BOOK BACK ONE MARK QUESTIONS - 2025 ## Chapter (4) 2 - 1. If $A = \{(x, y) : y\}$ $e^x, x \in R\}$ and $B = \{(x,y): y = e^{-x}, x \in R\}$ then $n(A \cap B)$ is - (1) Infinity - (2) 0 - (3) 1 - 2. If $A=\{(x,y):y=\sin x, x\in R\}$ and $B=\{(x,y):y=\cos x, x\in R\}$ then $A\cap B$ contains - (1) no element - (2) infinitely many elements (3) only one element (4) cannot be determined. - 3. The relation R defined on a set $A = \{0, -1, 1, 2\}$ by xRy if $|x^2 + y^2| \le 2$, then which following is true? - (1) $R = \{(0,0),(0,-1),(0,1),(-1,0),(-1,1),(1,2),(1,0)\}$ (2) $R^{-1} = \{(0,0),(0,-1),(0,1),(-1,0),(1,0)\}$ (3) Domain of R is $\{0,-1,1,2\}$ - (4) Range of R is $\{0, -1, 1\}$ - 4. If $f(x) = |x-2| + |x+2|, x \in \mathbb{R}$, then - rs. Consider the following subsets of the plane $\mathbb{R} \times \mathbb{R}$: - +1 and 0 < x < 2 and $T = \{(x, y) : x y \text{ is an integer } \}$ Then which of the following is true? - (1) T is an equivalence relation but S is not an equivalence relation. - (2) Neither S nor T is an equivalence relation - (3) Both S and T are equivalence relation - (4) S is an equivalence relation but T is not an equivalence relation. - 6. Let A and B be subsets of the universal set \mathbb{N} , the set of natural numbers. Then $A' \cup [(A \cap B) \cup B']$ is - (2) A' - (3) B - 7. The number of students who take both the subjects Mathematics and Chemistry is 70. This represents 10% of the enrollment in Mathematics and 14% of the enrollment in Chemistry. The number of students take at least one of these two subjects, is (3) 1100 - 8. If $n((A \times B) \cap (A \times C)) = 8$ and $n(B \cap C) = 2$, then n(A) is - (2) 4 (2) 3² (2) 1130 (3) 8 (3) 6 - (4) 16 - 9. If n(A)=2 and $n(B\cup C)=3$, then $n[(A\times B)\cup (A\times C)]$ is - (1) 2^3 (4) ℕ - (2) 17² - (3) 34 - (4) insuffici 111**th** - 11. For non-empty sets A and B, if $A \subset B$ then $(A \times B) \cap (B \times A)$ is equal to - (1) $A \cap B$ - (2) A × A - (3) B > - (4) none of these. - 12. The number of relations on a set containing 3 elements is - (2) 81 - 13. Let R be the universal relation on a set X with more than one (3) transitive - ment. Then R is (4) none of the above (4) 1024 - (1) not reflexive (2) not symmetric 14. Let $X = \{1, 2, 3, 4\}$ and $R = \{(1, 1), (1, 2), (1, 3), (2, 2), (3, 3), (2, 1), (3, 1), (1, 4), (4, 1)\}$. Then - (2) symmetric (1) reflexive (3) transitive 15. The range of the function (3) [0,1) (4) equivalence (4) $(-\infty, -1] \cup \left[\frac{1}{2}, \infty\right)$ - 16. The range of the function f(x) - (4) (0,1) - n^2 is a bijection if the domain and the co-domain are given by 17. The rule f(x) - (1) \mathbb{R}, \mathbb{R} (1) [0,1] - (2) $\mathbb{R}, (0, \infty)$ $(3) \quad (0,\infty), \mathbb{R}$ $(4)\quad [0,\infty), [0,\infty)$ - 18. The number of constant functions from a set containing m elements to a set containing n elements - (1) mn - (2) m - (3) n (3) bijection - 19. The function $f:[0,2\pi] \to [-1,1]$ defined by $f(x)=\sin x$ is - (2) onto - (4) cannot be defined - 20. If the function $f: [-3,3] \to S$ defined by $f(x) = x^2$ is onto, then S is - (1) [-9, 9] - (2) R - (3) [-3,3] - (4) [0,9] - 21. Let $X = \{1, 2, 3, 4\}, Y = \{a, b, c, d\}$ and $f = \{(1, a), (4, b), (2, c), (3, d), (2, d)\}$. Then f is OXFORD COACHING CENTRE, IDAPPADI. Cell: 99947 31113. - (1) an one-to-one function - a function which is not one-to-one - (2) an onto function(4) not a function - x < 1 $\begin{cases} x^2 & \text{if} \\ 8\sqrt{x} & \text{if} \end{cases}$ - if if - $1 \leq x \leq 16$ - $1 \le x \le 16$ if x > 16 - 23. