www.Pada	salai.Net	W	/ww.lrblnpsc.com					
Class: 12		Register Number						
	ND PEVISIO	N EXAMINATIO	ON - 2025					
SECO	MAT	HEMATICS	[Max. Marks : 90					
PART-I 20-1-20								
1. Answer all the questions by choosing the correct answer from the given 4 alternatives								
1. Answer all the questions by a second of the second of t								
3. Each question carries 1 mark								
1. Which of the following is	s/are correct?	de matrix						
(i) Adjoint of a symmetry	ric matrix is also a symmet	ric maurix.						
(ii) Adjoint of a diagonal matrix is also a diagonal matrix.								
(iii) If A is a square mat	rix of order n and λ is a sca	lar, then $adj(\lambda A) = \lambda^a adj(A)$.						
(iv) $A(adjA) = (adjA) A$	=[A] I	JAKE A MAN	(4) (1) (10) and (14)					
(1) Only (i)	(2) (ii) and (iii)	(3) (iii) and (iv)	(4) (i), (ii) and (iv)					
2. If $z = \frac{(\sqrt{3}+1)^3(31+4)^2}{(8+61)^2}$, then z is equal to								
(1) 0	(2) 1	(3) 2	(4) 3					
3. The principal argument of $\frac{3}{-1+i}$ is								
	$(2)\frac{-2\pi}{3}$	(3) -3x	$(4)\frac{-\pi}{2}$					
$(1)\frac{-5\pi}{6}$		and have should be I have a start of the						
4. The number of positive	zeros of the polynomial $\sum_{j=1}^{n}$		(4) r					
(1) 0	(2) n	(3) < n						
5. If cot ⁻¹ 2 and cot ⁻¹ 3 an	e two angles of a triangle, th	ien ine iniri angle is	(D) #					
(1) [#] / ₄	$(2)\frac{3\pi}{4}$	(3) ^x / ₆	(4) <u>-</u>					
$x^2 + y^2 = z^2$	1 is inscribed in a rectang	le R whose sides are parallel to t	he coordinate axes. Another					
6. The ellipse $E_1: \frac{x^2}{9} + \frac{y^2}{4} = 1$ is inscribed in a rectangle R whose sides are parallel to the coordinate axes. Another ellipse E_2 passing through the point (0, 4) circumscribes the rectangle R. The eccentricity of the ellipse is								
	ign the point [0, 1] chound	(m) ¹	(4) =					
$(1)\frac{\sqrt{2}}{2}$	$(2)\frac{v_3}{2}$	$(3)\frac{1}{2}$	h the point					
7. The circle passing through $(1, -2)$ and touching the axis of x at $(3, 0)$ passing through the point								
e if 3 h d are three unit ve	ectors such that a is perpe	ndicular to \vec{b} , and is parallel to \vec{c}	then $\vec{a} x(b x \vec{c})$ is equal to					
(1)3	(2) b	(3) ¢	(4) 0					
A halloon rises straight u	up at 10 m/s. An observer is	s 40 m away from the spot wher	e the balloon left the ground. The					
9. A balloon rises straight up at 10 m/s. An observer is 40 m away from the spot where the balloon left the ground. The rate of change of the balloon's angle of elevation in radian per second when the balloon is 30 metres above the ground.								
(1) ³ / ₂₅ radians/sec		$(3)\frac{1}{5}$ radians/sec						
And the second	65	of side x metres caused by incre						
		(3) 0.03x ² m ³						
(1) 0.3xdxm ³	(2) 0.03xm ³		(4) 0.03x ³ m ³ CH/12/Mat / 1					

