

Sri Raghavendra Tuition Center

Exercise test II

11th Standard

Maths

		Date: 0	7-09-24
Reg.No.	: [[

 $5 \times 1 = 5$

Exam Time : 01:00 Hrs

Total Marks : 50

EACHER NAME: P.DEEPAK M.Sc., M.A., B.Ed., DCA., TET-1., TET-2.,

PHONE NUMBER : 9944249262 EMAIL: darthi99ktp@gmail.com

Centum Book Available

- I. Multiple Choice Question
 - (a) $-2\cos\theta$ (b) $-2\sin\theta$ (c) $2\cos\theta$ (d) $2\sin\theta$

If $\pi < 2\theta < \frac{3\pi}{2}$, then $\sqrt{2 + \sqrt{2 + 2cos4\theta}}$ equals to

- 2) The maximum value of $4\sin^2 x + 3\cos^2 x + \sin\frac{x}{2} + \cos\frac{x}{2}$ is
 - (a) $4 + \sqrt{2}$ (b) $3 + \sqrt{2}$ (c) 9 (d) 4
- 3) If $\cos 28^0 + \sin 28^0 = k^3$, then $\cos 17^0$ is equal to
 - (a) $\frac{k^3}{\sqrt{2}}$ (b) $-\frac{k^3}{\sqrt{2}}$ (c) $\pm \frac{k^3}{\sqrt{2}}$ (d) $-\frac{k^3}{\sqrt{3}}$
- 4) $\left(1 + \cos\frac{\pi}{8}\right) \left(1 + \cos\frac{3\pi}{8}\right) \left(1 + \cos\frac{5\pi}{8}\right) \left(1 + \cos\frac{7\pi}{8}\right) =$
 - (a) $\frac{1}{8}$ (b) $\frac{1}{2}$ (c) $\frac{1}{\sqrt{3}}$ (d) $\frac{1}{\sqrt{2}}$
- 5) $\frac{1}{\cos 80^{\circ}} \frac{\sqrt{3}}{\sin 80^{\circ}} =$
 - (a) $\sqrt{2}$ (b) $\sqrt{3}$ (c) 2 (d) 4
- II. 2 Marks $5 \times 2 = 10$
- [6] Identify the quadrant in which an angle of each given measure lies; -55°
- Find the degree measure corresponding to the following radian measure; $\frac{7\pi}{3}$
- Find the degree measure corresponding to the following radian measure; $\frac{\pi}{3}$
- 9) Identify the quadrant in which an angle of each given measure lies; -230°
- 10) Express each of the following angles in radian measure 30^{0}
- Find the degree measure corresponding to the following radian measure; $\frac{\pi}{9}$
- III. 3 Marks $5 \times 3 = 15$
- 12) In a circular of diameter 40 cm, a chord is of length 20 cm. Find the length of the minor arc of the chord?
- For each given Angle, find a coterminal angle with a measure of θ such that $0^o \le \theta \le 360^\circ$ 395^0
- For each given Angle, find a coterminal angle with a measure of θ such that $0^o \le \theta \le 360^\circ$ -4500
- A circular metallic plate of radius 8 cm and thickness 6 mm is melted and molded into a pie (s sector of the circle with thickness) of radius 16 cm and thickness 4 mm. Find the angle of the sector
- A train is moving on a circular track of 1500 m radius at the rate of 66 Km/hr. What angle will it turn in 20 seconds?

17) The perimeter of a certain sector of a circle is equal to the length of the arc of a semi-circle having the same radius. Express the angle of the sector in degree, minites and seconds,

IV. 5 Marks $4 \times 5 = 20$

- 18) Eliminate θ from the equation a sec θ c tan θ = b and b sec θ + d tan θ = C
- 19) If a cos θ b sin θ = c, show that a sin θ + b cos θ = $\pm \sqrt{a^2 + b^2 c^2}$
- 20) If $\frac{\cos^4\alpha}{\cos^2\beta} + \frac{\sin^4\alpha}{\sin^2\beta} = 1$ prove that $\frac{\cos^4\beta}{\cos^2\alpha} + \frac{\sin^4\beta}{\sin^2\alpha} = 1$
- If $\tan^2 \theta = 1 k^2$, Show that $\sec \theta + \tan^3 \theta \csc \theta = (2 k^2)^{3/2}$. Also, find the value of k for which this result holds
- 22) If $\mathbf{x} = \sum_{n=0}^{\infty} cos^{2n}\theta$; $\mathbf{y} = y = \sum_{n=0}^{\infty} sin^{2n}\theta$ and $\mathbf{z} = \sum_{n=0}^{\infty} cos^{2n}\theta sin^{2n}\theta$, $0 < \theta < \frac{\pi}{2}$, then show that $\mathbf{x}\mathbf{y}\mathbf{z} = \mathbf{x}+\mathbf{y}+\mathbf{z}$. Hint :1+x+x²+x³+.....= $\frac{1}{1-x}$, where |x| < 1].
- 23) If cosec θ $\sin \theta = a^3$ and $\sec \theta$ $\cos \theta = b^3$, then prove that a^2b^2 ($a^2 + b^2$) = 1
- Expand cos (A + B + C). Hence prove that cos A cos B cos C = sin A sin B cos C + sin B sin C cos A + sin C sin A cos B, if A + B + C = $\frac{\pi}{2}$

All the best
