HSC SECOND YEAR SECOND REVISION EXAMINATION – 2025

SUB: CHEMISTRY

THOOTHUKUDI DISTRICT ANSWER KEY

MARKS: 70

Part - I

I. CHOOSE THE CORRECT ANSWER:

E THE CORRECT /		ANSWER: (15	X 1 = 15)
Q.no	options	ANSWERS	
1.	В	Al ₂ O ₃	
2.	D	Both are correct, but reason does not explain	1
		assertion	
3.	Α	H ₃ PO ₃	
4.	Α	Np, Pu, Am	
5.	С	Oxalato	
6.	С	both covalent crystals	
7.	D	3 mol min ⁻¹	
8.	Α	(i) – C, (ii) – D, (iii) – A, (iv) – B	
9.	Α	5F	
10.	В	Emulsion	
11.	Α	Phenol	
12.	С	Hexane dioic acid	
13.	D	1,3 – dinitro benzene	
14.	В	Uracil	
15.	В	Polyamide	

1 art – 1

N	Note: Answer any six questions. Q.No: 24 is compulsory (6 X			(2 = 12))		
16.	Η	yd	roboration:				
	B	₂ H ₆	+ 6 RCH == CHR	\blacktriangleright 2(RCH ₂ — CHR) ₃ B			
	60 (C	СН ₃	(OR) $_{3} - CH = CH_{2} + B_{2}H_{6} - 2$ $- CH_{2} - CH_{2})_{3}B + 3H_{2}O_{2} - OH^{-}$	$C(CH_3 - CH_2 - CH_2)_3B$ Tripropylborane $SCH_3 - CH_2 - CH_2 - OH + B (OH)_3$ propan-1-ol		2	2
	C	orr	roct oquation (or) Explanation	-2 marks			
17	(a		RrE – pentagonal bipyramidal			1	
17.	(a) $BrF_2 = T = shaped$				1	2	
	(1)	,				_	
18.	[C	00N	$H_3)_5C1]SO_4$ $BaCl_2$ Wh $NH_3)_5SO_4]C1$ $AgNO_3$ Wh	ite precipitate nite precipitate		1	2
19.							
		1	When the spheres of the second layer is above the voids of the first layer	When the spheres of the second layer partially covers the voids of the first layer			
		2	The number of Tetrahedral voids is given by '2n'.	The number of Octahedral voids is given by 'n'.		2	2
		3	3 spheres in the lower layer and one in the upper layer. Total 4 spheres	3 spheres in the lower layer and 3 in the upper layer. Total 6 spheres.			
		4	When the 4 spheres are joined the center gives a Tetrahedron.	When the 6 spheres are joined the centergives a Octahedron.			

Prepared by D. SIMON, PG Assistant (Chemistry), St. Francis Xavier's HSS – Thoothukudi

20.	 An acid is a proton donor A base is a proton acceptor Limitations: Substances like BF₃, AlCl₃, that do not donate protons are known to behave as acids. 	1/2 1/2 1	2
21	Homogenous catalysisHeterogeneous catalysisThe reactants, products and catalyst are present in the same phase. e.g. $2 SO_{2(g)} + O_{2(g)} \xrightarrow{NO_{(g)}} 2 SO_{3(g)} \xrightarrow{2 SO_{3(g)}} 2 SO_{3(g)}$ Heterogeneous catalysis The reactants, products and catalyst are present in the different phase. e.g. N_2^{(g)} + 3H_2^{(g)} \xrightarrow{Fe(s)} 2NH_3^{(g)}	1+1	2
22.	A - (Or) Phenyl Benz oate B - (Or) 4 - nitro phenyl Benz oate	1	2
23.	 Change Blue Litmus paper into Red Colour Brisk effervescence with Sodium bicarbonate solution. When heated with Alcohol and con.H₂SO₄, Fruity odour ester is obtained (any two tests – 2 M) 	2	2
24.	$C_6H_5NH_2 < C_6H_5N(CH_3)_2 < CH_3NH_2 < (C_2H_5)_2NH$ 9.376 > 8.92 > 3.38 > 3.00 \longrightarrow pK _b Value	2	2

Part – III Note: Answer any six questions. Q.No: 33 is compulsory

(6 X 3 = 18)

Prepared by D. SIMON, PG Assistant (Chemistry), St. Francis Xavier's HSS – Thoothukudi

