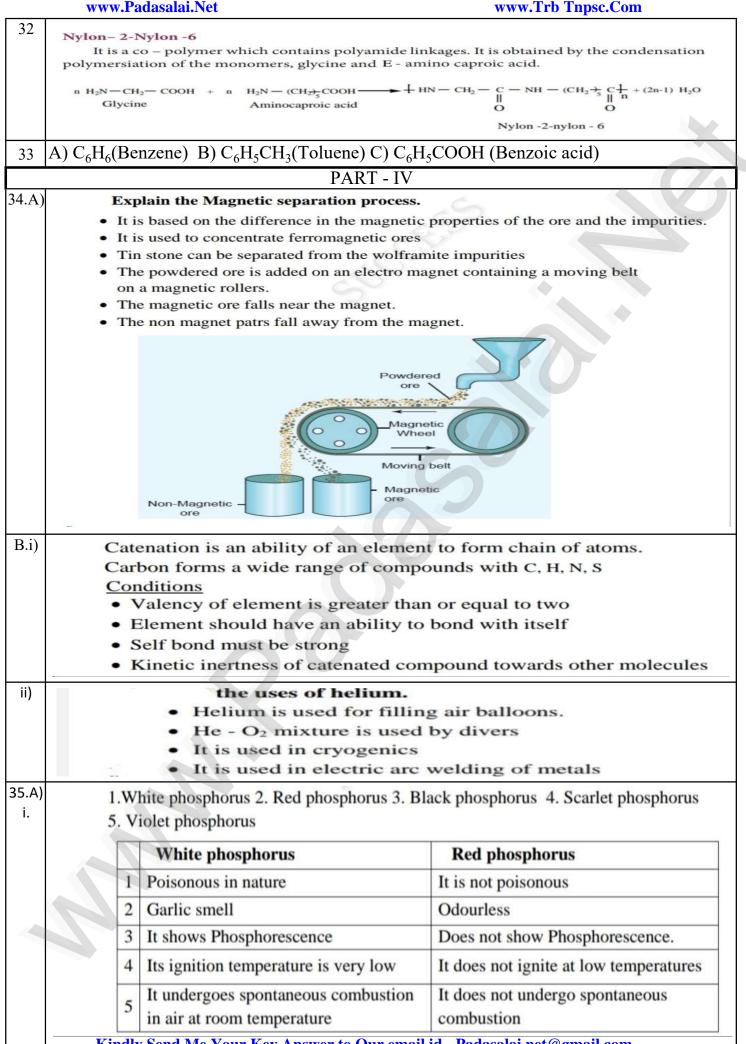
www.Padasalai.Net

www.Trb Tnpsc.Com

COMMON HALF YEARLY EXAMINATION-2025 CUDDALORE DT. XII th STANDARD CHEMISTRY ANSWER KEY PART - I

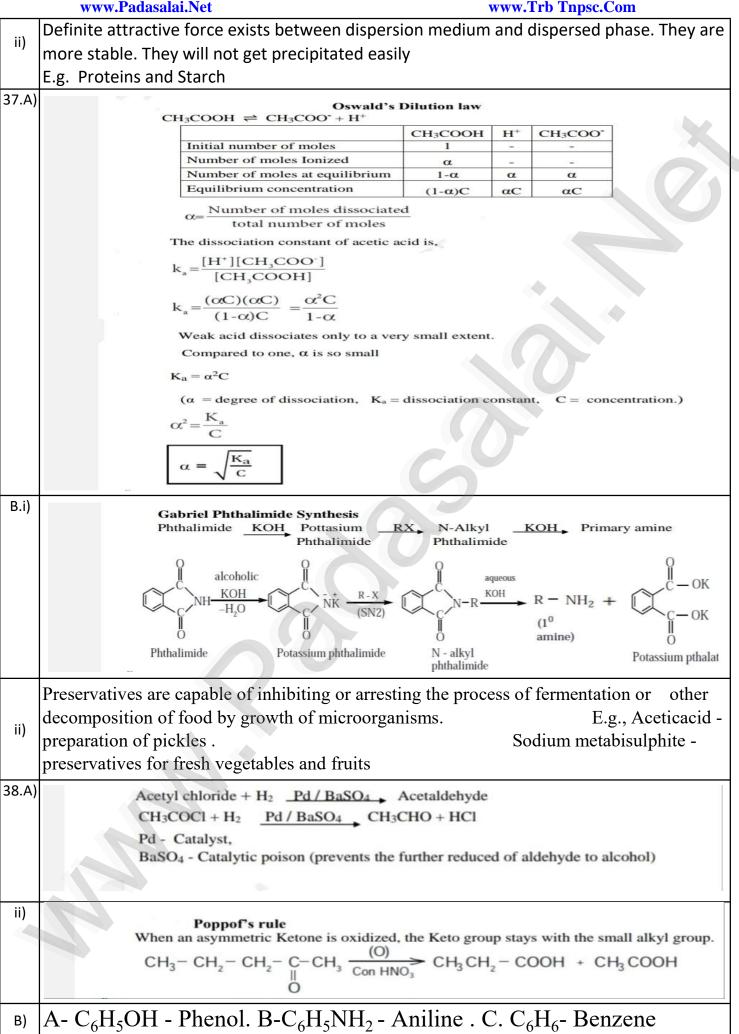

I. CORRECT ANSWERS.

Q.NO		ANSWER		Q.NO	ANSWER				
1		A)	Carbon reduction	9	D)	Both assertion and reason are false			
2		D)	$(SiO_4)^{4-}$	10	D)	$(Al_2(SO_4)_3)$			
3		B)	F ₂	11	A)	Phenol			
4		A)	5.92BM	12	B)	Victor Mayer test			
5		B)	0	13	A)	Sn/HCl			
6		B)	FeO	14	D)	D-Glucose			
	7	<u>B)</u>	Activation Energy	15	D)	PHBV			
	8	A)	BF ₃						
1.0	0-1-1-	.1	C_{1}	PAR	T - I				
<u>16</u> 17									
1 /		• T	the uses of silic Lubricants	ones.					
			Vater proof cloths						
			nsulating material	in electric	al m	notor			
 Low temperature vaccuum pumbs and High temperature oil baths Mixed with paints to make them resistance towards sun light 									
18	8 Aqua (H ₂ O), Ammine(NH ₃), Diethyleneamine(en), Triphenylphosphine (P(Ph) ₃),								
19	No. of Atoms in FCC Unit cell = $(Nc/8) + (N_f/2)$ = $(8/8) + (6/2) = 1 + 3 = 4$								
