FIRST REVISION EXAM - JANUARY - 2025

STD - 12

Mathematics

Time Allowed: 3.00 Hours

Maximum Marks : 90

Part - I

Note: i) All questions are compulsory, ii) Choose the most appropriate answer from the given four alternatives and write the option code and the corresponding answer. $20 \times 1 = 20$

- A zero of $x^3 + 64$ is
 - (1)0
- (2)4
- (3) 4i (4) -4
- If $x^3 + 12x^2 + 10ax + 1999$ definitely has a positive root, if and only if 2.

 - (1) $a \ge 0$ (2) a > 0 (3) a < 0 (4) $a \le 0$
- If $\sin^{-1} x = 2\sin^{-1} \alpha$ has a solution, then 3.
 - (1) $|\alpha| \le \frac{1}{\sqrt{2}}$ (2) $|\alpha| \ge \frac{1}{\sqrt{2}}$ (3) $|\alpha| < \frac{1}{\sqrt{2}}$ (4) $|\alpha| > \frac{1}{\sqrt{2}}$
- If $A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$ and $A(\text{adj } A) = \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$, then k = 0
- (2) $\sin \theta$ (3) $\cos \theta$ (4) 1
- In the case of Cramer's rule which of the following are correct? . 5.
- (ii) $\Delta \neq 0$
- (iii) the system has unique solution
- (iv) the system has infinitely many solutions
- (1) i andiv (2) Only ii

- (3) all (4) None of them
- If α and β are the roots of $x^2 + x + 1 = 0$, then $\alpha^{2020} + \beta^{2020}$ is

 - (1) -2 (2) -1 (3) 1 (4) 2

- 7. $cis \frac{28\pi}{5} =$
 - (1) $cis\left(-\frac{2\pi}{5}\right)$ (2) $cis\left(\frac{2\pi}{5}\right)$ (3) $cis\left(\frac{3\pi}{5}\right)$ (4) $cis\left(-\frac{3\pi}{5}\right)$

- The values of m for which the line $y = mx + 2\sqrt{5}$ touches the hyperbola
 - $16x^2 9y^2 = 144$ are the roots of $x^2 (a + b)x 4 = 0$, then the value of (a + b) is

 - (1) 2 (2) 4
- (3) 0 (4) -2
- If \vec{a} and \vec{b} are unit vectors such that $[\vec{a}, \vec{b}, \vec{a} \times \vec{b}] = \frac{\pi}{4}$, then the angle between \vec{a} and \vec{b} is
- $(2)\frac{\pi}{4}$
- $(3)\frac{\pi}{2}$. $(4)\frac{\pi}{2}$
- 10. If the direction cosines of a line are $\frac{1}{c}$, $\frac{1}{c}$, $\frac{1}{c}$, then
 - (1) $c = \pm 3$ (2) $c = \pm \sqrt{3}$ (3) c > 0(4) 0 < c < 1
- 11. The number given by the Mean value theorem for the function $\frac{1}{x}$, $x \in [1,9]$ is

 $(1) 2 \qquad (2) 2.5 \qquad (3) 3 \qquad (4) 3.5$ 12. Lanrange mean value theorem becomes Rolls theorem if (2) f'(a) = f'(b) (3) f(a) = 0 (4) f(b) = 0(1) f(a) = f(b)

13. If $u(x, y) = e^{x^2 + y^2}$, then $\frac{\partial u}{\partial x}$ is equal to

(1) $e^{x^2+y^2}$ (2) 2xu (3) x^2u (4) y^2u

14. If $\frac{\Gamma(n+2)}{\Gamma(n)} = 90$ then *n* is

(2) 5 (3) 8

15. The order and degree of the differential equation $\sqrt{\sin x}(dx + dy) = \sqrt{\cos x}(dx - dy)$ are

1)1,2

2)2.2

3)1,14)2,1

16. Integrating factor of the differential equation $\frac{dy}{dx} = \frac{x+y+1}{x+1}$ is

 $(1)\frac{1}{x+1} \qquad (2) x + 1 \qquad (3)\frac{1}{\sqrt{x+1}} \qquad (4) \sqrt{x+1}$

17. If $P\{X=0\} = 1 - P\{X=1\}$. If E[X] = 3 Var(X), then $P\{X=0\}$.

 $(1)\frac{2}{3}$ $(2)\frac{2}{5}$ $(3)\frac{1}{5}$ $(4)\frac{1}{3}$

18. Which one of the following is a binary operation on N?

(1) Subtraction

(2) Multiplication

(3) Division

(4) All the above

19. A random variable X is function from

 $(1) S \to R \qquad (2) R \to S \qquad (3) S \to N$

 $(4) N \rightarrow S$

20. Which one of the following statements has the truth value ?

(1) sinxis an even function.

(2) Every square matrix is non-singular

(3) The product of complex number and its conjugate is purely imaginary

(4) $\sqrt{5}$ is an irrational number

Part - II

Note: i) Answer any Seven questions. ii) Question number 30 is compulsory. $7 \times 2 = 14$

21. Simplify $\left(\frac{1+i}{1-i}\right)^3 - \left(\frac{1-i}{1+i}\right)^3$ into rectangular form.

22. If $adjA = \begin{bmatrix} -1 & 2 & 2 \\ 1 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$, find A^{-1} .

23. If $\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}$, $\vec{b} = 2\hat{i} + \hat{j} - 2\hat{k}$, $\vec{c} = 3\hat{i} + 2\hat{j} + \hat{k}$, find $\vec{a} \cdot (\vec{b} \times \vec{c})$.