26.	$4\text{NaCl} + \text{MnO}_2 + 4\text{H}_2\text{SO}_4 \longrightarrow \text{Cl}_2 + \text{MnCl}_2 + 4\text{NaHSO}_4 + 2\text{H}_2\text{O}$	2	2
	Correct balanced Equation – 3 M ; Explanation only – 1 M		
27.	The elements in which the extra electrons enters (n-2)f orbitals are called inner transition elements.	3	3
28.	Rate law is the expression which relates the rate, the rate constant and the	1 1⁄2	_
	concentration of the reactants. (or) Rate = K [A] [B] Rate constant is equal to the rate of reaction, when the concentration of each of the reactants in unity.	1 ½	3
29.	When a salt of a weak acid is added to the acid itself, the dissociation of the weak acid is suppressed further. It is known as Common Ion effect .	3	3
30.	Faraday's Laws of electrolysis: I law: The mass of the substance (m) liberated at an electrode during electrolysis is directly proportional to the quantity of charge (Q) passed through the cell. (or) $m \alpha Q$ (or) $m \alpha It$ (or) $m = ZIt$ II law: $1 M$ When the same quantity of charge is passed through the solutions of different	1 1⁄2	3
21	electrolytes, the amount of substances liberated at the respective electrodes are directly proportional to their electrochemical equivalents. (or) $m \alpha Z$ (or) $\frac{m_1}{Z_1} = \frac{m_2}{Z_2} = \frac{m_3}{Z_3}$ 1 M	1 ½	
51.	Perkins' reaction		
	When an aromatic aldehyde is heated with an aliphatic acid anhydride in the presence of the sodium salt of the acid corresponding to the anhydride, condensation takes place and an α, β unsaturated acid is obtained. This reaction is known as Perkin's reaction . Example: $C_{6}H_{5} - C = O + H_{2}CH^{-}C_{0}O + H_{2}CH^{-}C_{0}O + H_{2}O + C_{6}H_{5}CH = CH - COOH + CH_{3}COOH + CH_{3}C$	3	3
	Benzaldehyde condenses with malonic acid in presence of pyridine forming cinnamic acid, Pyridine act as the basic catalyst. Correct equation - 3 M (or) explanation only – 1 M; In Perkin's reaction, CH ₃ COONa is not mentioned – 2 M ; In Knovenagal reaction pyridine is not mentioned – 2 M		

34.	(i) Basic requirements of vapour phase refining:		
а	 The metal should form a volatile compound with the reagent. 	1	
	 The volatile compound decomposes to give the pure metal 	1	
	(ii) Observations of Ellingham diagram:		
	 The formation of metal oxide gives a positive slope. The value of ΔS is negative. 	1	5
	 The formation of Carbon monoxide gives a negative slope. The value of AS is positive. So Carbon monoxide is more stable at high 	1	
	temperature	1	
	• For MgO, due to phase transition, there is a sudden change in the slope at a particular temperature		

34.	(i) Uses of Potash Alum:				
b	 Potash alum is used for purification of water 				
	 It is used for water proofing and textiles 	2			
	 It is used in dyeing and paper industries 				
	 It is used as a styptic agent to arrest bleeding. 				
	 (ii) Catenation is an ability of an element to form chain of atoms. Carbon forms a wide range of compounds with C, H, N, S Conditions: 	1	5		
	Valence of element is greater than or equal to two				
	 Element should have an ability to bond with itself 	2			
	Self-bond must be strong	2			
	 Kinetic inertness of catenated compound towards other molecules. 				
35.	(i) Transition metals have high melting point:				
а	High attractive forces between the atoms	1			
	Strong metallic bond.	1			
	(ii) Coordination isomerism:	1	_		
	entities.	_	5		
	$[Co(NH_3)_6] [Cr(CN)_6] \leftrightarrows [Cr(NH_3)_6] [Co(CN)_6]$	1/2			
	Linkage isomerism:				
	When an ambidentate ligand is bonded to two different donor atoms by the	1			
	central metal ion are called linkage isomers.				
	$[Cr(H_2O)_5 NO_2]Br \leftrightarrows [Cr(H_2O)_5 (ONO)]Br$	1/2			
35.	(i) $t_1 = \frac{0.6932}{1}$				
b		1			
	0.6932	1			
	$t_{\frac{1}{2}} = \frac{1.54 \text{ X } 10^{-3}}{1.54 \text{ X } 10^{-3}}$				
	= 450 s	¹ ⁄ ₂ + ¹ ⁄ ₂			
	(ii) Characteristics of ionic crystals:		5		
	Hard		J		
	Dissolved in water.	3			
	High Melting Point.				
	 Do not conduct electricity in solid state 				
	Conduct electricity in molten state.				
	(any three points – 3 M)				

