FIRST REVISION EXAMINATION - 2025

CLASS: 11 Time: 3.00 Hours				PHYSICS			Re	g.No			
	. 9111	J.UU HOURS						N	IARK	(S:70	
Note	:	(i) Answer all (ii) Choose the code and the c	most	appropria	PART te answer		the given f	our altern:	atives	and write t	15 × 1 = 15 he option
1.	If the meas	e length and time per surement of accelerate 4%	iod of	an oscillati	ng pendul	lum ha	ive errors of	1% and 3%			n the error in
2.		an increase in tempi increase and increa decrease and increa	erature		sity of liqu	-/	l gas, respec	ctively will and decreas and decrea		7%	
3.	Two	persons A and B take	2 s an	d 4 s respec	tively to li	ft an o	bject to the s	same height	h, ther	the ratio of	their power is
4.	HOW	ring is connected to cut into two equal hallation is	a mass alves a	m suspend	ed from it	and it	s time perio	d for vertic	al osci	illation is T	The spring is f vertical
		$T = \sqrt{2} T$	11000	V 2		. (7)				$T = \sqrt{\frac{T}{2}}$	M POOVARASAN N
5.	In wh	nich of the following adiabatic	process b)	ses, heat is n	either abs	orbed :	nor released isochoric	by the syste	m? d)	isothermal	PG Asst In Chen Dharmapuri Dis
i.	The (a) c)	centrifugal force app only in inertial fran in any accelerated f	ies .	exist		b) d)	only in ro	tating fram	es	ertial frame:	
	A sor wave a) 4	and wave whose free lengths in water and 30	quency air is b)	is 5000 Hz	travels in		od then hits	the water su	ırface.	The ratio o	fits
•	some	l is thrown vertically time with a velocity 340 m	down of 80	ward with ms ⁻¹ . The h	a velocity neight of t	of 20	ms-1 from th	he top of a s=10 ms ⁻²)	tower.	It hits the g	round after
	When	a uniform rod is he			followin	g quar	ntity of the re		ease	360 m	
0.	When a) b) c)	n a mass is rotating in a line perpendicular the line making an a the radius tangent to the path	n a plant	ne about a	otation				d)	moment of	inertia
1	In a g a)	iven progressive was	ve y = b)	5 sin(100 250	$\pi t - 0.4\pi$	(x) wh	at is the way	ve velocity	? d)	180	
2.	If a pa	article has negative v Increases	relocity b)	y and negat		c)	, its speed Remains's	same	d)	Zero	
3.	If the a)	temperature and pre remains same	ssure c	of a gas is d doubled	oubled th	e mea	n free path o	of the gas n	nolecu	les quadrapol	ed
4.	unou	ent of inertia of a rir	pendic	ular to its p	eter is I. 7 plane is	-		ertia of the			
		$\frac{1}{2}$	b)	21		c)	$\frac{I}{4}$		d)	41	
5.	me re	pject of mass 10 kg is ading in the spring so	s hangi	ing on a sp	ring scale			to the root			ft is in free fall,
	-7)	The second	U)	Leru		.c)	49 N	* 5 1)	d)	9.8 N 11-Ph	vsics-Page-1

PART-II

 $6 \times 2 = 12$

Answer any six questions. Question no. 23 is compulsory:

- 16. Check the correctness of the equation $\frac{1}{2}mv^2 = mgh$ using dimensional analysis method.
- 17. What is non uniform circular motion?
- 18. What are the forces acting on the vehicle moving in a leveled circular road?
- 19. Define gravitational potential.
- 20. How will you distinguish between stable and unstable equilibrium?
- 21. State Bernoulli's theorem.
- 22. 'An object contains more heat' is it a right statement? If not why?
- 23. A simple pendulum is hung in a very high building oscillates to and fro motion freely like a simple harmonic oscillator. If the acceleration of the bob is 16 ms⁻² at a distance of 4 m from the mean position, then calculate the time period.
- 24. Write two characteristics of progressive waves?

PART - III

 $6 \times 3 = 18$

Answer any six questions. Question no. 29 is compulsory:

- 25. What are the limitations of dimensional analysis?
- 26. Discuss the properties of vector product
- 27. Derive an expression for energy of a satellite.
- 28. Obtain the relation between angular momentum and angular velocity.
- 29. A bullet of mass 50 g is fired from below into a suspended object of mass 450 g. The object rises through a height of 1.8 m with bullet remaining inside the object. Find the speed of the bullet. Take $g = 10 ms^{-2}$.
- 30. Write a note on impacts of root mean square speed in nature.
- 31. List out the applications of viscosity.
- 32. A student comes to school by a bicycle whose tire is filled with air at a pressure 240 kPa at 27°C. She travels 8 km to reach the school and the temperature of the bicycle tire increases to 39°C. What is the change in pressure in the tire when the student reaches school?
- 33. State the laws of simple pendulum.

PART - IV

 $5 \times 5 = 25$

Answer all the questions:

Write a note on triangulation method and radar method to measure larger distances.

for

- b) Derive an expression for the elastic energy stored per unit volume of a wire.
- 35. a) Explain the need for banking of tracks.

(or)

- b) What is meant by angular harmonic oscillation? Compute the time period of angular harmonic oscillation.
- 36. a) Explain in detail Newton's law of cooling.

(or)

- b) Derive the equation of motion, range and maximum height reached by the particle thrown at an oblique angle θ with respect to the horizontal direction.
- 37. a) Derive an expression for escape speed.

(or)

- b) Derive an expression of pressure exerted by the gas on the wall of the container.
- 38. a) Describe Newton's formula for velocity of sound waves in air and also discuss the Laplace correction.
 - b) State and explain work energy principle. Mention any three examples for it.