HALF YEARLY EXAMINATION - 2024 MATHEMATICS 12 - Std

Marks: 90 Time: 3.00 Hrs

				The State of State of		
					AL	
	allswe	ect a	COLLE	11112	LOOOSE	Barrier and the second
Ę	allow	cci a	COLL	HIG	Choose	1.

$$20 X 1 = 20$$

If $f(x) = \begin{cases} 2x & 0 \le x \le a \\ 0 & otherwise \end{cases}$ is the p.d.f of the random variable, then the value (b) 3 (c) 2 (d) 1

Subtraction is not a binary operation in 2.

(a) N

(b) Z

(c) R

(d) Q

If A is a 3 x 3 non-singular matrix such that $AA^T = A^TA$ and $B = A^{-1}A^T$, $BB^T =$

(b) B^T (c) A

(d)

If $\frac{z-1}{z+1}$ is purely imaginary, then |z| is 4.

(b) 2 (c) 3 (d) $\frac{1}{2}$

If $\cot^{-1}(\sqrt{\sin \alpha}) + \tan^{-1}(\sqrt{\sin \alpha}) = u$, then $\cos 2u = u$

(b) π (c) $tan^{-1}x$

The equationof the circle passing through the foci of the ellipse

 $\frac{x^2}{16} + \frac{y^2}{9} = 1$ having centre at (0,3) is

(a) $x^2 + y^2 - 6y - 5 = 0$

(b) $x^2 + y^2 - 6y + 5 = 0$

(c)
$$x^2 + y^2 - 6y - 7 = 0$$
 (d) $x^2 + y^2 - 6y + 7 = 0$

The angle between the line $\vec{r} = (\hat{\imath} + 2\hat{\jmath} - 3\hat{k}) + s(2\hat{\imath} + \hat{\jmath} - 2\hat{k})$ and the plane 7. $\vec{r} \cdot (\hat{\imath} + \hat{\jmath}) + 4 = 0 \text{ is}$

(a) 90° (b) 0° (c) 45° (d) 30°

8. The point of inflection of the curve $y = (x - 1)^3$ is

(a) (1,0)

(b) (1,1)

(c) (0,0)

(d) (0,1)

The value of $\int_0^a (\sqrt{a^2 - x^2})^3 dx$ is 9.

(a) $\frac{3\pi a^2}{8}$ (b) $\frac{3\pi a^4}{8}$ (c) $\frac{\pi a^3}{16}$

(d) $\frac{3\pi a^4}{16}$

The order and degree(if exists) of the differential equation

 $\sqrt{\sin x} (dx + dy) = \sqrt{\cos x} (dx - dy)$ are respectively

(a) 1,1

(b) 1,2 (c) 2,1.

(d) 2,2

HTVM 12 MATHEMATICS - EM PAGE - 1

11. If
$$A\begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix}$$
 then A is

(a)
$$\begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 1 & 2 \\ -1 & 4 \end{bmatrix}$$

(a)
$$\begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix}$$
 (b) $\begin{bmatrix} 1 & 2 \\ -1 & 4 \end{bmatrix}$ (c) $\begin{bmatrix} 4 & 2 \\ -1 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 4 & -1 \\ 2 & 1 \end{bmatrix}$

(d)
$$\begin{bmatrix} 4 & -1 \\ 2 & 1 \end{bmatrix}$$

If $|z-2+i| \le 2$ then the greatest value of |z| is

(a)
$$\sqrt{3}-2$$
 (b) $\sqrt{3}+2$ (c) $\sqrt{5}-2$

(b)
$$\sqrt{3} + 2$$

(c)
$$\sqrt{5}-2$$

(d)
$$\sqrt{5} + 2$$

If $x^3 + 12x^2 + 10ax + 1999$ definitely has a positive zero, if and only if 13.

(a)
$$a \ge 0$$

(b)
$$a > 0$$

(c)
$$a < 0$$

(d)
$$a \leq 0$$
.

