XII-FP4-24

Full Portion Test - 4

Standard XII

	PH	YSICS	
Time: 3.00 hrs.			Maximum Marks: 70
Instructions: 1) Chec	k the question paper for m the Hall Supervisor in Black or Blue ink to writ	nmediately.	there is any lack of fairness, diagrams.
PART-I			
the option	I the questions. ie most suitable answe n code and the corres	er from the given for ponding answer:	our alternatives and write
1. The magnetic ne	eedle of a tangent galvan	ometer is kept small b	because the magnetic field is
a) very small		b) very large	
c) considered	to be small and uniform	at centre only	
d) none of the	above		
2. The momentum	n delivered to the surface	e by an electromagnet	ic wave is
a) $\frac{U}{C}$	b) $\frac{2U}{C}$		d) UC
3. An electric dip angle of inclina	oole placed in a uniform of the dipole momen	electric field has min nt with the field is	imum potential energy. The d) $\frac{\pi}{4}$
a) 2π	b) π hich gives mass to proto	c) zero 4 ns and neutrons are	d) $\frac{\pi}{4}$
a) Higgs parti		icle c) Nano particle	d) Bulk particle
	shorter than 2480 nm		en electromagnetic radiation he bandgap (in eV) for the
a) 0.9	b) 0.7	c) 0.5	d) 1.1
6. The ratio of de	e-Broglie wavelength of	proton and α - partic	ele of a same energy?
a) 2:1	b) 1:2	c) 4:1	d) 1:4
	curvature of curved surex is 1.5. If the plane surf	_	onvex lens is 10 cm and the he focal length will be
a) 5 cm	b) 10 cm	c) 15 cm	d) 2 cm
15	SXIST IN	ME MK	

12A25

XII-FP4-24

2

8. $\frac{20}{\pi^2}$ H inductor is connected to a capacitor of capacitance C. The value of C in order to impart maximum power at 50 Hz is

- a) 50 μF
- b) 0.5 μF
- c) 500 µF

d) 5µF

9. The ground form of ohm law

- a) $\frac{V^2}{\Lambda}$
- b) I²Rt

d) $\frac{V}{\Lambda}$

10. Atomic number of H like atom with ionization potential 122.4 V for n = 1 is

a) 1

b) 2

c) 3

d) 4

11. A power of 11 KW is in transmitted through 220 V. The current through line wire is

a) 5A

- b) 0.5A
- c) 50 A
- d) 500 A

12. In photoelectric emission, a radiation whose frequency is 4 times threshold frequency of a certain metal is incident on the metal. Then the maximum possible velocity of the emitted electron will be

- a) $\sqrt{\frac{hv_0}{m}}$
- b) $\sqrt{\frac{6hv_0}{m}}$ c) $2\sqrt{\frac{hv_0}{m}}$
- d) $\sqrt{\frac{hv_0}{2m}}$

13. Light transmitted by Nicol prism is,

- a) partially polarised b) unpolarised
- c) plane polarised
- d) elliptically polarised

14. An object of size 3 cm is placed 14 cm in front of a concave lens of focal length 21 cm. Find the height of the image

- a) 8.4 cm
- b) 1.8 cm
- c) 3 cm
- d) 4 cm

15. Which of the following electromagnetic radiations is used for viewing objects through fog?

- a) microwaves
- b) gamma rays
- c) x-rays

d) infrared

PART-II

Note: i) Answer any six questions.

ii) Q.No. 24 is compulsory.

16. Why do clouds appear white?

6x2=12

- 17. State Ampere's circuital law.
- 18. What is meant by electric field lines?
- 19. How will you define threshold frequency?
- 20. What are the constituent particles of neutron and proton?

XII-FP4-24

3

- 21. Give the principle of AC generator.
- 22. Define modulation.
- 23. Give any two examples for "Nano" in nature.
- 24. Calculate the value of current in the following circuit.

PART-III

4 16 5 76 - 5

Note: i) Answer any six questions.

ii) Q.No. 33 is compulsory.

6x3 = 18

- 25. What are Fraunhofer lines? How are they useful in the identification of elements present in the Sun?
- 26. What is the difference between resolution and magnification?
- 27. State Kirchhoff's current and voltage rules.
- 28. Discuss the beta (β^+) decay process with an example.
- 29. Obtain Gauss law from Coulomb's law.
- 30. Draw the input and output waveforms of a half wave rectifier.
- 31. Listout the laws of photoelectric effect.
- 32. Derive the relation between f and R for a spherical mirror.
- 33. An electron moving perpendicular to a uniform magnetic field 0.5 T undergoes circular motion of radius 2.5 mm. What is the speed of electron?

PART-IV

Note: Answer all the questions.

5x5 = 25

34. a) Explain the construction and working of transformer.

(OR)

- b) Explain the determination of the internal resistance of a cell using voltmeter.
- 35. a) Briefly explain the principle working of electron microscope.

(OR)

b) Derive the mirror equation and the equation for lateral magnification.

XII-FP4-24

4

36. a) Discuss the spectral series of Hydrogen atom.

(OR)

- b) Derive the expression for the force between two parallel, current-carrying conductors.
- 37. a) Describe the function of a transistor as an amplifier with the neat circuit diagram. Sketch the input and output waveforms.

(OR)

- b) Discuss the diffraction at single slit and obtain the condition for nth minimum.
- 38. a) Explain the types of emission spectra.

(OR)

b) Calculate the electric field due to dipole at a point on the axial line.

Kt.