www.Padasalai.Net www.TrbTnpsc.com

FIRST REVISION TEST - 2025

Standard - XII

Time: 3.00 hrs	P	HYSICS	Marks:70	
		Part - A		
I Answer all the	questions. Choose	the correct answers.	15x1-15	
	nt from air on a slab	of refractive index 2, th	e maximum possible	
(D) 30°	b) 45°	c) 60°	q) 90°	
2. Which one of the	ne following is the nat	ural nanomaterial	2.7	
(a) Peacock fea	ther, b) Peacock bea	ak c) Grain of Sand	d) Skin of the whale	
3. The ratio of ma	ignetic length and ge	cometrical length is		
a) 3/4	b) 4/3	(c) 5/6_	d) 6/5	
 First diffraction wavelength of li 		ngle slit of width 1x10 5	cm is at 30°. The	
a) 400A	(B) 500 A_	c) 600 V	d) 700A	
	ential of a silicon diod	le is affroximately		
(a) 0.7V	b) 0.3V	c) 2 0V	d) 2.2V	
6 An electricfield	$\vec{E} = 10 \sqrt{i}$ exists in a	certain region of space	Then the potential	
difference V = V	- V., where V. is th	e potential at the origin		
at x=2m is	b) -20V	G . 201/	4) 100	
a) 10V	b) -20V	(in 2 = 105T then ame	d) -10V	
field for a elect	romagnetic waves is			
a) 100Vm 1	b) 300Vm ⁻¹	c) 600Vm ⁻¹	@ 300\/m,	
The average bit	nding energy of iron	nuclei is		
a) 8.8 eV	(b) 8.8 MeV	nuclei is c) 8.5 eV	d) 8.5 MeV	
The internal res	sistance of a 2.1V ce	II which gives a current	of 0.2A through a	
resistance of 10				
a) 0.2Ω	(b) 0.5Ω	c) 0.8Ω	d) 1.0Ω	
10 In an oscillation			apacitor is Q. The charg	е
on the engacite	when the energy i	s stored equally between	en the electric and	
		a stored adamy batter		
magnetic field is	5			
0	0	Q	175	
a) $\frac{Q}{2}$	b) $\frac{Q}{\sqrt{3}}$	G 15	d) Q	
2	√3	VZ		
1. The critical angl	e of diamond is			
a) 37°	b) 31°	c) 49.8°	(d) 24.4°	
2 to an electron m	icroscope, the elec	trons are accelerated	by a voltage of 14KV. If	
the voltage is cl	hanged to 224KV, t	hen the de Broglie wa	evelength associated wi	th
the electrons we		Li docesses hu	2 times	
 a) increase by 2 times 		b) decrease by 2 times		
(c) decrease by	4 times	d) increase by 4 times		
3. A circular coil of	radius 5cm and 50	turns carries a curre	nt of 3 ampere. The	
magnetic dipole	moment of the coi	is nearby		
, a) 1.0 Am²	(6) 1.2 Am ²	c) 0.5 Am ²	d) 0.8 Am ²	

			9				
	-	shares of pathods roug particle	(2)	XII P	hysics		
14		e charge of cathode rays particle positive b negative	c) neutral	d) not defined			
15		e dielectric strength of air is	C/ 11032131	0/1131 02			
,,,	a)	1 x 10 ⁶ Vm ⁻¹ b) 6 x 10 ⁶ Vm ⁻¹	(a) 3 x 10 ⁶ Vm ⁻¹ PART - B	d) 9 x 10 ⁶ Vm ⁻¹			
		nswer any six in short. Question	on No. 24 is compulsory	,	x2=12		
16	. W	hat is corona discharge?					
(17		impute the speed of the electrom			ot		
40		ectric and magnetic fields are 3 x fine electrical resistivity-	10" NC" and 2 x 10" 1 h	espectively.			
		ate Fleming's right hand rule.					
20	w	hat is myopia? What is its remed	dy?				
21	. Lis	tout the properties of neutrino?	•				
22	. W	hat is Bremsstralung?					
23	, W	hat do you mean by skip distance	e?				
(24) In	Young's double slit experiment, to	he two slits are 0.15mm	apart. The light s	ource		
		s a wavelength of 450nm. The s	screen is 2m away from t	ne sins. Find the	Dano		
	Wit	ith.	PART - C				
		nswer any six in breif. Question		sorv	6x3=18		
111	. AI	rive the relation between f and R	for a spherical mirror	301 y.			
25 25	. DE	o materials X and Y are magnet	ised whose values of inte	ensity of magnetis	sation		
20	7 11	500 Am ⁻¹ and 2000 Am ⁻¹ respec	tively. If the magnetising	field is 1000 Am	then.		
	wh	ich one among these materials	can be easily magnetize	d.			
27	Lis	t out the advantages and limitati	ons of frequency modula	stion.			
28	W	ite down the postulates of Bohr	atom model.				
20	Dif	ferentiate between Fresnel and I	Fraunhofer diffraction.				
30	Ho	w will you induce an emf by cha-	nging the area enclosed	by the coil.			
31	Ho	w is a galvanometer converted i	into an ammeter				
32.	Ob	tain the expression for energy s	tored in the parallel plate	e capacitor.			
(33)	In:	a transistor connected in the cor	mmon base configuration	n, a=0.95, l _E =1m	^		
$\overline{}$	Ca	culate the values of I, and I,					
			PART - D		5x5=25		
IV.	Ar	swer all the questions.		on its avial line	(OR)		
34.		Calculate the electric field due		ig its axia in c.	(0.0		
	b)	Transistor functions as a switch	n, Explain.	(t evenniment	(OR)		
35.	a)	Obtain the equation for bandwi	oth in Young 5 double 5	n to so infinitely.			
	b)	Deduce the relation for the may	gnetic field at a point ou	e to an entinely	~3		
		straight conductor carrying cur	rent using Biot-Savart	aw.	(OR)		
36.	a)	Write down Maxwell equations in integral form. Describe the microscopic model of current and obtain general form of Ohm					
	b)	Describe the microscopic mod	iel of current and obtain	general rorm or			
		law.			(OR)		
37.	a)	Explain the construction and w	orking of transformer.		(0.4		
	b)	Obtain the law of radioactivity.			(OR)		
38.	a)	Obtain lens maker's formula.	and a simple to be in the	demonstrated ti			
	b)	Obtain lens maker's formula. Describe briefly Davisson - Ge	ermer experiment which				
		nature of electrons.					
			/				