

SRI RAGHAVENDRA TUITION CENTER

vector

11th Standard

Maths

	Date: 2	29-06-24
Reg.No.:		

Exam Time: 01:00 Hrs

Total Marks: 50

TEACHER NAME: P.DEEPAK M.Sc., M.A., B.Ed., DCA., TET-1., TET-2.,

PHONE NUMBER : 9944249262 EMAIL: darthi99ktp@gmail.com

Centum Book Available

I.ANSWER ALL QUESTION

 $11 \times 1 = 11$

- The value of $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{DA} + \overrightarrow{CD}$ is (a) \overrightarrow{AD} (b) \overrightarrow{CA} (c) $\overrightarrow{0}$ (d) $\overrightarrow{-AD}$
- The unit vector parallel to the resultant of the vectors $\hat{i}+\hat{j}-\hat{k}$ and $\hat{i}-2\hat{j}+\hat{k}$ is
 - (a) $\frac{\hat{i} \hat{j} + \hat{k}}{\sqrt{5}}$ (b) $\frac{2\hat{i} + \hat{j}}{\sqrt{5}}$ (c) $\frac{2\hat{i} \hat{j} + \hat{k}}{\sqrt{5}}$ (d) $\frac{2\hat{i} \hat{j}}{\sqrt{5}}$
- 3) A vector makes equal angle with the positive direction of the coordinate axes. Then each angle is equal to
 - (a) $cos^{-1}(\frac{1}{3})$ (b) $cos^{-1}(\frac{2}{3})$ (c) $cos^{-1}(\frac{1}{\sqrt{3}})$ (d) $cos^{-1}(\frac{2}{\sqrt{3}})$
- If ABCD is a parallelogram, then $\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{CB} + \overrightarrow{CD}$ is equal to
 - (a) $2(\overrightarrow{AB} + \overrightarrow{AD})$ (b) $4\overrightarrow{AC}$ (c) $4\overrightarrow{BD}$ (d) $\overrightarrow{0}$
- If \vec{a} , \vec{b} are the position vectors A and B, then which one of the following points whose position vector lies on AB, is
 - (a) $\vec{a} + \vec{b}$ (b) $\frac{2\vec{a} \vec{b}}{2}$ (c) $\frac{2\vec{a} + \vec{b}}{3}$ (d) $\frac{\vec{a} \vec{b}}{3}$
- 6) If $\lambda \hat{i} + 2\lambda \hat{j} + 2\lambda \hat{k}$ is a unit vector, then the value of λ is
 - (a) $\frac{1}{3}$ (b) $\frac{1}{4}$ (c) $\frac{1}{9}$ (d) $\frac{1}{2}$
- 7) If \vec{a} and \vec{b} having same magnitude and angle between them is 60° and their scalar product is $\frac{1}{2}$ then $|\vec{a}|$ is
 - (a) 2 (b) 3 (c) 7 (d) 1
- Vectors \vec{a} and \vec{b} are inclined at an angle $\theta=120^o$. If $|\vec{a}|=1, |\vec{b}|=2$, then $[(\vec{a}+3\vec{b})\times(3\vec{a}-\vec{b})]^2$ is equal to
 - (a) 225 (b) 275 (c) 325 (d) 300
- If the projection of $5\hat{i} \hat{j} 3\hat{k}$ on the vector $\hat{i} + 3\hat{j} + \lambda\hat{k}$ is same as the projection of $\hat{i} + 3\hat{j} + \lambda\hat{k}$ on $5\hat{i} \hat{j} 3\hat{k}$, then λ is equal to
 - (a) ± 4 (b) ± 3 (c) ± 5 (d) ± 1
- If the points whose position vectors $10\hat{i}+3\hat{j},12\hat{i}-5\hat{j}$ and $a\hat{i}+11\hat{j}$ are collinear then a is equal to
 - (a) 6 (b) 3 (c) 5 (d) 8
- If $\vec{a} = \hat{i} + 2\hat{j} + 2\hat{k}$, $|\vec{b}| = 5$ and the angle between \vec{a} and \vec{b} is $\frac{\pi}{6}$, then the area of the triangle formed by these two vectors as two sides, is
 - (a) $\frac{7}{4}$ (b) $\frac{15}{4}$ (c) $\frac{3}{4}$ (d) $\frac{17}{4}$

