Register No.

Second Revision Examination - 2025 MATHEMATICS

Marks: 90

Time: 3.00 Hrs.

PART - A

 $20 \times 1 = 20$

The rule $f(x) = x^2$ is a bijection if the domain and the co-domain are given by

a) R, R b) R, $(0, \infty)$ c) $(0, \infty)$, R d) $[0, \infty)$, $[0, \infty)$

a) R b) $(1, \infty)$ c) $(-1, \infty)$ d) $(-\infty, 1)$

Let $f: R \to R$ be defined by f(x) = 1 - |x|. Then the range of f is

If $\log_{\sqrt{x}} 0.25 = 4$ then the value of x is a) 0.5 b) 2.5 c) 1.5 d) 1.25 The equation whose roots are numerically equal but opposite in sign to the roots of $3x^2 - 5x - 7 = 0$ is

a) $3x^2 - 5x - 7 = 0$ b) $3x^2 + 5x - 7 = 0$ c) $3x^2 - 5x + 7 = 0$ d) $3x^2 + x - 7$

If $\cos 28^\circ + \sin 28^\circ = k^3$, then $\cos 17^\circ$ is equal to a) $\frac{k^3}{\sqrt{2}}$ b) $-\frac{k^3}{\sqrt{2}}$ c) $\pm \frac{k^3}{\sqrt{2}}$ d) $-\frac{k^3}{\sqrt{3}}$

If $\tan \alpha$ and $\tan \beta$ are the roots of $x^2 + ax + b = 0$, then $\frac{\sin(\alpha + \beta)}{\sin \alpha \sin \beta}$ is equal to a) $\frac{b}{a}$ b) $\frac{a}{b}$ c) $-\frac{a}{b}$ d) $-\frac{b}{a}$

The number of 5 digit numbers all digits of which are ood is a) 25 b) 5⁵ c) 5⁶ d) 625

If ${}^{n}C_4$, ${}^{n}C_5$, ${}^{n}C_6$ are in AP the value of n can be a) 14 b) 11 c) 9 d) 5

The sum upto n terms of the series $\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} + ...$... is a) $\frac{n(n+1)}{2}$ b) 2n(n+1) c) $\frac{n(n+1)}{\sqrt{2}}$ d) 1

10. The value of $\frac{1}{2!} + \frac{1}{4!} + \frac{1}{6!} + \dots$ is......a) $\frac{e^2 + 1}{2e}$ b) $\frac{(e+1)^2}{2e}$ c) $\frac{(e-1)^2}{2e}$ d) $\frac{e^2 - 1}{2e}$

11. Straight line joining the points (2, 3) and (-1, 4) passes through the point (α , β) i

a) $\alpha + 2\beta = 7$ b) $3\alpha + \beta = 9$ c) $\alpha + 3\beta = 11$ d) $3\alpha + \beta = 11$

12. The image of the point (2, 3) in the line y = -x is a) (-3, -2) b) (-3, 2) c) (-2, -3) d) (3, 2)

13. If the points (x, -2), (5, 2), (8, 8) are collinear, then x is equal to (a) -3 (b) $\frac{1}{3}$ (c) 1 (d) 3

14. The unit vector parallel to the resultant of the vectors $\hat{i}_{+}\hat{j}_{-}\hat{k}$ and $\hat{i}_{-}2\hat{j}_{+}\hat{k}$ is

a) $\frac{i-j+k}{\sqrt{\epsilon}}$ b) $\frac{2i+j}{\sqrt{\epsilon}}$ c) $\frac{2i-j+k}{\sqrt{\epsilon}}$ d) $\frac{2i-j}{\sqrt{\epsilon}}$

15. If $\lambda \hat{i} + 2\lambda \hat{j} + 2\lambda \hat{k}$ is a unit vector, then the value of λ is a) $\frac{1}{3}$ b) $\frac{1}{4}$ c) $\frac{1}{9}$ d) $\frac{1}{2}$

16. $x \to \infty$ $\frac{\sqrt{x^2 - 1}}{2x + 1} = a) 1 b) 0 c) -1 d) <math>\frac{1}{2}$

17. If pv = 81, then $\frac{dp}{dv}$ at v = 9 is a) 1 b) -1 c) 2 d) -2

18. $\int \tan^{-1} \sqrt{\frac{1-\cos 2x}{1+\cos 2x}} dx$ a) $x^2 + c$ b) $2x^2 + c$ c) $\frac{x^2}{2} + c$ d) $-\frac{x^2}{2} + c$

