REG NO :

KALAIMAGAL MATRIC HIGHER SECONDARY SCHOOL, MOHANUR . SECOND FULL TEST – JANUARY 2025

	PART - I	20 X 1 = 20
DATE:	MATHEMATICS	MARKS: 90
STD: XII		TIME: 3Hrs

NOTE: (i)Answer all the questions.(ii)Choose the most appropriate answer from the given four alternatives and write the option code and the corresponding answer:

1. If $P = \begin{bmatrix} 1 & x & 0 \\ 1 & 3 & 0 \\ 2 & 4 & -2 \end{bmatrix}$ is the joint of 3×3 matrix A and |A| = 4, then x is (1) 15(2) 12(3) 14 (4) 112. If $A = \begin{bmatrix} 2 & 3 \\ 5 & -2 \end{bmatrix}$ be such that $\lambda A^{-1} = A$, then λ is (1) 17(2) 14(3) 19 (4) 213. If |z|=1, then the value of $\frac{1+z}{1+z}$ is $(3)\frac{1}{2}$ (2) \bar{z} (1) z(4) 14. If z = x + iy is a complex number such that |z + 2| = |z - 2| then the locus of z is (2) imaginary axis (1) real axis (3) ellipse (4) circle 5. If α, β and γ are the zeros of $x^3 + px^2 + qx + r$, then $\sum \frac{1}{\alpha}$ is (2) $-\frac{p}{r}$ $(1) - \frac{q}{r}$ (3) $\frac{q}{r}$ $(4) - \frac{q}{p}$ 6. e^{ix} is a periodic function with period (1) 0(2) π $(3) 2\pi$ (4) 47. If y = mx + c is a tangent to the parabola $y^2 = 4ax$ then (1) $c = \frac{a}{m}$ (2) $c = \frac{m}{a}$ (3) $c^2 = a^2m^2 + m^2$ (4) m = c8. If the two tangents drawn from a point P to the parabola $y^2 = 4x$ are at right angles then the locus of P is (1) 2x+1=0 (2) x=-1(3) 2x - 1 = 0(4) x = 19. If $\vec{a} = \hat{\imath} + \hat{\jmath} + \hat{k}$, $\vec{b} = \hat{\imath} + \hat{\jmath}$, $\vec{c} = \hat{\imath}$ and $(\vec{a} \times \vec{b}) \times \vec{c} = \lambda \vec{a} + \mu \vec{b}$, then the value of $\lambda + \mu$ is (1)0(2)1(3) 6(4) 3

www.Padasalai.Net

www.TrbTnpsc.com

10. If the length of the perpendicular from the origin to the plane $2x+3y+\lambda z=1$, $\lambda > 0$ is $\frac{1}{5}$, then the									
value of λ is									
$(1) 2\sqrt{3}$	(2) $3\sqrt{2}$	(3) 0	(4) 1						
11. What is the value of the limit $\lim_{x\to 0} \left(\cot x - \frac{1}{x}\right)$ is									
(1) 0	(2) 1	(3) 2	(4) ∞						
12. The slant asymptote of $f(x) = \frac{x^2 - 6x + 7}{x + 5}$ is									
(1) $x + y + 11 = 0$	(2) $x + y - 11 = 0$	(3) $x = -5$	(4) $y = x - 11$						
13. Linear approximation for $g(x) = \cos x$ at $x = \frac{\pi}{2}$ is									
(1) $x + \frac{\pi}{2}$	$(2) -x + \frac{\pi}{2}$	(3) $x - \frac{\pi}{2}$	$(4) -x - \frac{\pi}{2}$						
14. $\int_0^a \frac{f(x)}{f(x) + f(a-x)} dx =$									
(1) 0	(2) <i>a</i>	$(3)\frac{a}{2}$	(4) 2 <i>a</i>						
15. The value of $\int_{0}^{\infty} e^{-3x} x^2 dx$ is									
(1) $\frac{7}{27}$	(2) $\frac{5}{27}$	(3) $\frac{4}{27}$	(4) $\frac{2}{27}$						
16. The number of arbitrary constants in the particular solution of a differential equation of third order is									
(1) 3	(2) 2	(3) 1	(4) 0						
17. The order and degree of the differential equation $\left(\frac{d^2y}{dx^2}\right)^2 + \left(\frac{dy}{dx}\right)^2 = xsin\left(\frac{d^2y}{dx^2}\right)$ are									
(1) 2, not defined	(2) 2, 2	(3) 2,1	(4) 1,2						
18. A random variable <i>X</i> has binomial distribution with $n = 25$ and $p = 0.8$ then standard deviation of <i>X</i>									
is									
(1) 6	(2) 4	(3) 3	(4) 2						
19. If in 6 trials, <i>X</i> is a binomial variate which follows the relation $9P(X = 4) = P(X = 2)$, then the									
probability of succes	s is								
(1) 0.125	(2) 0.25	(3) 0.375	(4) 0.75						
20. The operation * defined by $a * b = \frac{ab}{7}$ is not a binary operation on									
$(1) \mathbb{Q}^{+}$	(2) Z	(3) ℝ	(4) C						

PART - II

Answer any seven of the following questions. Q.No. 30 is compulsory.