II.ANSWER ANY 5 QUESTION

 $5 \times 2 = 10$

- Find a unit vector along the direction of the vector $5\hat{i} 3\hat{j} + 4\hat{k}$.
- Find a direction ratio and direction cosines of the following vectors $3\hat{i}-4\hat{k}$

- Verify whether the following ratios are direction cosines of some vector or not $\frac{1}{\sqrt{2}}, \frac{1}{2}, \frac{1}{2}$
- Find $\vec{a}.\,\vec{b}$ when \vec{a} = \hat{i} \hat{j} + $5\hat{k}$ and \vec{b} = $3\hat{i}$ $2\hat{k}$
- Find $(\vec{a}+3\vec{b})$. $(2\hat{a}-\hat{b})$ if $\vec{a}=\hat{i}+\hat{j}+2\hat{k}$ and $\vec{b}=3\hat{i}+2\hat{j}-\hat{k}$
- Find the value λ for which the vectors \vec{a} and \vec{b} are perpendicular, where $\vec{a}=2\hat{i}+\lambda\hat{j}+\hat{k}$ and $\vec{b}=\hat{i}-2\hat{j}+3\hat{k}$
- If $ec{a}=\hat{i}+2\hat{j}+\hat{3}k, ec{b}=-3\hat{i}+4\hat{j}-5\hat{k}$ then find the value of $ec{a}.\,ec{b}.$

II.ANSWER ANY 3 QUESTION

 $3 \times 3 = 9$

- Let A and B be two points with position vectors $2\vec{a} + 4\vec{b}$ and $2\vec{a} 8\vec{b}$. Find the position vectors of the points which divide the line segment joining A and B in the ratio 1:3 internally and externally.
- Find the angle between the vectors $5\hat{i} + 3\hat{j} + 4\hat{k}$ and $6\hat{i} 8\hat{j} \hat{k}$.
- Find the angle between the vectors $~2\hat{i} + 3\hat{j} 6\hat{k}$ and $6\hat{i} 3\hat{j} + 2\hat{k}$
- 22) If \vec{a}, \vec{b} are unit vectors and θ is the angle between them, show that $sin\frac{\theta}{2} = \frac{1}{2}|\vec{a} \vec{b}|$
- Find the unit vectors perpendicular to each of the vectors $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$, where $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}$.
- Find the area of the parallelogram whose two adjacent sides are determined by the vectors $\hat{i}+2\hat{j}+3\hat{k}$ and $3\hat{i}-2\hat{j}+\hat{k}$

IV.ANSWER ANY 4 QUESTION

 $4 \times 5 = 20$

25) a)

If ABCD is a quadrilateral and E and F are the midpoints of AC and BD respectively, then prove that $\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{CB} + \overrightarrow{CD} = 4$ \overrightarrow{EF} .

(OR

- Show that the following vectors are coplanar $5\hat{i} + 6\hat{j} + 7\hat{k}$, $7\hat{i} 8\hat{j} + 9\hat{k}$, $3\hat{i} + 20\hat{j} + 5\hat{k}$
- Show that the points whose position vectors are $2\hat{i} + 3\hat{j} 5\hat{k}$, $3\hat{i} + \hat{j} 2\hat{k}$ and, $6\hat{i} 5\hat{j} + 7\hat{k}$ are collinear
 - b) If \vec{a} , \vec{b} , \vec{c} are position vectors of the vertices A, B, C of a triangle ABC, show that the area of the triangle ABC is $\frac{1}{2}|\vec{a}\times\vec{b}+\vec{b}+\vec{c}+\vec{c}\times\vec{a}|$. Also deduce the condition for collinearity of the points A, B, and C.
- Show that the points A (1, 1, 1), B(1, 2, 3) and C(2, -1, 1) are vertices of an isosceles triangle.

(OR)

- The medians of a triangle are concurrent.
- Prove that the points whose position vectors $2\hat{i} + 4\hat{j} + 3\hat{k}$, $4\hat{i} + \hat{j} + 9\hat{k}$ and $10\hat{i} \hat{j} + 6\hat{k}$ form a right angled triangle.
 - b) For any vector $ec{a}$ prove that $|ec{a} imes \hat{i}|^2 + |ec{a} imes \hat{j}|^2 + |ec{a} imes \hat{k}|^2 = 2|ec{a}|^2$.

ALL THE BEST
