| ~1  |       | 10 |
|-----|-------|----|
| Cla | เธร : | 12 |

## SECOND REVISION EXAMINATION - 2025 ed: 3.00 Hours | MATHEMATICS | Max. Marks: 90

| ime Allowed : 3.00 Ho                                      | my.bloaspot.co                             | PART - I correct answer from the give         | 20×1=20                                             |
|------------------------------------------------------------|--------------------------------------------|-----------------------------------------------|-----------------------------------------------------|
| 1. Answer all th                                           | e questions by choosing the                | correct answer from the give                  | n 4 alternatives                                    |
| 2. Write question                                          | on number, correct option ar               | nd corresponding answer                       |                                                     |
|                                                            | n carries 1 mark                           |                                               |                                                     |
| . Which of the following                                   |                                            |                                               |                                                     |
| (1) Adjoint of a symme                                     | etric matrix is also a symmetric           | matrix.                                       |                                                     |
| (ii) Adjoint of a diagon                                   | nal matrix is also a diagonal ma           | trix.                                         |                                                     |
| (iii) If A is a square ma                                  | atrix of order n and λ is a scalar         | r, then $adj(\lambda A) = \lambda^a adj(A)$ . |                                                     |
| (iv) $A(adjA) = (adjA) A$                                  | A =   A   I                                |                                               | (4) (1) (10) and (14)                               |
| (1) Only (l)                                               | (2) (II) and (III)                         | (3) (iii) and (iv)                            | (4) (1), (ii) and (iv)                              |
| 2. If $z = \frac{(\sqrt{3}+1)^3(31+4)^2}{(8+61)^2}$ , then | n  z  is equal to                          |                                               | (4) 2                                               |
| (1) 0                                                      | (2) 1                                      | (3) 2                                         | (4) 3                                               |
| . The principal argumer                                    | nt of $\frac{3}{-1+1}$ is                  |                                               |                                                     |
| $(1)^{\frac{-5\pi}{6}}$                                    | $(2)^{\frac{-2\pi}{3}}$                    | $(3)\frac{-3\pi}{4}$                          | (4) -x                                              |
| . The number of positiv                                    | e zeros of the polynomial $\sum_{j=0}^{n}$ | ${}^{n}C_{r}(-1)^{r}x^{r}$ is                 |                                                     |
| (1) 0                                                      | (2) n                                      | (3) < n                                       | (4) r                                               |
|                                                            | are two angles of a triangle, the          | en the third angle is                         |                                                     |
| (1) <del>x</del>                                           | $(2)\frac{3\pi}{4}$                        | $(3)^{\frac{\pi}{6}}$                         | $(4)\frac{\pi}{3}$                                  |
| 5. The ellipse $E_1: \frac{x^2}{9} + \frac{y^2}{4}$        | = 1 is inscribed in a rectangle            | e R whose sides are parallel to t             | he coordinate axes. Another                         |
| ellipse E2 passing thre                                    | ough the point (0, 4) circums              | ribes the rectangle R. The ecce               | ntricity of the ellipse is                          |
| (1) <del>1</del>                                           | $(2)\frac{\sqrt{3}}{2}$                    | $(3)^{\frac{1}{2}}$                           | (4) <sup>3</sup> / <sub>4</sub>                     |
| 7. The circle passing thr                                  | ough (1, -2) and touching the              | axis of x at (3, 0) passing throu             | gh the point                                        |
| (1) (-5.2)                                                 | (2)(2,-5)                                  | (3)(5,-2)                                     | (4) (-2,5)                                          |
| TE Z L Zara three unit                                     | vectors such that a is perpe               | ndicular to b, and is parallel to             | then a x(b x c) is equal to                         |
| 238 78                                                     | (2) b                                      | (3) č                                         | (4) 0                                               |
| (1) 3                                                      | Le un at 10 m/s. An observer i             | s 40 m away from the spot whe                 | ere the balloon left the ground. The                |
| A balloon rises straigi                                    | nt up at 10 m/s. An observer               | radian per second when the ba                 | lloon is 30 metres above the groun                  |
| 443 3 dianeless                                            | (2) 4 radians/sec                          | (3) = radians/sec                             | (4) - radians/sec                                   |
| $(1)\frac{3}{25}$ radians/sec                              | 1- shought of a cub                        | e of side x metres caused by inc              | reasing the side by 1% is                           |
| 10. The approximate ch<br>(1) 0.3xdxm <sup>3</sup>         | (2) 0.03xm <sup>3</sup>                    | (3) 0.03x <sup>2</sup> m <sup>3</sup>         | (4) 0.03x <sup>3</sup> m <sup>3</sup><br>CH/12/Mat/ |