- 21. Find the rank of the following matrix $\begin{bmatrix} 2 & 0 & -7 \\ 0 & 3 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ which are in row-echelon form .
- 22. If $z_1 = 3 2i$ and $z_2 = 6 + 4i$, find $\frac{z_1}{z_2}$ in the rectangular form.
- 23. Is $\cos^{-1}(-x) = \pi \cos^{-1}(x)$ true? Justify your answer.

24. Find the angle between the straight line $\vec{r} = (2\hat{i} + 3\hat{j} + \hat{k}) + t(\hat{i} - \hat{j} + \hat{k})$ and the plane 2x - y + z = 5.

- 25. Explain why Rolle's theorem is not applicable to the function $f(x) = \tan x, x \in [0, \pi]$.
- 26. Assume that the cross section of the artery of human is circular. A drug is given to a patient to dilate his arteries. If the radius of an artery is increased from 2 mm to 2.1 mm, how much is cross-sectional area increased approximately?
- 27. Evaluate: $\int_{0}^{\frac{1}{2}} \cos^7 x \, dx$.
- 28. Show that the expressions $y = ae^{x} + be^{-x}$ is a solution of the differential equation y'' y = 0.
- 29. The time to failure in thousands of hours of an electronic equipment used in a manufactured

computer has the density function $f(x) = \begin{cases} 3e^{-3x} & \text{for } x > 0\\ 0 & \text{elsewhere} \end{cases}$

Find the expected life of this electronic equipment.

30. Find the centre and radius of the circle $3x^2 + 3y^2 - 12x + 6y - 9 = 0$.

Answer any seven of the following questions. Q.No. 40 is compulsory.

31. In a competitive examination, one mark is awarded for every correct answer while $\frac{1}{4}$ mark is

deducted for every wrong answer. A student answered 100 questions and got 80 marks. How many questions did he answer correctly ? (Use Cramer's rule to solve the problem).

- 32. Show that the equation $z^2 = \overline{z}$ has four solutions.
- 33. Find solution, if any, of the equation $2\cos^2 x 9\cos x + 4 = 0$.
- 34. Find the vertex, focus, equation of directrix and length of the latus rectum of $x^2 = 24y$.

35. Prove that
$$\left[\vec{a} - \vec{b}, \vec{b} - \vec{c}, \vec{c} - \vec{a}\right] = 0$$
.

36. Find the absolute extrema of the function $f(x) = 3x^4 - 4x^3$ on the given closed interval [-1, 2].

37. If
$$v(x, y) = \log\left(\frac{x^2 + y^2}{x + y}\right)$$
, prove that $x\frac{\partial v}{\partial x} + y\frac{\partial v}{\partial y} = 1$.

38. Find the area of the region bounded by the line 7x - 5y = 35, x - axis and the lines x = -2 and x = 3.

- 39. Prove that $q \rightarrow p \equiv \neg p \rightarrow \neg q$.
- 40. Solve : $\frac{dy}{dx} + y \cot x = \sin 2x$.

PART - IV

Answer all the questions.

41. (a) If
$$F(\alpha) = \begin{bmatrix} \cos \alpha & 0 & \sin \alpha \\ 0 & 1 & 0 \\ -\sin \alpha & 0 & \cos \alpha \end{bmatrix}$$
, show that $[F(\alpha)]^{-1} = F(-\alpha)$.
(OR)

(b) Solve the equation $3x^3 - 16x^2 + 23x - 6 = 0$ if the product of two roots is 1.

42. (a) If
$$2\cos\alpha = x + \frac{1}{x}$$
 and $2\cos\beta = y + \frac{1}{y}$ show that

(i)
$$\frac{x}{y} + \frac{y}{x} = 2\cos(\alpha - \beta)$$
 (ii) $xy - \frac{1}{xy} = 2i\sin(\alpha + \beta)$ (OR)

(b) Assume that water issuing from the end of a horizontal pipe, 7.5 m above the ground, describes a parabolic path. The vertex of the parabolic path is at the end of the pipe. At a position 2.5 m below the line of the pipe, the flow of water has curved outward 3m beyond the vertical line through the end of the pipe. How far beyond this vertical line will the water strike the ground?