36. a 36. b	 (I) If we apply DC current through the conductivity cell, it will lead to the electrolysis of the solution taken in the cell. So, AC current is used for this measurement to prevent electrolysis (ii) Equivalent conductivity: \$\Lambda_{eq}(Al_2(SO_4)_3) = \frac{1}{3}\lambda_{eq}(Al^{3+}) + \frac{1}{2}\lambda_{eq}(SO_4^{2-})						
	light is illuminated by the scattering	g of light by colloidal particles.	1				
	The phenomenon of scattering of light Tyndall effect.	ignt by the sol particles is called	1				
	(ii) Chemical adsorption or Chemisorption or Physical adsorption or van der waals						
	Activated adsorption adsorption or Physisorption 1. It is very slow 1. It is instantaneous 2. It is very specific depends on nature of adsorbent and adsorbate. 2. It is non-specific 3. Chemical adsorption is fast with increase pressure, it can not alter the amount. 3. In Physisorption, when pressure increases the extent of adsorption increases. 4. When temperature is raised chemisorption first increases and then decreases. 4. Physisorption decreases with increase in temperature. 5. Chemisorption involves transfer of electrons between the adsorbent and adsorbate. 5. No transfer of electrons						
	6. Heat of adsorption is high i.e., from 40- 400kJ/mole. 6. Heat of adsorption is low in the order of 40kJ/mole.						
	7. Monolayer of the adsorbate is formed. 7.	. Multilayer of the adsorbate is formed on the adsorbent.					
	 Adsorption occurs at fixed sites called active centres. It depends on surface area 	. It occurs on all sides.					
	 9. Chemisorption involves the formation 9. of activated complex with appreciable activation energy. 	. Activation energy is insignificant.					
37. a	(i) Preparation of chloropicrin: $CH_3 - NO_2 + 3Cl_2 \xrightarrow{NaOH} CCl_3 - NO_2 + 3HCl_{Chloropicrin (trichloronitromethane)}$ Correct Equation – 2 M ; NaOH is not mentioned – 1 $\frac{1}{2}$						
	(ii) Posonmund's Poduction						
	(ii) Roseninunu s Reduction: Aldehydes can be prepared by the hyd	drogenation of acid chloride in the		5			
	Allengues can be prepared by the hydrogenation of acid chloride, in the presence of palladium supported by barium support. This reaction is called						
	Rosenmund reduction.						
	Correct equation – 3 M : $CH_3 - C - CI$	$H_{2} \rightarrow H_{2} \xrightarrow{Pd/BaSO_{4}} CH_{3} \rightarrow CH_{3} \rightarrow CH_{4} + HCl$					
	Explanation only – 1 M Acetyl chlori	ide Acetaldehyde					

Prepared by D. SIMON, PG Assistant (Chemistry), St. Francis Xavier's HSS – Thoothukudi

37. b	 Functions of Lipids in Living Organism: Lipids are the integral component of cell membrane. They yield more energy than carbohydrates and proteins. They act as protective coating in aquatic organisms. Lipids of connective tissues give protection to internal organs. Lipids act as emulsifier in fat metabolism. 					1 1 1 1	5
38. a	(i) Antiseptics Disinfectants						
ä		Stop the growth of microorganisms Stop the growth of microorganisms					
		Applied to living ti	ssue	Applied to inanimate obj	ects	2	
	Applied to hving ussueApplied to mainifiate objectsEg. H ₂ O ₂ , Povidone-iodineEg. H ₂ O ₂ , alcohol						
	(ii) Aspirin (Acetylsalicylic acid) $ParacetamolAcetaminophenOCOCH3 OCOCH3 OH$					3	5
38. b	$CH_{3}CN \xrightarrow{Na (Hg) / C_{2}H_{5}OH} CH_{3}CH_{2}NH_{2}$ A Ethane nitrile Ethanamine				2 12	1	
	$\begin{array}{c} CH_{3}CH_{2}NH_{2} + HONO & \hline NaNO_{2} + Conc. HCl \\ \hline B & C \\ \hline E than amine & E than ol \end{array}$					1	5
	Compound Molecular						
		Δ	Formula CH-CN	Ethane nitrile /		1	
	A CH ₃ CN Ethane hitrile / methyl cyanide						
		В	CH ₃ CH ₂ NH ₂	Ethanamine		1	
		C	CH ₃ CH ₂ OH	Ethanol]	1	
		A B C	CH ₃ CN CH <u>3CH2NH2</u> CH3CH2OH	Ethane nitrile / methyl cyanide Ethanamine Ethanol			1 1