Time: 3.00 Hours

First Revision Exam, January - 2025

Standard 12 MATHS PART - I

Marks: 90

Answer all the questions.

Choose the correct answer from the given four alternatives:

20×1=20

1) If adj A =
$$\begin{pmatrix} 2 & 3 \\ 4 & -1 \end{pmatrix}$$
 and adj B = $\begin{pmatrix} 1 & -2 \\ -3 & 1 \end{pmatrix}$ then adj (AB) is

- 2) The solution of the equation |z|-z = 1+2zi is
 - a) $\frac{3}{2}$ -2i
- b) $-\frac{3}{2} + 2i$ c) $2 + \frac{3}{2}i$
- 3) The number of real numbers in $[0, 2\pi]$ satisfying $\sin^4 x 2 \sin^2 x + 1$ is d) ∞
- 4) If $x = \frac{1}{5}$ the value of $\cos[\cos^{-1}x + 2\sin^{-1}x] =$

 - a) $-\sqrt{\frac{24}{25}}$ b) $\sqrt{\frac{24}{25}}$ c) $-\frac{1}{5}$
- 5) The area of quadrilateral formed with foci of the hyperbolas

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 and $\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$ is

- a) $4(a^2+b^2)$
- b) $2(a^2+b^2)$
- c) $a^2 + b^2$
- d) $\frac{1}{2}(a^2+b^2)$
- 6) The angle between the line $\vec{r} = (\vec{i} + 2\vec{j} 3\vec{k}) + t(2\vec{i} + \vec{j} 2\vec{k})$ and the plane

$$\vec{r} \cdot (\vec{i} + \vec{j}) + 4 = 0$$
 is.....

- b) 30°
- c) 45°
- d) 90°
- 7) If \vec{a} and \vec{b} are unit vectors such that \vec{a} \vec{b} $a \times \vec{b} = \frac{1}{4}$, then the angle between a and b is

- a) $\frac{\pi}{6}$ b) $\frac{\pi}{4}$ c) $\frac{\pi}{3}$ d) $\frac{\pi}{2}$ 8) If $A = \begin{pmatrix} 3/5 & 4/5 \\ x & 3/5 \end{pmatrix}$ and $A^T = A^{-1}$ then the value of x is
 - $(a) \frac{4}{5}$
- b) $-\frac{3}{5}$ c) $\frac{3}{5}$ d) $\frac{4}{5}$

- 9) If A = $\begin{pmatrix} 3 & -3 & 4 \\ 2 & -3 & -4 \\ 0 & -1 & 1 \end{pmatrix}$ then adj (adj A) is....

- 10) If Z is a non-zero complex number, such that $2iZ^2 = \overline{Z}$ then |Z| is
- b) 1

Vnr12M

11) If |z| = 1 then the value of $\frac{1+z}{1+z}$ is

b) \bar{z}

a) z

- c) $\frac{1}{z}$
- d) 1

12) $i, i^2, i^3, \dots i^{40} = \dots$

c) -1

c) 4i

d) -i

13) A zero of x3+64 is

d) -4

14) If α , β and γ are the zeros of x^3+px^2+qx+r then 1/a is

2

- a) $-\frac{q}{r}$ b) $-\frac{p}{r}$
- c) 9/r

15) $\sec^{-1} \frac{-2\sqrt{3}}{3} \dots$

- a) $-5\pi/6$ b) $5\pi/6$
- c) $\pi/6$

16) $\sin^{-1}(2\cos^2 x-1) + \cos^{-1}(1-2\sin^2 x) = \cdots$

- b) $5\pi/6$

17) The radius of the circle $3x^2+by^2+4bx-6by+b^2=0$ is

- a) 1
- b) 3
- c) $\sqrt{10}$
- d) $\sqrt{11}$

18) Area of the greatest rectangle inscribed in the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is

- a) 2ab
- b) ab
- c) √ab
- d) %

19) If the direction cosines of a line are $\frac{1}{c}$, $\frac{1}{c}$, $\frac{1}{c}$ then

- a) $c = \pm 3$
- b) $c = \pm \sqrt{3}$
- c) c > 0
- d) 0 < c < 1

20) The distance from the point (2, 5, -3) to the plane $\vec{r} \cdot (6\vec{i} - 3\vec{j} + 2\vec{k}) = 5$ is

- a) 1
- b) 2
- c) 3
- d) 4

PART - B

Answer any 7 questions. Question number 30 is compulsory.

7×2=14

21) Find the rank of the matrix $\begin{pmatrix} 4 & 3 & 1 & -2 \\ -3 & -1 & -2 & 4 \\ 6 & 7 & -1 & 2 \end{pmatrix}$

- 22) Solve 5x-2y+16 = 0, x+3y-7 = 0
- 23) Show that the equation $Z^2 = \overline{Z}$ has four solutions.

24) If |Z-2-i| = 3 represents a equation of circle. Find the centre and radius.

25) Find a polynomial equation of minimum degree with rational co-efficents having 2i+3 as a root.