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by f(x) = 1 |x|. Then the range of f is - (1) \mathbb{R} - (2) $(1, \infty)$ - (3) (-1) - 24. The function $f:\mathbb{R}\to\mathbb{R}$ is defined by $f(x)=\sin x+\cos x$ is - (1) an odd function - (2) neither an odd function nor an even function an even function - (4) both odd function and even function 25. The function $f: \mathbb{R} \to \mathbb{R}$ is defined by $$f(x) = \frac{(x^2 + \cos x)(1 + x^4)}{(x - \sin x)(2x - x^3)} + e^{-|x|}$$ - neither an odd function nor an even function both odd function and even function. (1) an odd function - (3) an even function ## Basic Algebra Chapter - 1. If $|x+2| \le 9$, then x belongs to - (1) $(-\infty, -7)$ - (3) $(-\infty, -7) \cup [11, \infty)$ (4) (-11, 7) - 3. If $\frac{|x-2|}{x-2} \ge 0$, then x belongs to $(1) \quad [2,\infty)$ - $(2) \quad (2,\infty)$ - $(3) (-\infty, 2)$ - $(4) (-2, \infty)$ (4) $\frac{x}{i} \geq \frac{y}{i}$ - 4. The solution of 5x 1 < 24 and 5x + 1 > -24 is (2) (-5, -4)(3) (-5,5)(1) (4,5) - 5. The solution set of the following inequality $|x-1| \ge |x-3|$ is - $(2) [2, \infty)$ - (3) (0,2) (3) 9 $(4) (-\infty, 2)$ (4) 12 (4) -9 (4) 1.25 (4) (-5,4) 6. The value of $\log_{\sqrt{2}} 512$ is (1) 16 (1) [0,2] 7. The value of $\log_3 \frac{1}{81}$ is (1) -2 (2) -8 (2) 18 - (3) -4 - 8. If $\log_{\sqrt{x}} 0.25 = 4$, then the value of x is (1) 0.5(2) 2.5 (1) 2 - 9. The value of $\log_a b \, \log_b c \, \log_c a$ is (2) 1 - (3) 3 (3) 1.5 - 10. If 3 is the logarithm of 343, then the base is (2) 7 (1) 5 (3) - (1) 1 - (2) 2 - 11. Find a so that the sum and product of the r $2x^2 + (a-3)x + 3a - 5 = 0$ are equal is - (3) - 12. If a and b are the roots of the equation 16 = 0 and satisfy $a^2 + b^2 = 32$, then the value of k is - (1) 10 (4) 4 - 13. The number of solutions of x^2 (1) 1 (2) (3) 2 - numerically equal but opposite in sign to the roots of $3x^2 + 5x - 7 = 0$ (3) $3x^2 - 5x + 7 = 0$ (4) $3x^2 + x - 7$ (4) 3 - 15. If 8 and 2 are the roots of $x^2+ax+c=0$ and 3, 3 are the roots of $x^2+dx+b=0$, then the roots of the equation $x^2+ax+b=0$ are - (1) 1, 2 (a, 0) and (b, 0) is (1) $\sqrt{k^2 - 4c}$ (1) $3x^2$ - - (2) -1, 1 - (3) 9,1 - 16. If a and b are the real roots of the equation $x^2 kx + c = 0$, then the distance between the points (3) $\sqrt{4c - k^2}$ (4) $\sqrt{k - 8c}$ (4) -1, 2 kx17. If $\frac{1}{(x+2)(x+2)}$ $\frac{2}{x+2} + \frac{1}{x-1}$, then the value of k is (2) $\sqrt{4k^2 - c}$ - (1) (2) - OXFORD COACHING CENTRE, IDAPPADI. Cell: 99947 12. The n^{th} term of the sequence $1, 2, 4, 7, 11, \cdots$ is 19. If the two straight lines x + (2k - 7)y + 3 = 0 and 3kx + 9y - 5 = 0 are