COMMON HALF YEARLY EXAMINATION - 2025

Δ

Standard XI

	_			_
Reg.No.		110		

MATHEMATICS

Time	: 3.00 hrs	Par			Marks: 90
1. (Choose the correct	t answer:		nΛ	20 x 1 = 20
	t A = {(x,y) : y = sin : ≘) no element	$x, x \in \mathbb{R}$ and $B = \{(x, y) \in \mathbb{R} \mid x \in \mathbb{R} \}$	y) : y = cos x, x∈R} the b) infinitely many elem	nent	S
(c) only one element	t	d) cannot be determin	ed	
	a) [_9.91	b) R	$x) = x^2$ is onto, then S is c) [-3,3]	d)	[0,9]
	The number of solut a) 1	ions of $x^2 + x - 1 = b$	1 is . c) 2	d)	3
4.34	AND AND AND AND AND AND			(
	cos6x+6cos4x+15co cos5x+5cos3x+10 a) cos 2x)cos x	c) cos 3x	d)	2 cos x
5.	$\ln {^{2n}C_3} : {^nC_3} = 11 : 1$, then n is			in the later of
6.		b) 6 git numbers all digits	c) 11 of which are odd is	d)	A office and a
		b) 5 ⁵	c) 5 ⁶	d)	625
7.	The value of $1 - \frac{1}{2} \left(\frac{2}{3} \right)$	$+\frac{1}{3}\left(\frac{2}{3}\right)^2 - \frac{1}{4}\left(\frac{2}{3}\right)^3 + \dots$	is		in a drag
	a) $\log\left(\frac{5}{3}\right)$	b) $\frac{3}{2}\log\left(\frac{5}{3}\right)$	c) $\frac{5}{3}\log\left(\frac{5}{3}\right)$	d)	$\frac{2}{3}\log\left(\frac{2}{3}\right)$
			eometric mean of two		
	a) a ≤ g The image of the po	b) a≥g pint (2,3) in the line y	c) a = g = -x is	a)	a > g
	a) (-3,-2)	b) (-3,2)	c) (-2,-3)	d)	(3,2)
10.	If the point (8, -5) lie	es on the locus $\frac{x^2}{16}$	$\frac{y^2}{25} = k$, then the value	of k	(is
	a) 0	b) 1	c) 2		the second secon
		[0	a -b]		
11:	The value of the det		0 c is	34	to a a at 25 We altoye
		b) abc			$a^2 + b^2 + c^2$
12.		b) AA ^T	e following is not symme c) A ^T A	etric d)	A-A ^T
13.	If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = 2$	$2\hat{i} + x\hat{j} + \hat{k}, \ \vec{c} = \hat{i} - \hat{j} + \hat{k}$	$4\hat{k}$ and $\vec{a} \cdot (\vec{b} \times \vec{c}) = 70$, the	hen	x is equal to
	a) 5	b) 7	c) 26	d)	10

XI Maths

14.	If $\lim_{x\to 0}$	sinpx tan3x	= 4	, then	the value	of p is
-----	--------------------	----------------	-----	--------	-----------	---------

a) 6

c) 12

15. The function
$$f(x) = \begin{cases} \frac{x^2 - 1}{x^3 + 1} & x \neq -1 \\ p & x = -1 \end{cases}$$
 is not defined for $x = -1$. The value of $f(-1)$ so that

the function extended by this value is continuous is

- b) $-\frac{2}{3}$

16. If y = mx + c and f(0) = f'(0) = 1, then f(2) is

17. The number of points in R in which the function $f(x) = |x - 1| + |x - 3| + \sin x$ is not differentiable is differentiable is

a) 3

b) 2

c) 1

d) 4

18.
$$\int \frac{\sqrt{\tan x}}{\sin 2x} dx$$
 is

- a) $\sqrt{\tan x} + c$
- b) $2\sqrt{\tan x} + c$ c) $\frac{1}{2}\sqrt{\tan x} + c$
- d) $\frac{1}{4}\sqrt{\tan x} + c$

19. A number is selected from the set {1,2,3,.....20}: The probability that the selected number is divisible by 3 or 4 is

- a) $\frac{2}{5}$
- b) $\frac{1}{8}$
- c) ½

20. If two events A and B are independent such that P(A) = 0.35 and $P(A \cup B) = 0.6$, then

- a) $\frac{5}{13}$
- b) $\frac{1}{13}$
- c) $\frac{4}{13}$
- d) $\frac{7}{13}$

Part - II

Answer any 7 questions. (Q.No.30 is compulsory)

 $7 \times 2 = 14$

- 21. Construct a quadratic equation with the roots 7 and -3
- 22. Express sin50° + sin20° as a product form.
- 23. Find the value of n if (n + 1)! = 20(n 1)!
- 24. Find the co-efficient of x^6 in the expansion of $(3 + 2x)^{10}$

25. The length of the perpendicular drawn from the origin to a line is 12 and makes an angle 150° with positive direction of the x-axis. Find the equation of the line.