> The solubility product of a compound is defined as the product of the molar concentr						s the product of the molar concentration of the			
20 constituent ions, each raised to the power of its stoichiometric co-efficient in a bal									
equilibrium equation.									
	<u> </u>		<u>^</u>	lal solution, the path of light is illuminated					
²¹ by the scattering of light by colloidal particles									
	> The phenomenon of scattering of light by the solution particles is called Tyndall effect								
22			Knovenagal Reaction	_					
			Benzaldehyde + Ma	lonic acid	Pyrid	ine $/-H_2O_1, -CO_2$ Cinnamic acid			
				COOH Pyridine		COOH			
			C_6H_5 - $CH = O + H_2C$	- H20	→ C ₆	$H_5 CH = C \xrightarrow{COOH} \Delta C_6 H_5 CH = CH - COOH$			
				COOH		COOH CO2			
23	 Hormone is an organic substance that is secreted by one tissue. 								
 It limits the blood stream and induces a physiological response in other It is an intercellular signaling molecule. 									
									• Ir
24	t –	- 06	$93 / \mathbf{k} = 0.693 / 1.3$	54×10^{-3} s	z-1 _	450 Sec			
∠4	·1/2 -	- 0.0	$\mathbf{J}\mathbf{J}\mathbf{J}\mathbf{K} = 0.093 / 1$	JH X 10 3	, –				