perpendicular then the value of k is (1) $n^3 + 3n^2 + 2n$ (2) $n^3 - 3n^2 + 3n$ (3) $\frac{n(n+1)(n+2)}{3}$ (4) $\frac{n^2 - n + 2}{2}$. (3) $k = \frac{2}{3}$ (2) $k = \frac{1}{3}$ (1) k = 313. The sum up to n terms of the series $\frac{1}{\sqrt{1+\sqrt{3}}} + \frac{1}{\sqrt{3+\sqrt{5}}} + \frac{1}{\sqrt{5+\sqrt{7}}} + \cdots$ is 20. If a vertex of a square is at the origin and its one side lies along the line 4x + 3y - 20 = 0, then (2) $\frac{\sqrt{2n+1}}{2}$ (3) $\sqrt{2n+1}-1$ (4) $\frac{\sqrt{2n+1}-1}{2}$. the area of the square is 14. The n^{th} term of the sequence $\frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \frac{15}{16}, \cdots$ is (1) 20 sq. units (2) 16 sq. units (3) 25 sq. units (3) $2^{-n} + n - 1$ (1) $2^n - n - 1$ (2) $1 - 2^{-n}$ 21. If the lines represented by the equation $6x^2 + 41xy - 7y^2 = 0$ make angles α and β with x- axis, 15. The sum up to n terms of the series $\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} + \cdots$ is 16. The value of the series $\frac{1}{2} + \frac{7}{4} + \frac{13}{8} + \frac{19}{16} + \cdots$ is 22. The area of the triangle formed by the lines $x^2 - 4y^2 = 0$ and x = a is (4) 6. (2) 7 (3) 4 17. The sum of an infinite GP is 18. If the first term is 6, the common ratio is (2) $\frac{2}{3}$ 23. If one of the lines given by $6x^2 - xy + 4cy^2 = 0$ is 3x + 4y = 0,, then c equals to 18. The coefficient of x^5 in the series e^{-2x} is (1) $\frac{2}{3}$ $(2) \frac{3}{2}$ 24. θ is acute angle between the lines $x^2-xy-6y^2=0$, then $\frac{2\cos\theta+3\sin\theta}{4\sin\theta+5\cos\theta}$ is 19. The value of $\frac{1}{2!} + \frac{1}{4!} + \frac{1}{6!} + \cdots$ is (1) $\frac{e^2+1}{2e}$ (2) $\frac{(e+1)^2}{2e}$ 20. The value of $1 - \frac{1}{2} \left(\frac{2}{3} \right) + \frac{1}{3} \left(\frac{2}{3} \right)^2 - \frac{1}{4} \left(\frac{2}{3} \right)^3 + \frac{1}{4} \left(\frac{2}{3} \right)^4 \right)^4$ 25. One of the equation of the lines given by $x^2 + 2xy \cot \theta$ (1) $\log\left(\frac{5}{3}\right)$ $(1) x - y \cot \theta = 0 \qquad (2) x + y \tan \theta = 0$ Chapter $(4) x \sin \theta + y (\cos \theta + 1) = 0$ Matrices and 1. The equation of the locus of the point whose distance from y-axis is half the distance from origin is Determinants $(3) \ 3x^2 + y^2 = 0$ 2. Which of the following equation is the locus of $(at^2, 2at)$ (1) If $a_{ij} = \frac{1}{2}(3i - 2j)$ and $A = [a_{ij}]_{2 \times 3}$ 3. Which of the following point lie on the locus of $3x^2 + 3y^2 - 8x - 12y + 17 = 0$ 4. If the point (8,-5) lies on the locus $\frac{x^2}{16} - \frac{y^2}{25} = k$, then the value of k is]][**(h** (2) What must be the matrix X, if 2X5. Straight line joining the points (2,3) and (-1,4) passes through the point (α,β) if $(3) \alpha + 3\beta = 11$ 6. The slope of the line which makes an angle 45° with the line 3x - y = -5 are (3) Which one of the following is not true about the matrix $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$? (3) $1, \frac{1}{2}$ $(2) \frac{1}{2}, -2$ $(4) 2, -\frac{1}{2}$ (1) 1, -1(1) a scalar matrix (2) a diagonal matrix 7. Equation of the straight line that forms an isosceles