NEET, JEE, CA, TUITION ERODE – 12, CONTACT: 9500939789

CHEMISTRY FULL PORTION CLASS 11th (04.01.2025) 45x4=180 MARKS

Solution

2 g butane
$$\rightarrow$$
 moles = $\frac{2}{58}$

Number of atoms =
$$\frac{2}{58} \times N_A \times 14 = 0.48N_A$$

2 g nitrogen
$$\rightarrow$$
 moles = $\frac{2}{28}$

Number of atoms =
$$\frac{2}{28} \times N_A \times 2 = 0.14 N_A$$

2 g silver
$$\rightarrow$$
 moles = $\frac{2}{108}$

Number of atoms =
$$\frac{2}{108} \times N_A = 0.0185 N_A$$

2 g water
$$\rightarrow$$
 moles = $\frac{2}{18}$

Number of atoms =
$$\frac{2}{18} \times N_A \times 3 = 0.33 N_A$$

- 02. Answer (4)
- 03. Answer (4) m = -1 to +1
- 04. Answer (1) $I.E_3 > I.E_2 > I.E_1$
- 05. Answer (4)

In BF₃, B is sp^2 hybridized In PCl₅, P is sp^3d hybridized

In BF₄, B is sp³ hybridized

In PCl_6^- , P is sp^3d^2 hybridized

06. Answer (1)

07. Answer (4)
Equilibrium constant depends on temperature.

08. Answer (1)

$$NH_4HS(s) \Longrightarrow NH_3(g) + H_2S(g)$$

Initial pressure

0.5 0

Pressure after dissociation

(0.5 + P) P

$$K_p = P'_{NH_3} \times P'_{H_2S} = (0.5 + P) P$$

$$0.14 = (0.5 + P) P \Rightarrow P = 0.20$$

$$P'_{NH_3} = 0.5 + P = 0.5 + 0.20 = 0.70$$
 atm

$$P'_{H_0S} = P = 0.20$$

09. Answer (1)

$$\Delta S = nC_v \ln \frac{T_2}{T_1} + nR \ln \frac{V_2}{V_1}$$

$$= 5 \times (4-2) \times 2.303 \log \frac{400}{300} + 5 \times 2 \times 2.303 \times \log \frac{20}{10}$$

$$\Delta S = 2.878 + 6.93 = 9.81 \text{ cal K}^{-1}$$

10. Answer (1)

$$\Delta_{r}S^{0} = \Sigma n_{p}S_{p}^{0} - \Sigma n_{R}S_{R}^{0}$$

$$= [174.0 + 75] - [2 \times 195 + 213.7]$$

$$= -354.7 \text{ JK}^{-1} \text{ mol}^{-1}$$

11. Answer (2) Fact

12. Answer (**3**)

13. Answer (3)

www.Trb Tnpsc.Com

14. Answer (1)

6-Hydroxycyclohex-2-enone

15. Answer (3)

Meq of excess acid = meq of NaOH = $\frac{1}{5} \times 100 = 20$

Total meq of acid = $\frac{1}{5} \times 2 \times 150 = 60$

- \therefore Meq of H₂SO₄ reacted = 60 20 = 40 = meq of NH₃
- .. Mole of NH₃ × 1 × 10³ = 40 Mole of NH₃ = 40 × 10⁻³ = mole of N Mass of N = 40 × 10⁻³ × 14 g = 0.56 g

$$\therefore$$
 % of N = $\frac{0.56}{0.7} \times 100 = 80\%$

16. Answer (1)

Higher the number of $\alpha\text{-H}$ of alkyl group directly attach on benzene, more is its reactivity towards electrophilic substitution reaction.

17. Answer (1)

Option (1) is least stable as like charge on adjacent atoms.

18. Answer (4)

19. Answer (4)

Intermediate formed during anti-Markovnikov addition is CH_3 — $\dot{C}H$ — CH_2 —Br which may undergo following changes.

$$CH_{3}-\mathring{C}H-CH_{2}-Br$$

$$CH_{3}-\mathring{C}H-CH_{2}-Br$$

$$Br$$

$$CH_{3}-\mathring{C}H-CH_{2}-Br$$

$$Br$$

$$CH_{3}-\mathring{C}H-CH_{2}-Br$$

$$CH_{3}-\mathring{C}H-CH_{2}-Br$$

$$CH_{3}-\mathring{C}H-CH_{2}-Br$$

$$CH_{3}-\mathring{C}H-CH_{2}-Br$$

$$CH_{3}-\mathring{C}H-CH_{2}-Br$$

20. Answer (2)

Stabler the carbonium ion faster is the ease of dehydration.

21. Answer (4)

 $\mathsf{CaCO}_3 + \mathsf{2HCI} \to \mathsf{CaCI}_2 + \mathsf{2H}_2\mathsf{O} + \mathsf{CO}_2$

Moles of CaCO₃ = Moles of CO₂

Moles of
$$CaCO_3 = \frac{448}{22400} = 0.02$$

Mass of $CaCO_3 = 0.02 \times 100 g = 2 g$

$$\therefore$$
 Percentage of CaCO₃ = $\frac{2}{5} \times 100 = 40\%$

22. Answer (2)

Percentage of weight by volume

$$= \frac{0.6 \times 170}{1000} \times 100$$
$$= 10.2\%$$

23. Answer (1)

Density = $789 \text{ kg/m}^3 = 0.789 \text{ g/cm}^3$

:. Molarity =
$$\frac{789}{46}$$
 = 17.15

24. Answer (3)

In nuclear reaction law of conservation of mass is not applicable.