43. (a) Solve:
$$\tan^{-1}\left(\frac{x-1}{x-2}\right) + \tan^{-1}\left(\frac{x+1}{x+2}\right) = \frac{\pi}{4}$$
 (OR)

(b) A conical water tank with vertex down of 12 metres height has a radius of 5 metres at the top. If water flows into the tank at a rate 10 cubic m/min, how fast is the depth of the water increases when the water is 8 metres deep?

44. (a) By vector method, prove that $\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$. (OR)

(b) Evaluate
$$: \int_{0}^{1} \frac{\log(1+x)}{1+x^2} dx$$
.
45. (a) For the function $f(x, y) = \tan^{-1}\left(\frac{x}{y}\right)$ find the f_x, f_y and show that $f_{xy} = f_{yx}$.
(OR)

(b) Suppose a person deposits 10,000 Indian rupees in a bank account at the rate of 5% per annum compounded continuously. How much money will be in his bank account 18 months later?

- 46. (*a*) If the probability that a fluorescent light has a useful life of at least 600 hours is 0.9, find the probabilities that among 12 such lights (i) exactly 10 will have a useful life of at least 600 hours; (ii) at least 11 will have a useful life of at least 600 hours;
 - (iii) at least 2 will not have a useful life of at least 600 hours.

(**OR**)

(b) Find the non parametric form of vector equation, and Cartesian equations of the plane passing through the points (2,2,1), (9,3,6) and perpendicular to the plane 2x+6y+6z=9.

47. (*a*) Verify (i) closure property, (ii) commutative property, (iii) associative property, (iv) existence of identity, and (v) existence of inverse for the operation \times_{11} on a subs $A = \{1, 3, 4, 5, 9\}$ of the set of remainders $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. (**OR**)

(b) Find the dimensions of the largest rectangle that can be inscribed in a semi circle of radius r cm.

PREPARED BY A.KANNAN M.SC, B.Ed, PG ASST. IN MATHS KMHSS, MOHANUR, NKL.