triangle with coordinate axes in the I-quadrant (3) an upper triangular matrix (4) a lower triangular matrix with perimeter $4 + 2\sqrt{2}$ is (4) If A and B are two matrices such that A + B and AB are both defined, then (1) x + y + 2 = 0 (2) x + y - 2 = 0 (3) $x + y - \sqrt{2} = 0$ (4) $x + y + \sqrt{2} = 0$ (1) A and B are two matrices not necessarily of same order 8. The coordinates of the four vertices of a quadrilateral are (-2,4), (-1,2), (1,2) and (2,4) taken in (2) A and B are square matrices of same order order. The equation of the line passing through the vertex (-1,2) and dividing the quadrilateral in (3) Number of columns of A is equal to the number of rows of Bthe equal areas is (3) x + y + 3 = 0(1) x+1=0(2) x + y = 1(5) If $A = \begin{bmatrix} \lambda & 1 \\ -1 & -\lambda \end{bmatrix}$, then for what value of λ , $A^2 = O$? 9. The intercepts of the perpendicular bisector of the line segment joining (1, 2) and (3,4) with coordinate axes are (3) - 1(1) 5, -5(2) 5, 5 10. The equation of the line with slope 2 and the length of the perpendicular from the origin equal to $\frac{1}{2}$ and $(A+B)^2 = A^2 + B^2$, then the values of a $\sqrt{5}$ is (2) $2x - y = \sqrt{5}$ (3) a = 0, b = 4 $(4) \ a = 2$ 11. A line perpendicular to the line 5x - y = 0 forms a triangle with the coordinate axes. If the area of the triangle is 5 sq. units, then its equation is (7) If $A = \begin{bmatrix} 2 & 1 & -2 \end{bmatrix}$ is a matrix satisfying the equation $AA^{T} = 9I$, where I is 3×3 identity (1) $x + 5y \pm 5\sqrt{2} = 0$ (2) $x - 5y \pm 5\sqrt{2} = 0$ (3) $5x + y \pm 5\sqrt{2} = 0$ (4) $5x - y \pm 5\sqrt{2} = 0$ 12. Equation of the straight line perpendicular to the line x-y+5=0, through the point of intersection the y-axis and the given line matrix, then the ordered pair (a, b) is equal to the y-axis and the given line (2)(-2,1)(3) (2, 1) (3) x + y + 5 = 0(1) x - y - 5 = 0(2) x + y(8) If A is a square matrix, then which of the following is not symmetric? 13. If the equation of the base opposite to the vertex (2, 3) of an equilateral triangle is x + y = 2, then the length of a side is (1) $\sqrt{\frac{3}{2}}$ (9) If A and B are symmetric matrix 14. The line $(p+\sqrt{2q})x$ p-q for different values of p and q passes through the point (1) A + B is skew-symmetric (2) A + B is symmetric (3) A + B is a diagonal matrix (4) A + B is a zero matrix 15. The point on the line 2x-3y = 5 is equidistance from (1,2) and (3,4) is (1) (7,3)(2) (4,1)(4) (-2,3)(3) (1,-1) $(2) (a^2+1)^2$ $(4) (a^2-1)^2$ 16. The image of the point (2, 3) in the line y = -x is (1) (-3, -2)(2) (-3, 2)(3) (-2, -3)(4)(3,2)17. The length of \perp from the origin to the line $\frac{x}{3} - \frac{y}{4} = 1$, is (11) The value of x, for which the matrix A =(12) If the points (x,-2), (5,2), (8,8) are collinear, then x is equal to 18. The y-intercept of the straight line passing through (1,3) and perpendicular to 2x - 3y + 1 = 0 is (2) $\frac{1}{2}$ OXFORD COACHING CENTRE, IDAPPADI. XFORD COACHING CENTRE. IDAPPADI. Cell: 99947 31113. n geometric progression with the same common ratio (19) If [.] denotes the greatest