common) $\angle BAC = \angle ADC = 90^{\circ}$	Given $\angle BAC = 90^{\circ}$ and $\angle BDA = 90^{\circ}$		
4.		By AA Similarity		
$Add (1) + (2) \Rightarrow AB^2 + AC^2 = BC \times BD + BC \times DC$				
=BC[BD+DC]				

PREPARED AND TYPED BY Y. SEENIVASAN. M.Sc, B.Ed (MATHS TEACHER)

 $= BC \times BC$

 $AB^2 + AC^2 = BC^2$