www.Padasalai.Net

www.Trb Tnpsc.Com

	PAI	RT - III						
25	> When alum stone is treated with excess of sul sulphate is added . The solution is crystallised to	phuric acid . Then calculated quantity of potassium generate potash alum						
	$K_2SO_4 \cdot Al_2(SO_4)_3 \cdot 4Al(OH)_3 + 6 H_2SO_4 \rightarrow K_2SO_4 + 3Al_2(SO_4)_3 + 12H_2O_4$							
	$K_2SO_4(aq) + Al_2(SO_4)_3(aq) + 24 H_2O \rightarrow K_2SO_4$	$O_4(aq) + Al_2(SO_4)_3(aq) + 24 H_2O \rightarrow K_2SO_4$. $Al_2(SO_4)_3.24H_2O(s)$ (Potash Alum)						
26	Compare lanthanoids and actinoids.							
-	- Lanthanoids	Actinoids						
	1. Colourless	Coloured						
	2. They show less tendency to form complexes.	They show greater tendency to form complexes						
	3. They do not form oxocations	They do form oxocations						
	4. Differentiating electrons enters in 4f orbital.	Differentiating electrons enters in 5forbital.						
	5. Binding energy of 4f orbitals are	higher Binding energy of 5f orbitals are lower						
	6. Oxidation state +2, +3, +4	Oxidation state +2, +3, +4, +5, +6, +7						
27	1 Central metal atom/ion	Pt						
	2 Coordinatin Number	4						
	3 Oxidation number of the central metal	ion +2						
28	-	 In certain reactions one of the products formed acts as a catalyst to the reaction. E.g : In the hydrolysis of ethylaetate, product acetic acid is auto catalyst 						
	proportional to the quantity of charge (Q) passed through the cell. $m \alpha Q$ <u>Faraday's Second Law</u> When the same quantity of charge is passed through the solutions of different electrolytes, the amount of substances liberated at the respective electrodes are directly proportional to their electrochemical equivalents. $m \alpha Z$ m - mass of the substance, Z- electro chemical equivalent of the substance							
30	 group of an amino acid leaving thes ◆ Despite having both positive and ne amphoteric behaviour. ◆ These ions are called zwitter ions. Zwitter ion structure of a ⁺H₃N- CH - COO⁻ CH₃ 	egative charges this molecule is neutral and has						
31	Methyl acetate + Ethyl alcohol $\underline{H^+}$ Ethyl acetate + Methyl alcohol CH ₃ COOCH ₃ + C ₂ H ₅ OH $\underline{H^+}$ CH ₃ COOC ₂ H ₅ + CH ₃ OH							
	Kindly Send Me Your Key Answer to Our email id - Padasalai.net@gmail.com							



www.Padasalai.Net

www.Trb Tnpsc.Com

	V	ww.Padasalai.Net	www.Trb Tnpsc.Com		
ii) I		alogen combines with other haloger en compounds. E.g : BrF, IF ₅ , IF ₇	ns to form a series of compounds called inter		
B)	1		0		
	Complex Outer electronic configuration of ₂₈ Ni		$\frac{[Ni(CN)_4]^{2-}}{3d^8 4s^2}$		
		Outer electronic configuration of Ni ²⁺	$3d^{8} 4s^{0} 4p$		
		Nature of ligand	CN ⁻ strong field ligand - pairing of 3d electrons 3d 4s 4p 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		
		Outer orbital of metal atom in presence of ligands			
		Hybridisation	dsp ²		
		Co ordination number	4		
		Geometry	Square planer		
		Number of unpaired electon	0		
		Magnetic property	diamagnetic		
		Magnetic moment	$\mu_{\rm s} = \sqrt{n(n+2)} = 0 \rm BM$		
	a		PS VILLEY O DIT		
B.i)	* * *	cations and anions from the crystal la Ex: NaCl Size of anion and cation similar Lowers its density Does not change the stoichiometry of enkel defect Arises due to dislocation of ions from lattice The ion which is missing from the latt occupies an interstitial position. Ex : AgBr Size of anion and cation differ Does not affect the density of crystal	F the crystal. its crystal ice point $Ag^{*} Missing$ $Ag^{*} Missing$ $Ag^{*} n interstitial$ Br $Ag^{*} Missing$ $Ag^{*} n interstitial$ Br $Ag^{*} Missing$ $Ag^{*} n interstitial$ Br $Ag^{*} Missing$ $Ag^{*} n interstitial$ Br $Ag^{*} n interstitial$ Br B		
		Derive integrated rate law for a zero A \longrightarrow Products Rate = k [A] ⁰ (k - Rate condition $\frac{-d[A]}{dt} = k (1)$ ($\therefore [A]^0 = 1$ -d[A] = k dt At, t = 0 \Rightarrow [A] = [A_0] & to $-\int_{[A_0]}^{[A]} d[A] = k \int_0^t dt$ $-([A])_{[A_0]}^{[A]} = k (t)_0^t$ [A ₀]-[A] = kt	stant) I)		
	-	$\mathbf{k} = \frac{[\mathbf{A}_0] - [\mathbf{A}]}{t}$ Kindly Send Me Your Key Answer to Or	ur amail id Radacalai nat/@gmail.com		

	D		• • •	r 4
www.	Pad	asa	a 1. N	et