14. The value of $sin^{-1}(\cos x)$, $0 \le x \le \pi$ is

(a)
$$x-\pi$$

(b)
$$\frac{\pi}{2} - x$$
 (c) $\pi - x$

(c)
$$\pi - x$$

(d)
$$\pi - x$$

The centre of the circle inscribed in a square formed by the lines 15. $x^2 - 8x - 12 = 0$ And $y^2 - 14y + 45 = 0$ is

$$(a)$$
 $(9,4)$

$$(d)$$
 $(7,4)$

The volume of the parallelepiped withits edges represented by the vectors 16. $\hat{i} + \hat{j}, \hat{i} + 2\hat{j}$ and $\hat{i} + \hat{j} + \pi \hat{k}$.

(a)
$$\pi$$

(b)
$$\frac{\pi}{4}$$
 (c) $\frac{\pi}{2}$ (d) $\frac{\pi}{3}$

(c)
$$\frac{\pi}{2}$$

(d)
$$\frac{\pi}{3}$$

The tangent to the curve $y^2 - xy + 9 = 0$ is vertical when 17.

(a)
$$y = \frac{1}{2}$$

(b)
$$y = \pm 3$$

(b)
$$y = \pm 3$$
 (c) $y = \pm \sqrt{3}$ (d) $\dot{y} = 0$

(d)
$$\dot{y} = 0$$

The approximate change in the volume V of a cube of side x meters caused 18. by increasing the side by 1% is

(a)
$$0.03x^2m^3$$
 (b) $0.03x^3m^3$ (c) $0.3xdxm^2$ (d) $0.03xm^3$

(b)
$$0.03x^3m^3$$

(c)
$$0.3xdxm^2$$

(d)
$$0.03xm^3$$

19. The value of
$$\int_{-1}^{2} |x| dx$$
 is (a) $\frac{5}{2}$ (b) $\frac{1}{2}$ (c) $\frac{7}{2}$ (d) $\frac{3}{2}$

(b)
$$\frac{1}{2}$$

(c)
$$\frac{7}{2}$$

(d)
$$\frac{3}{2}$$

If $\sin x$ is the integrating factor of the linear differential equation 20.

$$\frac{dy}{dx} + Py = Q \text{ Then } P \text{ is (a)} \tan x \text{ (b) } \cot x \qquad \text{(c) } \cos x \qquad \text{(d) } \log(\sin x)$$

(c)
$$\cos x$$

d)
$$log(\sin x)$$

Answer any 7 questions. Q.No. 30 is compulsory: 11

$$7 \times 2 = 14$$

If A is a non-singular matrix of order, prove that |adj|A| is positive. 21.

22. Show that
$$\left(\frac{\sqrt{3}}{2} + \frac{i}{2}\right)^5 + \left(\frac{\sqrt{3}}{2} - \frac{i}{2}\right)^5 = -\sqrt{3}$$
.

Find a polynomial equation of minimum degree with rational coefficients, having 23. 2i + 3 as a root.

Find the value of $sin^{-1} \left(sin \left(\frac{5\pi}{4} \right) \right)$. 24.

Find centre and radius of $2x^2 + 2y^2 - 6x + 4y + 2 = 0$. 25.