| 11. If $\int_0^x f(t)dt = x + \int_x^1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tf(t)dt, then the value                           | of f(1) is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| $(1)^{\frac{1}{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (2) 2                                             | (3) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $(4)^{\frac{3}{4}}$                           |
| 12. The area between y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               |
| $(1)^{\frac{2}{3}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (2) 4                                             | (3) <del>2</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (4) <del>5</del>                              |
| 13. The degree of the di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ifferential equation v(x                          | $(x) = 1 + \frac{dy}{dx} + \frac{1}{1\cdot 2} \left(\frac{dy}{dx}\right)^2 + \frac{1}{1\cdot 2\cdot 3} \left(\frac{dy}{dx}\right)^3 + \frac{1}{1\cdot 2$ |                                               |
| (1) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (2) 3                                             | $\frac{1}{dx} + \frac{1}{1\cdot 2} \frac{1}{dx} + \frac{1}{1\cdot 2\cdot 3} \frac{1}{dx} + \frac{1}{3} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | · 15<br>(4) 4                                 |
| 14. The solution of the dif                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ferential equation \frac{dy}{dx} = \frac{y}{x}$  | $+\frac{\mathfrak{G}(X)}{\mathfrak{G}_{1}(X)}$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6911                                          |
| $(1) x \emptyset \left(\frac{y}{x}\right) = k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (2) $\emptyset\left(\frac{y}{x}\right) = kx$      | $(3) y \emptyset \left(\frac{y}{x}\right) = k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $(4) \emptyset \left(\frac{y}{x}\right) = ky$ |
| 15. Let X represent the difference of the difference of the possible of the po |                                                   | nber of heads and the number of tails ob                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | W                                             |
| (1) i+2n, i = 0,1,2_n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (2) 2i-n, i = 0,1,2n                              | (3) n-i, i = 0,1,2_n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (4) 2i+2n, i = 0,1,2_n                        |
| 16. If $a \cdot b = \sqrt{a^2 + b^2}$ on the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | he real numbers then *                            | is.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |
| (1) commutative but no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                   | (2) associative but not commutative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · · · · · · · · · · · · · · · · · · ·         |
| (3) both commutative a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nd associative                                    | (4) neither commutative nor associa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tive                                          |
| 17. arg z lies in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 545.0                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               |
| (1) −π ≤ θ ≤ π                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $(2) \ 0 \le \theta \le \pi$                      | (3) 0 ≤ θ ≤ 2π                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (4) - <del></del>                             |
| 18. Sum of the squares of ro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | oots of the equation 2x4                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $(4)-\pi<\theta\leq\pi$                       |
| (1) 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (2) -10                                           | (3) 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (4) 12                                        |
| 19. Area of the region boun (1) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   | $\int_{0}^{\infty} x \cdot x - axis, x = 0 \text{ and } x = \pi \text{ is}$ (3) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (4) 1.                                        |
| 20. Determine the order an<br>(1) 4 and 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d degree of the differen<br>(2) 2 and 4           | tial equation $3\left(\frac{d^2y}{dx^2}\right) = \left[4 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}}$ (3) 2 and 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (4) 1 and 2                                   |
| 1. Answer any 7 question  21. If $A = \begin{bmatrix} 8 & -4 \\ -5 & 3 \end{bmatrix}$ , verify the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ns 2. Each question co<br>hat A(adj A) = (adj A)A | PART-II arries 2 marks 3. Question numb $=  A  _2.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |
| 22. Write in polar form of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e following complex nun                           | nbers: -2 - 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CH/12/ Ma                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.71/17/1VIO                                  |

Scanned with CamScanner

23. If the roots of x' + px' + qx + r = 0 are in H.P., prove that 9pqr = 27r' + 2p. Assume p, q,  $r \neq 0$ .

$$24.1f2i-j+3k$$
,  $3i+2j+k$ ,  $i+mj+4k$  are coplanar, find the value of m.

25. Explain why Lagrange's mean value theorem is not applicable to the following functions in the respective intervals:

$$f(x) = \frac{x+1}{x}, x \in [-1,2]$$

26. Show that  $\Gamma(n) = 2 \int_0^\infty e^{-x^2} x^{2n-1} dx$ 

27. Determine the order and degree (if exists) of the following differential equations:  $dy + (xy - \cos x)dx = 0$ 

28. Compute P(X = k) for the binomial distribution, B(n, p) where n = 9,  $p = \frac{1}{2}$ , k = 7

29. If the probability mass function f (x) of a random variable X is

| X    | 1  | 2  | 3  | 4  | 19 |
|------|----|----|----|----|----|
| f(x) | 1  | 5  | 5  | 1  |    |
| 1(A) | 12 | 12 | 12 | 12 |    |

find (i) its cumulative distribution function, hence find (ii)  $P(X \le 3)$  and, (iii)  $P(X \ge 2)$ 

