

Sri Raghavendra Tuition Center

VECTOR ALGEBRA

11th Standard

Maths

		Date: 1	.8-09-24
Reg.No.	:		

Exam Time: 03:00 Hrs

Total Marks: 90

EACHER NAME: P.DEEPAK M.Sc., M.A., B.Ed., DCA., TET-1., TET-2.,

PHONE NUMBER : 9944249262 EMAIL: darthi99ktp@gmail.com

Centum Book Available

I. MULTIPLE CHOICE QUESTION.

 $20 \times 1 = 20$

- The value of $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{DA} + \overrightarrow{CD}$ is
 - (a) \overrightarrow{AD} (b) \overrightarrow{CA} (c) $\overrightarrow{0}$ (d) $\overrightarrow{-AD}$
- The unit vector parallel to the resultant of the vectors $\hat{i}+\hat{j}-\hat{k}$ and $\hat{i}-2\hat{j}+\hat{k}$ is
 - (a) $\frac{\hat{i}-\hat{j}+\hat{k}}{\sqrt{5}}$ (b) $\frac{2\hat{i}+\hat{j}}{\sqrt{5}}$ (c) $\frac{2\hat{i}-\hat{j}+\hat{k}}{\sqrt{5}}$ (d) $\frac{2\hat{i}-\hat{j}}{\sqrt{5}}$
- 3) A vector makes equal angle with the positive direction of the coordinate axes. Then each angle is equal to
 - (a) $cos^{-1}(\frac{1}{3})$ (b) $cos^{-1}(\frac{2}{3})$ (c) $cos^{-1}(\frac{1}{\sqrt{3}})$ (d) $cos^{-1}(\frac{2}{\sqrt{3}})$
- If ABCD is a parallelogram, then $\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{CB} + \overrightarrow{CD}$ is equal to
 - (a) $2(\overrightarrow{AB} + \overrightarrow{AD})$ (b) $4\overrightarrow{AC}$ (c) $4\overrightarrow{BD}$ (d) $\overrightarrow{0}$
- One of the diagonals of parallelogram ABCD with \vec{a} and \vec{b} as adjacent sides is $\vec{a} + \vec{b}$ The other diagonal \overrightarrow{BD} is
 - (a) $\vec{a} = \vec{b}$ (b) $\vec{b} = \vec{a}$ (c) $\vec{a} + \vec{b}$ (d) $\frac{\vec{a} + \vec{b}}{2}$
- If \vec{a} , \vec{b} are the position vectors A and B, then which one of the following points whose position vector lies on AB, is
 - (a) $\vec{a}+\vec{b}$ (b) $\frac{2\vec{a}-\vec{b}}{2}$ (c) $\frac{2\vec{a}+\vec{b}}{3}$ (d) $\frac{\vec{a}-\vec{b}}{3}$
- 7) If $\vec{a}, \vec{b}, \vec{c}$ are the position vectors of three collinear points, then which of the following is true?
 - (a) $\vec{a}=\vec{b}+\vec{c}$ (b) $2\vec{a}=\vec{b}+\vec{c}$ (c) $\vec{b}=\vec{c}+\vec{a}$ (d) $4\vec{a}+\vec{b}+\vec{c}=0$
- If $\vec{r} = \frac{9\vec{a}+7\vec{b}}{16}$, then the point P whose position vector \vec{r} divides the line joining the points with position vectors \vec{a} and \vec{b} in the ratio
 - (a) 7: 9 internally (b) 9: 7 internally (c) 9: 7 externally (d) 7: 9 externally
- If $\lambda \hat{i} + 2\lambda \hat{j} + 2\lambda \hat{k}$ is a unit vector, then the value of λ is
 - (a) $\frac{1}{3}$ (b) $\frac{1}{4}$ (c) $\frac{1}{9}$ (d) $\frac{1}{2}$
- Two vertices of a triangle have position vectors $3\hat{i} + 4\hat{j} 4\hat{k}$ and $2\hat{i} + 3\hat{j} + 4\hat{k}$. If the position vector of the centroid is $\hat{i} + 2\hat{j} + 3\hat{k}$, then the position vector of the third vertex is
 - (a) $-2\hat{i} \hat{j} + 9\hat{k}$ (b) $-2\hat{i} \hat{j} 6\hat{k}$ (c) $2\hat{i} \hat{j} + 6\hat{k}$ (d) $-2\hat{i} + \hat{j} + 6\hat{k}$
- 11) If $|ec{a}+ec{b}|=60,\, |ec{a}-ec{b}|=40\,$ and $|ec{b}|=46$, then $|ec{a}|$ is
 - (a) 42 (b) 12 (c) 22 (d) 32
- If \vec{a} and \vec{b} having same magnitude and angle between them is 60° and their scalar product is $\frac{1}{2}$ then $|\vec{a}|$ is
 - (a) 2 (b) 3 (c) 7 (d) 1

