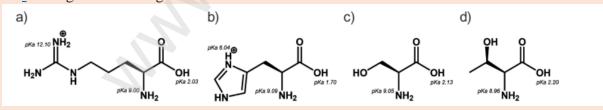

SIR. CV. RAMAN COACHING CENTRE – IDAPPADI, SALEM -2025 XII- CHEMISTRY SECOND VOLUME PUBLIC - MODEL QUESTION PAPER -2025 PREPARED BY Dr.G.THIRUMOORTHI,M.Sc,B.Ed ,Ph.D ,PHYSICS

thiruphysics1994@gmail.com,8610560810,8883610465

	SECTION – A (15 X 1 = 15 M)						
	Choose the correct best answer						
1.	lay constant is defined as large carried by 1 electron b) charge carried by one mole of electrons large required to deposit one mole of substance large carried by 6.22 × 10 ¹⁰ electrons. The large carried by 6.2						
	a) NaCl b) $Ba(NO_3)_2$ c) $K_3[Fe(CN)_6]$ d) $Al_2(SO_4)_3$						
	7. Isopropylbenzene on air oxidation in the presence of dilute acid gives a) C_6H_5COOH b) $C_6H_5COCH_3$ c) $C_6H_5COC_6H_5$ d) C_6H_5 - OH 8. Among the following ethers which one will produce methyl alcohol on treatment with hot HI? a) $(H_3C)_3C-O-CH_3$ b) $(CH_3)_2-CH-CH_2-O-CH_3$ c) $CH_3(CH_2)_3-O-CH_3$ d) $CH_3-CH_2-CH-O-CH_3$						

9.Identify the product formed in the reaction

$$\frac{N_2H_4}{C_2H_5 \text{ ONa}}$$



- 10. Which one of the following nitro compounds does not react with nitrous acid
- a) CH,-CH,-CH,-NO,

b) (CH₃),CH - CH,NO,

c) (CH₃)₃C NO₂

- $\begin{array}{ccc}
 CH_3 C CH NO_2 \\
 \parallel & \mid \\
 O & CH_3
 \end{array}$
- 11. Secondary nitro alkanes react with nitrous acid to form
 - a) red solution b) blue solution c) green solution d) yellow solution
- 12. Among the following L-serine is

- 13. In aqueous solution of amino acids mostly exists in
 - a) NH₂-CH(R)-COOH

b) NH2-CH(R)-COO-

c) H₃N+-CH(R)-COOH

d) H₃N+-CH(R)-COO-

- 14. Vitamin B2 is also known as
 - a) Riboflavin b) Thiamine
- c) Nicotinamide
- d) Pyridoxine

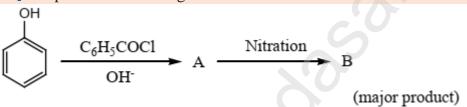
15.

Electrolyte	KCl	KNO ₃	HCl	NaOAC	NaCl
Λ_{-} (S cm ² mol ⁻¹)	149.9	145.0	426.2	91.0	126.5

Calculate Λ_{HOAC}° using appropriate molar conductances of the electrolytes listed above at infinite dilution in water at $25^{\circ}C$.

a) 517.2

b) 552.7


c) 390.7

d) 217.5

SECTION - B (6 X 2 = 12 M)

ANSWER ANY SIX QUESTION COMPULSORY Q.NO: 24

- 16. Define pH
- 17. Write the expression for the solubility product of Ca₃(PO₄)₂
- 18. Define anode
- 19. Addition of Alum purifies water. Why?
- 20. Give three uses of emulsions.
- 21. Complete the following reactions

- 22. What is the action of HCN on (i) propanone
- 23. How are vitamins classified
- 24. Complete the following reaction

SECTION - C (6 X 3 = 18 M)

ANSWER ANY SIX QUESTION COMPULSORY Q.NO: 33

- 25Write a note on vulcanization of rubber
- 26. How the tranquilizers work in body
- 27. How will you prepare Lactic acid from ethanol
- 28. Write a note on electro osmosis
- 29. Why is AC current used instead of DC in measuring the electrolytic conductance?

30.

31._Can we use nucelophiles such as alcohols NH3,CH3O for the Nucleophilic substitution of

- 32. State Faraday's Laws of electrolysis
- 33. Indentify the conjugate acid base pair for the following reaction in aqueous solution

$$HPO_4^{2-} + SO_3^{2-} \rightleftharpoons PO_4^{3-} + HSO_3^{-}$$

$$SECTION - D (5 \times 5 = 15 \text{ M})$$

ANSWER ALL QUESTIONS:

- 34) a) Derive an expression for Ostwald's dilution law (or)
- b) Derive an expression for the hydrolysis constant and degree of hydrolysis of salt of strong acid and weak base
- 35.a)_State Kohlrausch Law. How is it useful to determine the molar conductivity of weak electrolyte at infinite dilution.

(or

- b) In fuel cell H $_2$ and O $_2$ react to produce electricity. In the process, H $_2$ gas is oxidised at the anode and O $_2$ gas is reduced at cathode. If 44.8 litre of H $_2$ at 25 0 C and 1atm pressure reacts in 10 minutes, what is average current produced? If the entire current is used for electro deposition of Cu from Cu2+, how many grams of deposited?
- 36.a) Describe adsorption theory of catalysis.

(or)

b) Complete the following reactions

i)
$$CH_3 - CH_2 - OH \xrightarrow{P Br_3} A \xrightarrow{aq.NaOH} B \xrightarrow{Na} C$$

ii) $C_6H_5 - OH \xrightarrow{Zn \text{ dust}} A \xrightarrow{CH_3Cl} B \xrightarrow{acid \text{ KMnO}_4} C$
iii) $Anisole \xrightarrow{t\text{-butylchloride}} A \xrightarrow{Cl_2/FeCL_3} B \xrightarrow{HBr} C$
iv) $CH_2 \xrightarrow{CHOHCH_3} \xrightarrow{H^+} A \xrightarrow{i) O_3} B$

- 37.a) An alkene (A) on ozonolysis gives propanone and aldehyde (B). When (B) is oxidised (C) is obtained. (C) is treated with Br2/P gives (D) which on hydrolysis gives (E). When propanone is treated with HCN followed by hydrolysis gives (E). Identify A, B, C, D and E. (or)
- b) A dibromo derivative (A) on treatment with KCN followed by acid hydrolysis and heating gives a monobasic acid (B) along with liberation of CO_2 . (B) on heating with liquid ammonia followed by treating with Br2/KOH gives (c) which on treating with $NaNO_2$ and HCl at low temperature followed by oxidation gives a monobasic acid (D) having molecular mass 74. Identify A to D.
- 38.a) (i) Write the Zwitter ion structure of alanine (ii) Give two difference between Hormones and vitamins

(or)

b) Explain the mechanism of cleansing action of soaps and detergents

SIR. CV. RAMAN COACHING CENTRE – IDAPPADI, SALEM -2025 XII- CHEMISTRY SECOND VOLUME MODEL QUESTION PAPER -2025 PREPARED BY

Dr.G.THIRUMOORTHI,M.Sc,B.Ed,Ph.D,PHYSICS

thiruphysics1994@gmail.com

8610560810,,

8883610465