Kindly Send Me Your Questions & Answer Keys to us: padasalai.net@gmail.com

www.Padasalai.Net

www.TrbTnpsc.com

11. If $\int_0^x f(t) dt = x$	$+ \int_{x}^{1} tf(t) dt$, then the value of f	(1) is					
$(1)\frac{1}{2}$	(2) 2	(3) 1	(4) ¹ / ₄				
12. The area betw	een $y^2 = 4x$ and its latus rectum	(0) 1	19 A				
$(1)\frac{2}{3}$	$(2)\frac{4}{3}$	(3) 8	(4) <u>s</u>				
13. The degree of	the differential equation y(x) =	$1 + \frac{dy}{dy} + \frac{1}{dy} \left(\frac{dy}{dy}\right)^2 + \frac{1}{dy} \left(\frac{dy}{dy}\right)$	3 + (5				
(1) 2	(2) 3	dx 1-2 (dx) 1-2-3 (dx) (3) 1	(4) 4				
14. The solution of	the differential equation $\frac{dy}{dx} = \frac{y}{x} + \frac{y}{dx}$	A CONTRACTOR OF THE OWNER OF	X				
\dots (1) $x \emptyset \left(\frac{y}{x} \right) = k$	(2) $\emptyset\left(\frac{y}{x}\right) = \log x$	(3) $y \emptyset \left(\frac{y}{x}\right) = k$	$(4) \notin \left(\frac{y}{x}\right) = ky$				
15. Let X represent	the difference between the number	of heads and the number of tail	s obtained when a coin is tossed				
n times. Then th	ne possible values of X are						
(1) i+2n, i = 0,1,2	2n (2) 2i-n, i = 0,1,2n	(3) n-i, i = 0,1,2n	(4) 2i+2n, i = 0,1,2_n				
$16. \text{Ha} * b = \sqrt{a^2 + b}$	7 on the real numbers then $*$ is	A Comment					
(1) commutative	but not associative (2) associative but not commutat	tive				
(3) both commu	tative and associative (4) neither commutative nor ass	ociative				
17. arg z lies in							
$(1) - \pi \le \theta \le \pi$	(2) 0 ≤ θ ≤ π	$(3) \ 0 \le \theta \le 2\pi$	$(4) - \pi < \theta \le \pi$				
18. Sum of the squares of roots of the equation $2x^4 - 8x^3 + 6x^2 - 3 = 0$ is							
(1) 10	(2) -10	(3) 5	(4) 12				
19. Area of the region (1) 0	on bounded by the curve $y = \cos x$ (3) 2		(4) ¹ / ₂				
the second s			212				
20. Determine the o	rder and degree of the differentia (2) 2 and 4	(3) 2 and 1	(4) 1 and 2				
1 Anouny any 7	meetions 2 Each man	PART - II					
21 Ket [8 -4]	questions 2. Each question carr	tes 2 marks 3. Question n	umber 30 is compuls 7x2=14				
21. IIA=[-5 3]	, verify that $A(adj A) = (adj A)A =$	A 2.					
22. Write in polar fo	orm of the following complex numb	ers : -2 - i2	CH/12/Mat/2				

Kindly Send Me Your Questions & Answer Keys to us: padasalal.net@gmail.com

23. If the roots of $x^3 + px^4 + qx + r = 0$ are in H.P., prove that $9pqr = 27r^3 + 2p$. Assume p, q, $r \neq 0$.

24. If 2i - j + 3k, 3i + 2j + k, i + mj + 4k are coplanar, find the value of m.

25. Explain why Lagrange's mean value theorem is not applicable to the following functions in the respective intervals :

$$f(x) = \frac{x+1}{x}, x \in [-1,2]$$

26. Show that $\Gamma(n) = 2 \int_0^\infty e^{-x^2} x^{2n-1} dx$

27. Determine the order and degree (if exists) of the following differential equations: $dy + (xy - \cos x)dx = 0$

28. Compute P(X = k) for the binomial distribution, B(n, p) where n = 9, p = $\frac{1}{2}$, k = 7

29. If the probability mass function f(x) of a random variable X is

X	1	2	3	4
f(x)	$\frac{1}{12}$	5 12	5 12	$\frac{1}{12}$

find (i) its cumulative distribution function, hence find (ii) $P(X \le 3)$ and, (iii) $P(X \ge 2)$

30. Find the length of Latus rectum of the parabola $y^2 = 4ax$.

PART - IU

1. Answer any 7 questions 2. Each question carries 3 marks 3. Question number 40 is compulsory 7x3 = 21

31. A man is appointed in a job with a monthly salary of certain amount and a fixed amount of annual increment. If his salary was ₹19,800 per month at the end of the first month after 3 years of service and ₹23,400 per month at the end of the first month after 9 years of service, find his starting salary and his annual increment. (Use matrix inversion method to solve the problem.)

