SIR CV RAMAN COACHING CENTRE –IDAPPADI, SALEM – 2025 XII- MATHS ,UNIT [1 ,2 AND 6] " MODEL QUESTION PAPER -2025 PREPARED BY Dr.G.THIRUMOORTHI,M.Sc,B.Ed,Ph.D ,PHYSICS

thiruphysics1994@gmail.com, 8610560810,8883610465

TOTAL MARK: 50M

SECTION - A (25 X 2 = 50M)

Answer any 25 questions

- 1. Find the inverse (if it exists) of the following
- 2. Prove that $\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$ is orthogonal
 - $(A^T)^{-1} = (A^{-1})^T \text{ with } A = \begin{bmatrix} 2 & 9 \\ 1 & 7 \end{bmatrix}.$
- 3. Verify the propert

$$\begin{bmatrix} 3 & -1 & 2 \\ -6 & 2 & 4 \\ -3 & 1 & 2 \end{bmatrix}$$
 to a

- 4. Reduce the matrix
- to a row-echelon form

5. Find the rank of the following matrices by minor method
$$\begin{bmatrix} 2 & -4 \\ -1 & 2 \end{bmatrix}$$

- 6. Solve the following system of linear equations, using matrix inversion method: 5x+2y=3, 3x+2y=5.
- 7. A family of 3 people went out for dinner in a restaurant. The cost of two dosai, three idlies and two vadais is `150. The cost of the two dosai, two idlies and four vadais is `200. The cost of five dosai, four idlies and two vadais is `250. The family has `350 in hand and they ate 3 dosai and six idlies and six vadais. Will they be able to manage to pay the bill within the amount they had?
- 8. If A is non-singular, then A_{-1} is also non-singular and $(A^{-1})^{-1} = A$.
- 9. If A is a non-singular matrix of odd order, prove that |adj A| is positive
- 10. If *A* is symmetric, prove that adj *A* is also symmetric
- 11. Simplify the following: $\sum_{n=1}^{10} i^{n+50}$
- 12. Evaluate the following if z = 5 2i and w = -1 + 3i (i) z + w
- 13. show that If $z_1 = 1 3i$, $z_2 = -4i$, and $z_3 = 5$, (i) $(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$

- 14. Find z^{-1} , if z = (2+3i)(1-i).
- 15. If z = x + iy find the following in rectangular form. (i) $Re(i\overline{z})$
- 16. Write the following in the rectangular form: (i) $\overline{(5+9i)+(2-4i)}$
- 17. Find the following (i) $|\overline{(1+i)}(2+3i)(4i-3)|$
- 18. Which one of the points i, -2+i, and 3 is farthest from the origin?
- 19. Find the square root of 6-8i.
- 20. Find the modulus of the following complex numbers (i) $(1-i)^{10}$
- 21. If $\vec{a} = -3\hat{i} \hat{j} + 5\hat{k}$, $\vec{b} = \hat{i} 2\hat{j} + \hat{k}$, $\vec{c} = 4\hat{j} 5\hat{k}$, find $\vec{a} \cdot (\vec{b} \times \vec{c})$.
- 22. Show that the vectors $\hat{i} + 2\hat{j} 3\hat{k}$, $2\hat{i} \hat{j} + 2\hat{k}$ and $3\hat{i} + \hat{j} \hat{k}$ are coplanate
- 23. If $\vec{a}, \vec{b}, \vec{c}$ are three vectors, prove that $[\vec{a} + \vec{c}, \vec{a} + \vec{b}, \vec{a} + \vec{b} + \vec{c}] = [\vec{a}, \vec{b}, \vec{c}]$.
- 24. The volume of the parallelepiped whose co terminus edges are $7\hat{i} + \lambda \hat{j} 3\hat{k}$, $\hat{i} + 2\hat{j} \hat{k}$, $-3\hat{i} + 7\hat{j} + 5\hat{k}$ is 90 cubic units. Find the value of λ .
- 25. If the vectors $a\hat{i} + a\hat{j} + c\hat{k}$, $\hat{i} + \hat{k}$ and $c\hat{i} + c\hat{j} + b\hat{k}$ are coplanar, prove that c is the geometric mean of a and b.
- 26. Show that the points (2, 3, 4), (1,4,5) and (8,1,2) are collinear.
- 27. Find the acute angle between the planes $\vec{r} \cdot (2\hat{i} + 2\hat{j} + 2\hat{k}) = 11$ and 4x 2y + 2z = 15.
- 28. Prove that $[\vec{a} \vec{b}, \vec{b} \vec{c}, \vec{c} \vec{a}] = 0$.
- 29. If $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are coplanar vectors, show that $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = \vec{0}$.
- 30. Determine whether the three vector $2\hat{i}+3\hat{j}+\hat{k}$, $\hat{i}-2\hat{j}+2\hat{k}$ and $3\hat{i}+\hat{j}+3\hat{k}$ are coplanar

SIR CV RAMAN COACHING CENTRE –IDAPPADI, SALEM – 2025 XII- MATHS ,UNIT -[1 ,2 AND 6] ,, MODEL QUESTION PAPER -2025 PREPARED BY

Dr.G.THIRUMOORTHI,M.Sc,B.Ed,Ph.D,PHYSICS

thiruphysics1994@gmail.com, 8610560810,8883610465