- 13) If $|\vec{a}|=13, |\vec{b}|=5$ and $\vec{a}.\,\vec{b}=60^o$ then $|\vec{a}\times\vec{b}|$ is (a) 15 (b) 35 (c) 45 (d) 25
- Vectors \vec{a} and \vec{b} are inclined at an angle $\theta = 120^o$. If $|\vec{a}| = 1$, $|\vec{b}| = 2$, then $[(\vec{a} + 3\vec{b}) \times (3\vec{a} \vec{b})]^2$ is equal to (a) 225 (b) 275 (c) 325 (d) 300
- If \vec{a} and \vec{b} are two vectors of magnitude 2 and inclined at an angle 60°, then the angle between \vec{a} and $\vec{a} + \vec{b}$ is (a) 30° (b) 60° (c) 45° (d) 90°
- If the projection of $5\hat{i} \hat{j} 3\hat{k}$ on the vector $\hat{i} + 3\hat{j} + \lambda\hat{k}$ is same as the projection of $\hat{i} + 3\hat{j} + \lambda\hat{k}$ on $5\hat{i} \hat{j} 3\hat{k}$, then λ is equal to (a) ± 4 (b) ± 3 (c) ± 5 (d) ± 1
- If (1, 2, 4) and $(2, -3\lambda, -3)$ are the initial and terminal points of the vector $\hat{i} + 5\hat{j} 7\hat{k}$, then the value of λ is equal to (a) $\frac{7}{3}$ (b) $-\frac{7}{3}$ (c) $-\frac{5}{3}$ (d) $\frac{5}{3}$
- If the points whose position vectors $10\hat{i} + 3\hat{j}$, $12\hat{i} 5\hat{j}$ and $a\hat{i} + 11\hat{j}$ are collinear then a is equal to (a) 6 (b) 3 (c) 5 (d) 8
- 19) If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = 2\hat{i} + x\hat{j} + \hat{k}$, $\vec{c} = \hat{i} \hat{j} + 4\hat{k}$ and \vec{a} . $(\vec{b} \times \vec{c}) = 70$, then x is equal to (a) 5 (b) 7 (c) 26 (d) 10
- If $\vec{a} = \hat{i} + 2\hat{j} + 2\hat{k}$, $|\vec{b}| = 5$ and the angle between \vec{a} and \vec{b} is $\frac{\pi}{6}$, then the area of the triangle formed by these two vectors as two sides, is
 - (a) $\frac{7}{4}$ (b) $\frac{15}{4}$ (c) $\frac{3}{4}$ (d) $\frac{17}{4}$

II. ANSWER ANY SEVEN QUESTION.

 $7 \times 2 = 14$

- Find a unit vector along the direction of the vector $5\hat{i} 3\hat{j} + 4\hat{k}$.
- Verify whether the following ratios are direction cosines of some vector or not $\frac{1}{5}$, $\frac{3}{5}$, $\frac{4}{5}$
- Find the direction cosines of a vector whose direction ratios are 1, 2, 3
- Find $ec{a}$. $ec{b}$ when $ec{a}$ = \hat{i} \hat{j} + $5\hat{k}$ and $ec{b}$ = $3\hat{i}$ $2\hat{k}$
- Find $(\vec{a}+3\vec{b})$. $(2\hat{a}-\hat{b})$ if $\vec{a}=\hat{i}+\hat{j}+2\hat{k}$ and $\vec{b}=3\hat{i}+2\hat{j}-\hat{k}$
- Find the value λ for which the vectors \vec{a} and \vec{b} are perpendicular, where $\vec{a}=2\hat{i}+\lambda\hat{j}+\hat{k}$ and $\vec{b}=\hat{i}-2\hat{j}+3\hat{k}$
- Find $|ec{a} imesec{b}|$,where $ec{a}=3\hat{i}+4\hat{j}$ and $ec{b}=\hat{i}+\hat{j}+\hat{k}$.
- For any two vectors \vec{a} and \vec{b} , prove that $|\vec{a} \times \vec{b}|^2 + (\vec{a}.\vec{b})^2 = |\vec{a}|^2 |\vec{b}|^2$
- Find the magnitude of $\vec{a} imes \vec{b}$ if $\vec{a} = 2\hat{i} + \hat{j} + 3\hat{k}$ and $\vec{b} = 3\hat{i} + 5\hat{j} 2\hat{k}$.
- If $\vec{a}=\hat{i}+2\hat{j}+\hat{3}k, \vec{b}=-3\hat{i}+4\hat{j}-5\hat{k}$ then find the value of $\vec{a}.\,\vec{b}$.