24. Explain why Rolle's theorem is not applicable to the following functions in the

RMT - 12 MAT EM -2

respective intervals : $f(x) = \left| \frac{1}{x} \right|$, $x \in [-1,1]$.

- 25. Evaluate : $\int_0^{\frac{\pi}{2}} \cos^7 x \, dx$
- 26. If $u(x, y, z) = log(x^3 + y^3 + z^3)$, find $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z}$.
- 27. Find the differential equation of the family of parabolas $y^2 = 4ax$, where a is an arbitrary constant.
- 28. Find a polynomial equation of minimum degree with rational coefficients, having $2 \sqrt{3}$ as a root.
- 29. Let $A = \{a + \sqrt{5}b : a, b \in \mathbb{Z}\}$. Check whether the usual multiplication is a binary operation on A.
- 30. Find the general equation of the circle whose diameter is the line segment joining the points (-4, -2) and (-1, -1).

Part - III

Note: i) Answer any Seven questions. ii) Question number 40 is compulsory. $7 \times 3 = 21$

31. Solve the following systems of linear equations by Cramer's rule:

$$5x - 2y + 16 = 0$$
, $x + 3y - 7 = 0$

- 32. If $z = (\cos \theta + i \sin \theta)$, show that $z^n + \frac{1}{z^n} = 2 \cos n \theta$ and $z^n \frac{1}{z^n} = 2i \sin n \theta$.
- 33. Find the value of $sin^{-1} \left(sin \frac{5\pi}{9} cos \frac{\pi}{9} + cos \frac{5\pi}{9} sin \frac{\pi}{9} \right)$.
- 34. For any vector \vec{a} , prove that $\hat{\imath} \times (\hat{a} \times \hat{\imath}) + \hat{\jmath} \times (\vec{a} \times \hat{\jmath}) + \hat{k} \times (\vec{a} \times \hat{k}) = 2\vec{a}$.
- 35. Prove that the ellipse $x^2 + 4y^2 = 8$ and the hyperbola $x^2 2y^2 = 4$ intersect orthogonally.
- 36. Find the linear approximation for $f(x) = \sqrt{1+x}$, $x \ge -1$, at $x_0 = 3$. Use the linear approximation to estimate f(3.2).
- 37. Solve the following differential equations: $\frac{dy}{dx} = \sqrt{\frac{1-y^2}{1-x^2}}$
- 38. For the random variable X with the given probability mass function as below, find the mean and variance: $f(x) = \begin{cases} 2(x-1), 1 < x < 2 \\ 0, \text{ otherwise} \end{cases}$
- 39. Using the equivalence property, show that $p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$.
- 40. Prove that $\int_0^{\frac{\pi}{2}} \frac{f(\cos x)}{f(\sin x) + f(\cos x)} dx = \frac{\pi}{4}.$

RMT - 12 MAT EM -3

Part - IV

Note: i) Answer all the questions.

 $7 \times 5 = 35$

- 41. a)Let A be $A = Q \setminus \{1\}$. Define * on A by x * y = x + y xy is * binary on A?

 If so, examine the commutative, associative, the existence of identity and the Existence of inverse properties. (OR)
 - b) Solve the equation $6x^4 5x^3 38x^2 5x + 6 = 0$ if it is known that $\frac{1}{3}$ is a solution.
- 42 . a) A random variable X has the following probability mass function.

x	1	2	3	4	5	6
f(x)	k	2k	6k	5 <i>k</i>	6k	10k

Find (i)
$$P(2 \le X \le 6)$$
 (ii) $P(2 \le X \le 5)$ (iii) $P(X \le 4)$ (iv) $P(3 \le X)$. (OR)

- b) The maximum and minimum distances of the Earth from the Sun respectively are 152×10^6 km and 94.5×10^6 km. The Sun is at one focus of the elliptical orbit. Find the distance from the Sun to the other focus.
- 43. a)Prove by vector method that the perpendiculars (altitudes) from the vertices to the opposite sides of a triangle are concurrent. (OR)

b) Solve:
$$tan^{-1}\left(\frac{x-1}{x-2}\right) + tan^{-1}\left(\frac{x+1}{x+2}\right) = \frac{\pi}{4}$$
.

- 44. a) Test for consistency and if possible, solve the following systems of equations by rank Method: 2x + 2y + z = 5, x y + z = 1, 3x + y + 2z = 4 (OR)
 - b) Find the vector parametric, vector non-parametric and Cartesian form of the equation of the plane passing through the points (-1,2,0), (2,2,-1) and parallel to the straight line $\frac{x-1}{1} = \frac{2y+1}{2} = \frac{z+1}{-1}$.
- 45. a) Solve the equation $z^3 + 27 = 0$. (OR)
 - b). Find the area of the region bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- 46. a) Suppose a person deposits ₹10,000 Indian rupees in a bank account at the rate of 5% per annum compounded continuously. How much money will be in his bank account 18 months later? (OR)
 - b) Find the local extrema of the function $f(x) = 4x^6 6x^4$
- 47. a) Find the foci, vertices and length of major and minor axis of the conic $4x^2 + 36y^2 + 40x 288y + 532 = 0$. (OR)

b) If
$$v(x, y) = log(\frac{x^2 + y^2}{x + y})$$
, prove that $x \frac{\partial v}{\partial x} + y \frac{\partial v}{\partial y} = 1$.