26) Find the domain of $\cos^{-1} \frac{2 + \sin x}{2}$

27) Find the value of $\tan^{-1} \tan \frac{-\pi}{6}$

Vnr12M

- 28) Find the general equation of the circle whose diameter is the line segment joining the points (-4, -2) and (1, 1)
- 29) Prove by vector method that an angle in a semi-circle is right angle.
- 30) Find the acute angle between the lines 2x = 3y = -z and 6x = -y = -4z

PART - C

Answer any 7 questions. Question number 40 is compulsory.

7×3=21

- 31) If $A = \begin{pmatrix} 8 & -4 \\ -5 & 3 \end{pmatrix}$ prove that $A(\text{adj } A) = (\text{adj } A) A = |A|I_2$
- 32) State and prove 'Triangle in equality'
- 33) If the equations $x^2+px+q=0$ and $x^2+p^1x+q^1=0$ have a common root, show that it must be equal to $\frac{pq'-p'q}{q-q'}$ or $\frac{q-q'}{p'-p}$
- 34) Evaluate $\cot^{-1}(1) + \sin^{-1}(1) \sqrt{3}/2 \sec^{-1}(1) \sqrt{2}$
- 35) Evaluate: $\cos^{-1} \left(\cos \frac{\pi}{7} \cos \frac{\pi}{17} \sin \frac{\pi}{7} \sin \frac{\pi}{17} \right)$
- 36) Show that the line x-y+4=0 is a tangent to the ellipse $x^2+3y^2=12$. Also find its point of contact.
- 37) The equation $y = \frac{1}{32}x^2$ model cross sections of parabolic mirrors that are used for solar energy. There is a heating tube located at the focus of each parabola how high is this tube located above the vertex of the parabola?
- 38) Find the torque of the resultant of the three forces represented by $-3\vec{i}+6\vec{j}-3\vec{k}$, $4\vec{i}-10\vec{j}+12\vec{k}$ and $4\vec{i}+7\vec{j}$ acting at the point with position vector $8\vec{i} - 6\vec{j} - 4\vec{k}$, about the point with position vector $18\vec{i} + 3\vec{j} - 9\vec{k}$
- 39) Find the angle between the lines $x-1 = \frac{y}{2} = z+1$ and the plane 2x-y+2z=2and also find the meeting point of the line and given plane.
- 40) Solve: x+2y+3z = 0; 3x+4y+4z = 0; 7x+10y+12z = 0

PART - D

Answer all the questions:

7×5=35

41) If ax^2+bx+c is divided by x+3, x-5 and x-1, the remainders are 21, 61 and 9 respectively find a, b and c.

(OR)

Solve:
$$\tan^{-1} \frac{x-1}{x-2} + \tan^{-1} \frac{x+1}{x+2} = \frac{\pi}{4}$$

42) If z = x + iy is a complex number such that $I_m = \frac{2z + 1}{iz + 1} = 0$ show that the locus of Z is $2x^2+2y^2+x-2y=0$.

(OR)

Find the Foci, vertex and directrix of the hyperbola $9x^2-y^2-36x-6y+18=0$

Vnr12M

12M
43) Solve:
$$(2x-3)(6x-1)(3x-2)(x-2)-5=0$$

(OR)

If
$$\vec{a} = 2\vec{i} + 3\vec{j} - \vec{k}$$
, $\vec{b} = 3\vec{i} + 5\vec{j} + 2\vec{k}$, $\vec{c} = -\vec{i} - 2\vec{j} + 3\vec{k}$, verify that $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c}$

44) Prove that
$$\sin^{-1}(\frac{3}{5}) - \cos^{-1}(\frac{12}{13}) = \sin^{-1}(\frac{16}{15})$$

Evaluate tan
$$\cos^{-1} \frac{1}{2} - \sin^{-1} \frac{-1}{2}$$

(OR)

Prove by Vector method that the perpendiculars from the vertices to the opposite sides of a triangle are concurrent.

45) A rod of length 1.2 m moves with its ends always touching the co-ordinate axes. The locus of a point P on the rod, which is 0.3 m. from the end in contact with x axis is an ellipse. Find the eccentricity.

By using Gaussian Elimination method, Balance the chemical reaction equation. $C_2H_6 + O_2 \rightarrow H_2O + CO_3$

46) Find the vector parametric equation, vector non-parametric eqaution and Cartesian form of the equation of the plane passing through the point

(0, 1, -5) and parallel to the straight lines
$$\vec{r} = (\vec{i} + 2\vec{j} - 4\vec{k}) + s(2\vec{i} + 3\vec{j} + 6\vec{k})$$

and
$$\vec{r} = (\vec{i} - 3\vec{j} + 5\vec{k}) + t(\vec{i} + \vec{j} - \vec{k})$$

If 2 cos
$$\alpha = x + \frac{1}{x}$$
, 2 cos $\beta = y + \frac{1}{y}$ show that (i) $\frac{x}{y} + \frac{y}{x} = 2\cos(\alpha - \beta)$

(ii)
$$xy - \frac{1}{xy} = 2i\sin(\alpha + \beta)$$
 and (iii) $x^my^n + \frac{1}{x^my^n} = 2\cos(m\alpha + n\beta)$

47) Solve: $6x^4 - 35x^3 + 62x^2 - 35x + 6$

(OR)

Find the equation of the circle passing through the points (1, 1) (2, -1) and