III. ANSWER ANY SEVEN QUESTION.

 $7 \times 3 = 21$

- Find the direction cosines and direction ratios for the following vectors. $3\hat{i}+\hat{j}+\hat{k}$
- Find the angle between the vectors $5\hat{i} + 3\hat{j} + 4\hat{k}$ and $6\hat{i} 8\hat{j} \hat{k}$.
- If \vec{a} and \vec{b} are two vectors such that $|\vec{a}| = 10$, $|\vec{b}| = 15$ and $\vec{a} \cdot \vec{b} = 75 \sqrt{2}$, find the angle between \vec{a} and \vec{b} .
- Find the angle between the vectors $\;2\hat{i}+3\hat{j}-6\hat{k}\; ext{and}\; 6\hat{i}-3\hat{j}+2\hat{k}\;$
- If $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that $\vec{a} + 2\vec{b} + \vec{c} = \vec{0}$ and $|\vec{a}| = 3, |\vec{b}| = 4, |\vec{c}| = 7$, find the angle between \vec{a} and \vec{b} .
- Show that the vectors $\vec{a}=2\hat{i}+3\hat{j}+6\hat{k},\ \vec{b}=6\hat{i}+2\hat{j}-3\hat{k}$, and $\vec{c}=3\hat{i}-6\hat{j}+2\hat{k}$ are mutually orthogonal.
- If \vec{a} , \vec{b} are unit vectors and θ is the angle between them, show that $\sin\frac{\theta}{2} = \frac{1}{2}|\vec{a} \vec{b}|$
- If $\vec{a}=-3\hat{i}+4\hat{j}-7\hat{k}$ and $\vec{b}=6\hat{i}+2\hat{j}-3\hat{k}$, verify \vec{b} are $\vec{a}\times\vec{b}$ perpendicular to each other
- Show that $\vec{a} imes (\vec{b}+\vec{c}) + \vec{b} imes (\vec{c}+\vec{a}) + \vec{c} imes (\vec{a}+\vec{b}) = \vec{0}$

40) Find the area of the parallelogram whose two adjacent sides are determined by the vectors $\hat{i}+2\hat{j}+3\hat{k}$ and $3\hat{i}-2\hat{j}+\hat{k}$

IV. ANSWER ALL QUESTION.

 $7 \times 5 = 35$

- 41) a) If D is the midpoint of the side BC of a triangle ABC, prove that $\overrightarrow{AB} + \overrightarrow{AC} = 2\overrightarrow{AD}$ (OR)
 - Let A, B and C be the vertices of a triangle. Let D, E, and F be the midpoints of the sides BC, CA, and AB respectively. Show that $\overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF} = \overrightarrow{0}$
- 42) a) Find the projection of the vector $\hat{i}+3\hat{j}+7\hat{k}$ on the vector $2\hat{i}+6\hat{j}+3\hat{k}$.

b) If $\vec{a}, \vec{b}, \vec{c}$ are position vectors of the vertices A, B, C of a triangle ABC, show that the area of the triangle ABC is $\frac{1}{2}|\vec{a}\times\vec{b}+\vec{b}+\vec{c}+\vec{c}\times\vec{a}|$. Also deduce the condition for collinearity of the points A, B, and C.

43) Show that the following vectors are coplanar \hat{i} – $2\hat{j}$ + $3\hat{k}$, – $2\hat{i}$ + $3\hat{j}$ – $4\hat{k}$,– \hat{j} + $2\hat{k}$.

- b) Show that the following vectors are coplanar $5\hat{i} + 6\hat{j} + 7\hat{k}$, $7\hat{i} - 8\hat{j} + 9\hat{k}$, $3\hat{i} + 20\hat{j} + 5\hat{k}$.
- If ABCD is a quadrilateral and E and F are the midpoints of AC and BD respectively, then prove that $\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{CB} + \overrightarrow{CD} = 4$ $\stackrel{-}{EF}$.

- The medians of a triangle are concurrent.
- 45) a) Show that the points whose position vectors are $2\hat{i} + 3\hat{j} - 5\hat{k}$, $3\hat{i} + \hat{j} - 2\hat{k}$ and, $6\hat{i} - 5\hat{j} + 7\hat{k}$ are collinear
 - b) Prove that the points whose position vectors $2\hat{i}+4\hat{j}+3\hat{k}, 4\hat{i}+\hat{j}+9\hat{k}$ and $10\hat{i}-\hat{j}+6\hat{k}$ form a right angled triangle.
- 46) A triangle is formed by joining the points (1, 0, 0), (0, 1, 0) and (0, 0, 1). Find the direction cosines of the medians.

- b) For any vector $ec{a}$ prove that $|ec{a} imes \hat{i}\,|^2+|ec{a} imes \hat{j}|^2+|ec{a} imes \hat{k}|^2=2|ec{a}|^2$.
- Show that the vectors $2\hat{i} \hat{j} + \hat{k}$, $3\hat{i} 4\hat{j} 4\hat{k}$, $\hat{i} 3\hat{j} 5\hat{k}$ form a right angled triangle.

(OR) If $\vec{a}=2\hat{i}+3\hat{j}-4\hat{k}, \vec{b}=3\hat{i}-4\hat{j}-5\hat{k},$ and $\vec{c}=-3\hat{i}+2\hat{j}+3\hat{k},$ find the magnitude and direction cosines of $(i)\ \vec{a}+\vec{b}+\vec{c}\ (ii)\ 3\vec{a}-2\vec{b}+5\vec{c}.$

...ALL THE BEST...