30. Find the length of Latus rectum of the parabola  $y^2 = 4ax$ .

PART-III

Answer any 7 questions 2. Each question carries 3 marks 3. Question number 40 is compulsory 7x3=21
 A man is appointed in a job with a monthly salary of certain amount and a fixed amount of annual increment. If his salary was ₹19,800 per month at the end of the first month after 3 years of service and ₹23,400 per month at the end of the first month after 9 years of service, find his starting salary and his annual increment. (Use matrix inversion method to solve the problem.)

akwaacademy.blogspot.com
32. Form the polynomial equation with integer coefficients with \[ \sqrt{\sqrt{2}} \] as a root.

33. Find the domain of  $f(x) = \sin^{-1}\left(\frac{|x|-2}{3}\right) + \cos^{-1}\left(\frac{1-|x|}{4}\right)$ 

34. Find the direction cosines of the normal to the plane and length of the perpendicular from the origin to the plane  $\vec{r} \cdot (3\vec{\imath} - 4\vec{\jmath} + 12\vec{k}) = 5$ .

35. If  $y = 2\sqrt{2}x + c$  is a tangent to the circle  $x^2 + y^2 = 16$ , find the value of c.

36. Expand the polynomial  $f(x) = x^2 - 3x + 2$  in powers of x - 1.

37. Evaluate  $\lim_{(x,y)\to(0,0)} \cos\left(\frac{x^3+y^2}{x+y+2}\right)$ . If the limit exists.

38. Solve:  $\frac{dy}{dx} = \sqrt{4x + 2y - 1}$ .

39. Construct the truth table for the statement (¬p→r) ∧ (p++q)

40. Evaluate:  $\int_{-2}^{2} |x+1| dx$ 

PART-IV

7x5 = 35

1. Answer all the questions 2. Each question carries 5 marks

41. a) Investigate the values of  $\lambda$  and  $\mu$  the system of linear equations 2x + 3y + 5z = 9, 7x + 3y - 5z = 8,

 $2x + 3y + \lambda z = \mu$ , have (i)no solution (ii) a unique solution (iii) an infinite number of solutions. (OR)

b) Solve 
$$\tan^{-1}\left(\frac{x-1}{x-2}\right) + \tan^{-1}\left(\frac{x+1}{x+2}\right) = \frac{\pi}{4}$$

42. a) Solve (x-4)(x-7)(x-2)(x+1) = 16

(OR)

b) A semi elliptical archway over a one-way road has a height of 3m and a width of 12m. The truck has a width of 3m and a height of 2.7m. Will the truck clear the opening of the archway?

43.a) Solve the equation  $z^3 + 8i = 0$ , where  $z \in C$ . (OR)

b) Using vector method, prove that  $\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$ .

44. a) Find parametric form of vector equation, and Cartesian equations of the plane passing through the points (2,2,1), (1,-2,3) and parallel to the straight line passing through the points (2,1,-3) and (-1,5,-8).(OR)

b) Evaluate the following limits, if necessary use l'Hôpital Rule:  $\lim_{x\to 0^+} (\cos x)^{\frac{1}{x^2}}$ 

45. a) For the function  $f(x) = 4x^3 + 3x^2 - 6x + 1$  find the intervals of monotonicity, local extrema, intervals of concavity and points of inflection. (OR)

b) Show that  $\int_0^1 (\tan^{-1} x + \tan^{-1} (1 - x)) dx = \frac{\pi}{a} - \log_e 2$ .

46. a) Find the area of the region bounded by  $y = \tan x$ ,  $y = \cot x$  and the lines x = 0,  $x = \frac{\pi}{2}$ , y = 0. (OR)

b) Solve 
$$(1+x^3)\frac{dy}{dx}+6x^2y=1+x^2$$
.

47. a) The probability density function of X is given by  $f(x) = \begin{cases} ke^{-\frac{x}{3}} & \text{for } x > 0 \\ 0 & \text{for } x \le 0 \end{cases}$ 

(OR)

Find (i) the value of k (ii) the distribution function (iii) P(X < 3) (iv)  $P(5 \le X)$  (v)  $P(X \le 4)$ .

b) Verify (i) closure property, (ii) commutative property, (iii) associative property, (iv) existence of identity, and (v) existence of inverse for the operation  $x_{11}$  on a subset  $A = \{1,3,4,5,9\}$  of the set of remainders  $\{0,1,2,3,4,5,6,7,8,9,10\}$ .

CH/12/Mat/4