25. Answer (3)

Since
$$\Delta E = \frac{hc}{\lambda}$$

 \therefore Shortest $\lambda \Rightarrow \Delta E = Maximum \Rightarrow last line$

So, for Lyman series, $n_2 = \infty \rightarrow n_1 = 1$

$$\frac{1}{\lambda} = R_{H}(1)^{2} \left(\frac{1}{1^{2}} - \frac{1}{\infty^{2}} \right)$$

$$\frac{1}{x} = R_H$$

Also, longest $\lambda \Rightarrow \Delta E = minimum \Rightarrow first line$

So, Balmer series $n_2 = 3 \rightarrow n_1 = 2$

$$\frac{1}{\lambda} = R_{H}(2)^{2} \left(\frac{1}{2^{2}} - \frac{1}{3^{2}} \right)$$
$$= R_{H} \times 4 \times \frac{5}{36}$$
$$\lambda = \frac{9}{5R_{H}} = \frac{9x}{5}$$

26. Answer (4)

In isoelectronic species, as positive charge increases, size decreases and as negative charge increases, size increases.

27. Answer (1)

Graph is for 2s which has 1 radial node (n-l-1) ie., 1 region of low probability density and 2 region of high probability density.

28. Answer (3)

$$\frac{1}{\lambda} = R_{H}(3)^{2} \left[\frac{1}{n_{1}^{2}} - \frac{1}{n_{2}^{2}} \right] = R_{H}(1)^{2} \left[\frac{1}{2^{2}} - \frac{1}{3^{2}} \right]$$

$$\frac{3^2}{n_1^2} = \frac{1}{2^2} \implies n_1 = 6$$

$$\frac{(3)^2}{{n_2}^2} = \frac{1}{3^2} \implies n_2 = 9$$

29. Answer (4)

$$E=-13.6\frac{Z^2}{n^2}eV$$

30. Answer (2)

$$\begin{array}{ccc} CH_3NH_2 + H_2O(\ell) \Longrightarrow CH_3NH_3^+(aq) + OH^-(aq) \\ \text{Initial molar conc.} & 0.2 & 0 & 0 \\ \text{At equilibrium} & (0.2-0.2\alpha) & 0.2 & 0.$$

$$[OH^{-}] = \sqrt{K_b C} = \sqrt{10^{-5}}$$

$$pOH = 2.5$$

pH = 14 - 2.5 = 11.5

31. Answer (3)

At equilibrium,
$$C(1-\alpha)$$
 \xrightarrow{XA} \xrightarrow{D} $+$ C $\left(\frac{C\alpha}{x}\right)$ $+$ $\left(\frac{C\alpha}{x}\right)$

Where, C = initial concentration of A

$$\mathsf{K}_{\mathsf{C}} = \frac{\mathsf{C}^2 \alpha^2}{\mathsf{x}^2 \big[\mathsf{C} (1 - \alpha) \big]^{\mathsf{x}}} = \frac{\alpha^2 \cdot \mathsf{C}^{2 - \mathsf{x}}}{\mathsf{x}^2 (1 - \alpha)^{\mathsf{x}}}$$

Since K_c is independent of C : 2 - x = 0x = 2

- 32. Answer (4)
- 33. Answer (2)

Relative strength

$$= \frac{\text{Strength of formic acid}}{\text{Strength of acetic acid}} = \sqrt{\frac{K_{a_1}}{K_{a_2}}}$$

$$=\sqrt{\frac{2.5\times10^{-4}}{0.5\times10^{-5}}}\ =\sqrt{50}=7.07$$

34. Answer (4)

35. Answer (1)

$$\Delta n_g > 0$$
 then $K_p > K_c$

36. Answer (3)

 $3c - 4e^{-}$ Bond

37. Answer (1)

C₄H₉ –has four radicals

38. Answer (2)

39. Answer (1)

40. Answer (2)

for endothermic reaction

on T $\uparrow \Rightarrow$ Reaction goes in forward direction

41. Answer (2)

S = Molarity =
$$\frac{6.9 \times 10^{-2} \times 1000}{690 \times 100}$$

= 10^{-3} mol/L

For Ba₃(AsO₄)₂
$$K_{sp} = 108 \text{ S}^5$$

Ksp = 1.08 × 10⁻¹³ M⁵

42. Answer (4)

Aniline is purified using steam distillation because aniline is steam volatile & it is insoluble in water.

43. Answer (4)

In termination

$$Cl^{\bullet} + Cl^{\bullet} \rightarrow Cl_2$$

$$CH_3^{\bullet} + CH_3^{\bullet} \rightarrow CH_3 - CH_3$$

$$CH_3^{\bullet} + Cl^{\bullet} \rightarrow CH_3 - Cl$$

44. Answer (4)
$$2CH_3COO^-Na^+ + 2H_2O \rightarrow CH_3 - CH_3 + 2CO_2 + H_2 + NaOH$$

45. Answer (3)
$$2CH_{3} - CH - CH_{2} - Cl \xrightarrow{Na} CH_{3}$$

$$CH_{3}$$

$$CH_{3} - CH - CH_{2} - CH_{2} - CH - CH_{3}$$

$$CH_{3} - CH - CH_{2} - CH_{3} - CH - CH_{3}$$