 $B = \begin{bmatrix} 3 & 1 & 2 \\ 1 & -2 & 4 \end{bmatrix}$ 26. Determine the value of B so that the following matrix is singular.

- 27. Calculate $\lim_{x \to 1} (x^2 3)^{10}$
- 28. Integrate the following with respect to x: $\int \frac{1}{x \log x} dx$

3

XI Maths

29. If two coins are tossed simultaneously, then find the probability of getting atmost two talls.

30. Draw the function f'(x) if $f(x) = 2x^2 - 5x + 3$

Part - III

III. Answer any 7 questions. (Q.No.40 is compulsory)

 $7 \times 3 = 21$

31. If n(P(A)) = 1024, $n(A \cup B) = 15$ and n(P(B)) = 32, then find $n(A \cap B)$

32. Reslolve into partial fractions: $\frac{x}{(x+3)(x-4)}$

33. Prove that ${}^{24}C_4 + \sum_{r=0}^{4} (28-r)C_3 = {}^{29}C_4$

34. Write the first 6 terms of the sequences whose nth term an is given below

$$a_n = \begin{cases} n & \text{if n is 12 or 3} \\ a_{n-1} + a_{n-2} + a_{n-3} & \text{if n > 3} \end{cases}$$

35. Show the points $(0,-\frac{3}{2})$, (1,-1) and $(2,-\frac{1}{2})$ are collinear.

36. Find the value of x if $\begin{vmatrix} x-1 & x & x-2 \\ 0 & x-2 & x-3 \\ 0 & 0 & x-3 \end{vmatrix} = 0$

37. Show that $\vec{a} \times (\vec{b} + \vec{c}) + \vec{b} \times (\vec{c} + \vec{a}) + \vec{c} \times (\vec{a} + \vec{b}) = \vec{0}$

38. Show that $n \to \infty$ $\frac{1+2+3+....+n}{3n^2+7n+2} = \frac{1}{6}$

39. Find $\frac{dy}{dx}$ if $x = a(t - \sin t)$, $y = a(1 - \cos t)$

40. If P(A) = 0.5, P(B) = 0.8 and P(B/A) = 0.8, find P(A/B) and $P(A \cup B)$

IV. Answer all the questions.

 $7 \times 5 = 35$

41. a) If $f: R \rightarrow R$ is defined by f(x) = 2x - 3, prove that f is a bijection and find its inverse.

b) A factory has two machines I and II. Machine I produces 40% of items of the output and Machine II produces 60% of the items. Further 4% of items produced by machine I are defective and 5% produced by machine II are defective. An item is drawn at random. If the drawn item is defective, find the probability that it was produced by machine II.

42. a) Prove that $\log_{10}^2 + 16\log_{10} \frac{16}{15} + 12\log_{10} \frac{25}{24} + 7\log_{10} \frac{81}{80} = 1$ (OR)

b) Evaluate: $\int \frac{2x+3}{\sqrt{x^2+x+1}} dx$

4

XI Maths

- 43. a) Prove that $\sqrt[3]{x^3+7} \sqrt[3]{x^3+4}$ is approximately equal to $\frac{1}{x^2}$ when x is large.
 - b) Find $\frac{d^2y}{dx^2}$ if $x^2 + y^2 = 4$
- 44. a) By the principle of mathematical induction, prove that, for $n \ge 1$ $1^2 + 3^2 + 5^2 + \dots + (2n 1)^2 = \frac{n(2n 1)(2n + 1)}{3}$

(OR)

- b) Do the limits of following functions exists as $x \to 0$? State reasons for your answer. $\frac{\sin(x-|x|)}{|x-|x|}$
- 45. a) If θ is an acute angle, then find $\sin\left(\frac{\pi}{4} \frac{\theta}{2}\right)$ when $\sin \theta = \frac{1}{25}$ (OR)
 - b) Show that the points whose position vectors $4\hat{i} + 5\hat{j} + \hat{k}$, $-\hat{j} \hat{k}$ $3\hat{i} + 9\hat{j} + 4\hat{k}$ and $-4\hat{i} + 4\hat{j} + 4\hat{k}$ are coplanar.
- 46. a) Show that the equation $9x^2 24xy + 16y^2 12x + 16y 12 = 0$ represents a pair of parallel lines. Find the distance between them.

(OR)

- b) If f, g: R \rightarrow R are defined by f(x) = |x| + x and g(x) = |x| x, find gof and fog.
- 47. a) If ABCD is a quadrilateral and E and F are the midpoints of AC and BD respectively, then prove that $\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{CB} + \overrightarrow{CD} = 4\overrightarrow{EF}$

(OR)

b) Show that $\begin{vmatrix} b+c & a-c & a-b \\ b-c & c+a & b-a \\ c-b & c-a & a+b \end{vmatrix} = 8abc$ by using factor theorem.
