

Sri Raghavendra Tuition Center

Test III

11th Standard

Maths

		Date: 0	02-08-24
Reg.No.	:		

Exam Time : 01:00 Hrs

Total Marks : 50

EACHER NAME: P.DEEPAK M.Sc., M.A., B.Ed., DCA., TET-1., TET-2.,

PHONE NUMBER : 9944249262 EMAIL: darthi99ktp@gmail.com

Centum Book Available

- I. Multiple Choice Question $5 \times 1 = 5$
- 1) $\frac{1}{\cos 80^0} \frac{\sqrt{3}}{\sin 80^0} =$
 - (a) $\sqrt{2}$ (b) $\sqrt{3}$ (c) 2 (d) 4
- 2) The maximum value of $4\sin^2 x + 3\cos^2 x + \sin\frac{x}{2} + \cos\frac{x}{2}$ is
 - (a) $4 + \sqrt{2}$ (b) $3 + \sqrt{2}$ (c) 9 (d) 4
- 3) $\left(1+\cos\frac{\pi}{8}\right)\left(1+\cos\frac{3\pi}{8}\right)\left(1+\cos\frac{5\pi}{8}\right)\left(1+\cos\frac{7\pi}{8}\right) =$
 - (a) $\frac{1}{8}$ (b) $\frac{1}{2}$ (c) $\frac{1}{\sqrt{3}}$ (d) $\frac{1}{\sqrt{2}}$
- 4) If $\cos 28^0 + \sin 28^0 = k^3$, then $\cos 17^0$ is equal to
 - (a) $\frac{k^3}{\sqrt{2}}$ (b) $-\frac{k^3}{\sqrt{2}}$ (c) $\pm \frac{k^3}{\sqrt{2}}$ (d) $-\frac{k^3}{\sqrt{3}}$
- 5) If $\pi < 2 heta < rac{3\pi}{2}$, then $\sqrt{2 + \sqrt{2 + 2 cos 4 heta}}$ equals to
 - (a) $-2\cos\theta$ (b) $-2\sin\theta$ (c) $2\cos\theta$ (d) $2\sin\theta$
- II. Answer all the questions.
 - Identify the quadrant in which an angle of each given measure lies; -55°
- 7) Identify the quadrant in which an angle of each given measure lies; -230°
- 8) Express each of the following angles in radian measure -205⁰
- 9) Find the degree measure corresponding to the following radian measure; $\frac{10\pi}{9}$
- 10) Show that $\tan (45^{\circ} + A) = \frac{1 + \tan A}{1 \tan A}$

III. Answer any five questions. 11th is compulsory.

6 x 3 = 18

 $4 \times 5 = 20$

 $5 \times 2 = 10$

- For each given Angle, find a coterminal angle with a measure of θ such that $0^o \le \theta \le 360^\circ$ -270 0
- 12) For each given Angle, find a coterminal angle with a measure of θ such that $0^o \le \theta \le 360^\circ$ 1150^0
- What must be the radius of a circular running path, around which an athlete must run 5 times in order to describe 1 km?
- In a circular of diameter 40 cm, a chord is of length 20 cm. Find the length of the minor arc of the chord?
- A train is moving on a circular track of 1500 m radius at the rate of 66 Km/hr. What angle will it turn in 20 seconds?
- What is the length of the arc intercepted by a central angle of measure 41⁰ in a circle radius 10 ft?
- IV. Answer all the questions.

- If $\sin \theta + \cos \theta = m$, show that $\cos^6 \theta + \sin^6 \theta = \frac{4 3(m^2 1)^2}{4}$, where $m^2 \le 2$
- 18) If a cos θ b sin θ = c, show that a sin θ + b cos θ = $\pm \sqrt{a^2 + b^2 c^2}$
- 19) If $\frac{\cos^4\alpha}{\cos^2\beta} + \frac{\sin^4\alpha}{\sin^2\beta} = 1$ prove that $\frac{\cos^4\beta}{\cos^2\alpha} + \frac{\sin^4\beta}{\sin^2\alpha} = 1$

All the best