- selected from the set {1, 2, 3, ... 20}. The probability that the selected number is divisible by 3 or 4 is a) $\frac{2}{5}$ b) $\frac{1}{8}$ c) $\frac{1}{2}$ d) $\frac{2}{3}$
- 20. It is given that the events A and B are such that $P(A) = \frac{1}{4}$, $P(A/B) = \frac{1}{2}$ and $P(B/A) = \frac{2}{3}$. Then P(B) is

a) $\frac{1}{6}$ b) $\frac{1}{3}$ c) $\frac{2}{3}$ d) $\frac{1}{2}$

II. (i) Answer any seven questions. (ii) Question No.30 is compulsory.

 $7 \times 2 = 14$

21. Solve |3 - x| < 7

- 22. Find the values of sin(-1110°)
- Find the number of ways of arranging the letters of the word BANANA.
- 24. Find the equation of the straight line parallel to 5x 4y + 3 = 0 and having x-intercept 3.
- 25. Construct an m x n matrix A = $[a_{ij}]$, where a_{ij} is given by $a_{ij} = \frac{(i-2j)^2}{2}$ with m = 2, n = 3.

26. If PO+OQ = QO+OR, prove that the points P. Q. R are collinear.

27. Calculate
$$\lim_{x \to 3} \frac{(x^2 - 6x + 5)}{x^3 - 8x + 7}$$

- 28. Find the derivative y = ex sinx
- Integrate cos(5 11x)
- 30. If two coins are tossed simultaneously, then find the probability of getting one head and one tail

PART - C

(i) Answer any seven questions. (ii) Question No.40 is compulsory.

 $7 \times 3 = 21$

- 31. Find the range of the function
- 32. If $\log_2 x + \log_4 x + \log_{16} x = \frac{7}{2}$, find the value of x.
- 33. A Kabaddi coach has 14 players ready to play. How many different teams of 7 players could the coach put on the court?
- 34. Show that $4x^2 + 4xy + y^2 6x 3y 4 = 0$ represents a pair of parallel lines.
- 35. Find the value of λ for which the vectors $\vec{a} = 3i + 2j + 9k$ and $\vec{b} = i + \lambda j + 3k$ are parallel
- 36. Differentiate $y = x^{\sqrt{x}}$
- 37. If $\lambda = -2$, determine the value of $\begin{vmatrix} 0 & 2\lambda & 1 \\ \lambda^2 & 0 & 3\lambda^2 + 1 \\ -1 & 6\lambda 1 & 0 \end{vmatrix}$

R. Sardwaran, M. WM, NET

- 38. Evaluate: $\underset{x \to 0}{\lim} \frac{2^x 3^x}{x}$
- 39. If $f1(x) = 9x^2 6x$ and f(0) = -3, find f(x).
- 40. A bag contains 7 red and 4 black balls, 3 balls are drawn at random. Find the probability that (i) all are red (ii) one red and 2 black.

 $7 \times 5 = 35$

$$x + 4$$
 if $-3 < x < -2$

Answer all the questions.

PART - D

$$= x + 4 \text{ if } -\infty < x \le -3$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

$$= x + 4 \text{ if } -3 < x < -2$$

- 42. a) A factory has two Machines-I and II. Machine-I produces 60% of items and Machine-II produces 40% of the items of the total output. Further 2% of the items produced by Machine-I are defective wheras 4% produced by Machine-II are defective. If an item is drawn at random what is the probability that it is defective? (OR)
 - b) Show that the equation $2x^2 xy 3y^2 6x + 19y 20 = 0$ represents a pair of intersecting lines. Show further that the angle between them is tan-1(5).
- 43. a) Using the Mathematical induction, prove that $3^{2n+2}-8n-9$ is divisible by 8 for all $n \ge 1$. (OR)
 - b) If A + B + C = π , prove that $\cos^2 A + \cos^2 B + \cos^2 C = 1 2\cos A \cos B \cos C$.
- 44. a) Integrate $\frac{3x+1}{2x^2-2x+3}$ (OR)b) Prove that $\sqrt[3]{x^3+6} \sqrt[3]{x^3+3}$ is approximately equal to when x is sufficiently large.

 45. a) Find the derivative of $\sin^{-1}\left(\frac{2x}{1+x^2}\right)$ with respect to $\tan -1x$. (OR)
- - b) Show that the points whose position vectors 2i+4j+3k, 4i+j+9k and 10i-j+6k form a right angled triangle.
- 46. a) An exam paper contains 8 questions, 4 in Part A and 4 in Part B. Examiners are required to answer 5 questions. In how many ways can this be done if (i) There are no restrictions of choosing a number of questions in either parts (ii) At least two questions from Part A must be answered. (OR)
 - b) Express the matrix $A = \begin{bmatrix} -6 & 8 & 3 \\ -4 & 6 & 5 \end{bmatrix}$ as the sum of a symmetric and a skew-symmetric matrices.
- 47. a) Resolve into partial fractions: $\frac{x^3 + 2x + 1}{x^2 + 5x + 6}$ (OR) b) If $y = \tan^{-1}\left(\frac{1+x}{1-x}\right)$, find y'.