	A CARLES AND	The start and the start of the start of the				
ONE MARKS	TWO MARKS	XII FU	LL TEST-			122
TYPEA TYPE-B	GD	3 MARKS	3 11/	(DGiven 3x2-14x2+23x-6=	() dy = 10, h=8 ()	@@ n=12, P=0.9, 2=0-1
1011 1327	IAI= 10 3 1 =6#	$3) \frac{1}{2x+3} = 100}{4x-3} = 320$		2 3 -16 23 -6	V-1 T124	(1) $\mathcal{R}(x=10) = \binom{12}{10} (0.9)^{10} (0.1)^{2}$
+	P(A)=3	A=-5, Ax =-420, Ay=	80	0 6 -20 6	$V = \frac{25\pi}{3 \times 144} h^2$	(ii) $f(x \ge n) = p(x = n) + p(x = 12)$
	TAZ. 221 641	7-84, 9=16	1	3 -10 3 0	$\frac{dY}{dt} = \frac{25\pi}{3x^{14}4} x^{2} h^{2} \frac{dh}{dt}$	=(12)(0-1)"(0.1)"+(12)(0-1)(0.1)"
30Z 30x=-1	$ \underbrace{ \textcircled{D}_{z_2}^{z_1} = \frac{3 - 2i}{6 + 4i} \times \frac{6 - 4i}{6 - 4i} }_{z_2} $	The correct answer is 8	A=Sydx 1	3x2-10x+3=0		= 2.1(0.9)"
4 Dimainary 4 10 0	$=\frac{5}{26}-\frac{6}{13}i$	@z====================================	$=\frac{3}{2}\left(\frac{7x-35}{5}\right)dx$	x=1, x=3	cit	0 B-a'=79+3+5E
atis .	26 13	z) (21-1)=0 => z =0, z =1	$=\frac{1}{5}\left[\frac{77^2}{2}-25x\right]_{-2}^2$.	. The nost are 1, 2, 2	a = case itsinali to A post	Non parametric
50-2 5 Oav3	$ (at cost = cos(\pi t) = t x = -cost = cos(\pi t), $	$2^{2}=\frac{1}{2} \Rightarrow 2^{2}=1$	=	() () x= cosd + isind	B= cospi-sings of L,	(F-a).(E-a)x2=0
63271 600		There are 4 solutions	3	J= cos & +isin B		(-21+23+2).(241-323+402)=0
	- Vol it is trat	32005 × -9005 × +4 =0	P 9 7P 79 9->P 7P-	$(1) - \frac{3}{3} = \cos(\alpha - \mu) + i\sin(\alpha - \mu)$	Aller > > 8 000	7. 67+45-52)=9
$\frac{c}{7} \bigcirc C = \frac{a}{m} 7 @ y = x - 1$	(18.3) al2=0	$COSX = 4$, $COSX = \frac{1}{2}$ is not possible	TTFFTT	$\frac{d}{d} = \cos(d-p) - isin(d-p)$	$= \cos(\alpha + p)$	Cartesian Let F= xityj+22
8 @ x =-1 8 @ -x+ =		x= &nT±T	Charles Char	$\frac{2}{3} + \frac{2}{3} = 2\cos(\alpha - B)$	Cas(+p)= Cosalasp-sindsing	3×+49-52-9=0
900 902	$\theta = \sin^{-1}\left(\frac{2\sqrt{2}}{3}\right)$	A Vorter (0,0)	FFTTTT 2->P= -P->-2	$\frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3} = \frac{1}{3} $	DI=j"log (Htano)do	(j)@
	ES 5(2)= tam 1s not	For us (0,6) +		- cusurp (- contart)	I= " log (+ tan (- 0)) do	X113459
10 0 2 13 10 0 2	Continuous at x= =	Directrix $y = -6$ L.L.R = 24	A dy ty outx = s'inzx dx Job Sotada	xy - xy = 2isin(a+p)	= Ju log (2) do	113459
11 00 11 10	in bril		I.F= SPelx Soutzetx I.F= Ersinx		= J rog(Htane)	339145
	CDA=T123dA=and	(3) [2-6 6-C C-2)	3(2.F)= J & (2.F)dx+C	2=-494 25 3(3,-25)	21 = log 2 1 do	554931
12 (y=x-11 12 D2, not		CARACT TVA-	ysinz= finix sinudate	2	I= Tolog 2	995314
12 0 - 2+ 7 12 (4) 2	27 In= n-1 n-3 - 2	Exc+c×a)	a 213n2 x coixdate	THE DASKS THE THE T	() () fx = +2 , fy = -x	closure, commutative, associative
143 2 14 2 0.25	$T_7 = \frac{6}{7} \times \frac{4}{5} \times \frac{2}{3} = \frac{16}{35}$	=[a]]-[a]]=0	$= 2 \int t^2 dt + c$ = $2 \sin^3 x + c$	x,==27=x1=352		Identity element is 1
15 @ 27 15 @ Z	(B) y'= aex - bex	3 5W= 3x4-4x2	$=\frac{2\sin^2 + c}{3}$	(3)() -1(2+1)1(2+1) -	$f_{xy} = \frac{2^{2}y^{2}}{(x_{xy}^{2})^{2}}, f_{yx} = \frac{2^{2}y^{2}}{(x_{xy}^{2})^{2}}$	Inverse of 1 15 1, 3 15 4, 4 532,
	$y''=ae^{x}+be^{x}$	f'(x)=12x2-12x2	SMARKS	tan (2-1)+tan (2+1)=1	fxy= 59x	5 is 9,9 is 5. (2) x=2x050, y=xsino,
16 10 16 11	y"_y=0	f (1)=0=> x=0,1	Fed) = Tousd 0 -sind	*tan 1 x-2 + x+1 -7	() dada	ABI=YSin20
17 02, not 17 3 19	DEN= Jx Sundx	fer= 0, for=1, fr-1=7	Ising o case	$1 - \left(\frac{n-1}{n-2}\right) \left(\frac{n+1}{n+2}\right) \frac{9}{9}$	A=cett	A'(0) = 2x Coss 0 1
	= 3) xe-32	flesselle Absolute man 53 16	alife)= /F 4) =1		A= ceoiost	A"(0) = -41 31+20 (x 2
18 (4) 2 . 18 (D Z	011-1	Absolute min is -1	$\frac{d(f)}{f(d)} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	(x-1)(x+2) + (x-2) + (x-2)(x+2) = tas	when t=0, A= 10000	A(@)=0=> 0=₹
19 2 0.25 19 Dimginay	60 - 2 - 2 - 2 - 2 - 2	(1) V is not homogeneous $e^{V} = \frac{y^2 + g^2}{2 + g} = f(x_1 + y)$	(f(a))=Lond o and		C=10000 0.05t	A"(B) < 0 => Area is makimum
UAIS	Gentre = (g,-f)=(2,-1)	frs homogeneous older 1	[F(d)] = F(a)	2x2-4=-3	P = 10000 e	A.KANNAN M.Sc, B.Ed
20 @Z 20 0-2	centre = (g,-f)=(2-1) radiu= Jg+5=c = J8	2 32 e'+ y 29 e'= e'	0.02-1037	$\chi^2 = \frac{1}{2} \Rightarrow \chi = \pm \sqrt{2}$	when t= 3 0.075	PG ASST.IN MATHS
+		スシンナリショー		•	P= 10000 e	KMHSS, MOHANUR.
						- The state has been a state of the state