HTVM 12 MATHEMATICS - EM PAGE - 2

- 26. Find the angle between the line $\vec{r} = (2\hat{\imath} \hat{\jmath} + \hat{k}) + t(\hat{\imath} + 2\hat{\jmath} 2\hat{k})$ and the plane $\vec{r} \cdot (6\hat{\imath} + 3\hat{\jmath} + 2\hat{k}) = 8$.
- 27. Show that the percentage error in the nth root of a number is approximately 1/n times the percentage error in the number.
- 28. A particle is fired straight up from the ground to reach a height of s feet in t seconds, where $s(t) = 128t 16t^2$. Compute the maximum height of the particle reached.
- 29. Find the area of the region bounded by the line 6x + 5y = 30, x-axis and the lines x = -1 and x = 3.
- 30. Show that $y=e^{-x}+mx+n$ is a solution of the differential equation $e^x\left(\frac{d^2y}{dx^2}\right)-1=0.$
- III Answer any 7 questions. Q.No.40 is compulsory: $7 \times 3 = 21$
- 31. Determine the values of λ for which the following system of equations $(3\lambda-8)x+3y+3z=0, 3x+(3\lambda-8)y+3z=0, 3x+3y+(3\lambda-8)z=0$ has a non-trivial solution.
- 32. Find the values of the real numbers x and y, if the complex numbers (3-i)x (2-i)y + 2i + 5 and 2x + (-1+2i)y + 3 + 2i are equal.
- 33. If p and q are the roots of the equation $lx^2 + nx + n = 0$, show that $\sqrt{\frac{p}{q}} + \sqrt{\frac{q}{p}} + \sqrt{\frac{n}{l}} = 0$.
- 34. Find the value of $tan^{-1}(-1) + cos^{-1}(\frac{1}{2}) + sin^{-1}(-\frac{1}{2})$.
- 35. Find the local extrema for $f(x) = x^2 e^{-2x}$ using second derivative test.
- 36. Evaluate: $\int_0^{2\pi} x \log \left(\frac{3 + \cos x}{3 \cos x} \right) dx.$
- 37. Solve: $\frac{dy}{dx} = e^{x+y} + x^3 e^y$.
- 38. Two balls are choosen randomly from an urn containing 6 red and 8 black-balls. Suppose that we win Rs.15 for each red ball selected and we lose Rs.10 for each black ball selected. X denotes the winning amount, then find the values of X and number of points in its inverse images.
- 39. Construct the truth table for $(p\bar{V}q)\Lambda(p\bar{V}\neg q)$.
- 40. Find the torque of the resultant of the three forces represented by $-3\hat{\imath}+6\hat{\jmath}-3\hat{k}.4\hat{\imath}-10\hat{\jmath}-12\hat{k} \text{ and } 4\hat{\imath}+7\hat{\jmath} \text{ acting at the point with position}$ vector $8\hat{\imath}-6\hat{\jmath}-4\hat{k}$, about the point with position vector $18\hat{\imath}+3\hat{\jmath}-9\hat{k}$. HTVM 12 MATHEMATICS EM PAGE 3

Answer ALL the Questions: IV.

 $7 \times 5 = 35$

(a) Find the value of k for which the equations 41.

kx - 2y + z = 1, x - 2ky + z = -2, x - 2y + kz = 1 have

(i) no solution (ii) unique solution (iii) infinitely many solution. (OR) (b) Find the foot of the perpendicular drawn from the point (5, 4, 2) to the line

 $\frac{x+1}{2} = \frac{y-3}{3} = \frac{z-1}{-1}$. Also, find the equation of the perpendicular.

(a) If z = x + iy and $arg\left(\frac{z-1}{z+1}\right) = \frac{\pi}{2}$, then show that $x^2 + y^2 = 1$. (OR) 42.

(b) Prove that among all the rectangles of the given area square has the least perimeter.

(a) On lighting a rocket cracker it gets projected in a parabolic path and 43. reaches a maximum height of 4m when it is 6m away from the point of projection. Finally it reaches the ground 12m away from the starting point. Find (b) If the curves $ax^2 + by^2 = 1$ (OR) the angle of projection. $cx^2 + dy^2 = 1$ intersect each other orthogonally then, $\frac{1}{a} - \frac{1}{b} = \frac{1}{c} - \frac{1}{d}$.

(a) If $u = \sin^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$, show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \frac{1}{2}\tan u$. (OR) (b) If 2+i and $3-\sqrt{2}$ are roots of the equation $x^6 - 13x^5 + 62x^4 - 126x^3 + 65x^2 + 127x - 140 = 0$, find all roots.

(a) Find parametric form of vector equation and Cartesian equations of the plane passing through the points (2, 2, 1), (1, -2, 3) and parallel to the straight line passing through the points (2, 1, -3) and (-1, 5, -8).

(b) Evaluate: $\int_0^{\frac{n}{2}} \frac{dx}{4\sin^2 x + 5\cos^2 x}$

(a) Solve: $\left(1 + e^{\frac{x}{y}}\right)dx + 2e^{\frac{x}{y}}\left(1 - \frac{x}{y}\right)dy = 0.$ (OR) 46.

(b) Verify (i) closure property, (ii) commutative property, (iii) associative property, (iv) existence of identity, and (v) existence of inverse for the operation \pm_5 on z_5 using table corresponding to addition modulo 5.

47. (a) Solve: $(y - e^{\sin^{-1}x})\frac{dx}{dy} + \sqrt{1 - x^2} = 0$.

(b) Four fair coins are tossed once. Find the probability mass function, mean and variance for number of heads occurred.

HTVM 12 MATHEMATICS - EM PAGE - 4