32. Form the polynomial equation with integer coefficients with $\sqrt{\frac{12}{27}}$ as a root.

33. Find the domain of $f(x) = \sin^{-1}\left(\frac{|x|-2}{3}\right) + \cos^{-1}\left(\frac{1-|x|}{4}\right)$

34. Find the direction cosines of the normal to the plane and length of the perpendicular from the origin to the plane $\vec{r} \cdot (3\hat{i} - 4\hat{j} + 12\hat{k}) = 5.$

35. If $y = 2\sqrt{2}x + c$ is a tangent to the circle $x^2 + y^2 = 16$, find the value of c.

36. Expand the polynomial $f(x) = x^2 - 3x + 2$ in powers of x - 1.

37. Evaluate $\lim_{(x,y)\to(0,0)} \cos\left(\frac{x^3+y^2}{x+y+2}\right)$. If the limit exists.

CH/12/Mat/3

Kindly Send Me Your Questions & Answer Keys to us: padasalai.net@gmail.com

www.Padasalai.Net

www.TrbTnpsc.com

38. Solve :
$$\frac{dy}{dx} = \sqrt{4x + 2y - 1}$$
.

39. Construct the truth table for the statement $(\neg p \rightarrow r) \land (p \leftrightarrow q)$

40. Evaluate : $\int_{-2}^{2} |x + 1| dx$

PART - IV

1. Answer all the questions 2. Each question carries 5 marks 7x5 = 3541. a) Investigate the values of λ and μ the system of linear equations 2x + 3y + 5z = 9, 7x + 3y - 5z = 8,

 $2x + 3y + \lambda z = \mu$, have (i)no solution (ii) a unique solution (iii) an infinite number of solutions. (OR)

b) Solve
$$\tan^{-1}\left(\frac{x-1}{x-2}\right) + \tan^{-1}\left(\frac{x+1}{x+2}\right) = \frac{\pi}{4}$$

42. a) Solve (x - 4)(x - 7)(x - 2)(x + 1) = 16(OR)

b) A semi elliptical archway over a one-way road has a height of 3m and a width of 12m. The truck has a width of 3m and a height of 2.7m. Will the truck clear the opening of the archway?

- 43. a) Solve the equation $z^3 + 8i = 0$, where $z \in C$. (OR)
 - b) Using vector method, prove that $\cos(\alpha \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$.
- 44. a) Find parametric form of vector equation , and Cartesian equations of the plane passing through the points (2,2,1), (1,-2,3) and parallel to the straight line passing through the points (2,1,-3) and (-1,5,-8).(OR)
 - b) Evaluate the following limits, if necessary use l'Hôpital Rule : $\lim_{x\to 0^+} (\cos x)^{x^2}$
- 45. a) For the function $f(x) = 4x^3 + 3x^2 6x + 1$ find the intervals of monotonicity, local extrema, intervals of concavity and points of inflection. (OR)
 - b) Show that $\int_{0}^{1} (\tan^{-1}x + \tan^{-1}(1-x)) dx = \frac{\pi}{-} \log_{e} 2$.

46. a) Find the area of the region bounded by $y = \tan x$, $y = \cot x$ and the lines x = 0, $x = \frac{x}{2}$, y = 0. (OR)

b) Solve
$$(1 + x^3) \frac{dy}{dx} + 6x^2y = 1 + x^2$$
.

47. a) The probability density function of X is given by $f(x) = \begin{cases} ke^{-\frac{1}{3}} & \text{for } x > 0 \\ 0 & \text{for } x \le 0 \end{cases}$

Find (i) the value of k (ii) the distribution function (iii) P(X < 3) (iv) $P(5 \le X)$ (v) $P(X \le 4)$. (OR)b) Verify (i) closure property, (ii) commutative property, (iii) associative property, (iv) existence of identity, and (v) existence of inverse for the operation x_{11} on a subset A = {1,3,4,5,9} of the set of remainders {0,1,2,3,4,5,6,7,8,9,10}. CH/12/Mat/4

Kindly Send Me Your Questions & Answer Keys to us: padasalai.net@gmail.com