integer less than or equal to the real number under consideration and $\begin{bmatrix} x \end{bmatrix} + 1 \begin{bmatrix} y \end{bmatrix}$ $-1 \le x < 0$, $0 \le y < 1$, $1 \le z < 2$, then the value of the determinant $\lfloor x \rfloor \lfloor y \rfloor + 1 \lfloor z \rfloor$ is $\lfloor x \rfloor$ $\lfloor y \rfloor \lfloor z \rfloor + 1$ $(1) \lfloor z \rfloor$ (2) [y] $(3) \lfloor x \rfloor$ $(4) \lfloor x \rfloor + 1$ (20) If $a \neq b, b, c$ satisfy $\begin{vmatrix} 3 & b & c \end{vmatrix}$ = 0, then abc =(3) b^3 (4) ab+ba|-2 4 2 3 1 0 and $B = \begin{vmatrix} 6 & 2 & 0 \end{vmatrix}$, then B is given by -2 4 8 (2) B = -4A(4) B =(22) If A is skew-symmetric of order n and C is a column matrix of order $n \times 1$, then $C^T A C$ is (1) an identity matrix of order n(2) an identity matrix of order 1 (4) an identity matrix of order 2 (3) a zero matrix of order 1 (23) The matrix A satisfying the equation then (A+I)(A-I) (25) Let A and B be two sy order. Then which one of the following statement is not true? (1) A + B is a symmetric matrix (2) AB is a symmetric matrix (3) $AB = (BA)^T$ $(4) \quad A^T B = A B^T$ Chapter Vector Algebra (1) The value of $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{DA} + \overrightarrow{CD}$ is (1) \overrightarrow{AD} (2) *CA* $(3) \vec{0}$ (4) $-\overrightarrow{AD}$ (2) If $\vec{a} + 2\vec{b}$ and $3\vec{a} + m\vec{b}$ are parallel, then the value of m is (1) 3 (2) $\frac{1}{3}$ (3) 6 (4) $\frac{1}{6}$ (3) The unit vector parallel to the resultant of the vectors $\hat{i}+\hat{j}-\hat{k}$ and $\hat{i}-2\hat{j}+\hat{k}$ is (4) $\vec{0}$ $(4) \ \frac{\vec{a} + \vec{b}}{2}$ j (th 4 (4) A vector \overrightarrow{OP} makes 60° and 45° with the positive direction of the x and y axes respectively. Then the angle between \overrightarrow{OP} and the z-axis is $(2)~60^{\circ}$ $(1) 45^{\circ}$ (5) If $\overline{BA} = 3\hat{i} + 2\hat{j} + \hat{k}$ and the position vector of B is $\hat{i} + 3\hat{j} - \hat{k}$, then the position vector A is (1) $4\hat{i} + 2\hat{j} + \hat{k}$ (2) $4\hat{i} + 5\hat{j}$ (3) $4\hat{i}$ (6) A vector makes equal angle with the positive direction of the coordinate axes. Then each angle is equal to (1) $\cos^{-1}\left(\frac{1}{3}\right)$ (7) The vectors $\vec{a} - \vec{b}$, $\vec{b} - \vec{c}$, $\vec{c} - \vec{a}$ are (1) parallel to each other (2) unit vectors (4) coplanar vectors (3) mutually perpendicular vectors (8) If ABCD is a parallelogram, then $\overline{AB} + \overline{AD} + \overline{CB} + \overline{CD}$ is equal to (3) $4\overrightarrow{BD}$ (1) $2(\overrightarrow{AB} + \overrightarrow{AD})$ (9) One of the diagonals of parallelogram ABCD with \vec{a} and \vec{b} as adjacent sides is $\vec{a} + \vec{b}$. The other diagonal \vec{BD} (1) $\vec{a} - \vec{b}$ (10) If \vec{a}, \vec{b} are the position A and B, then which one of the following points whose position vector lies on AB, is $(2) \stackrel{2a-b}{=} b$ $(4) \ \frac{\vec{a} - \vec{b}}{}$ $2\vec{a} + \vec{b}$ (11) If \vec{a} , \vec{b} , \vec{c} are the position vectors of three collinear points, then which of the following is (1) $\vec{a} = \vec{b} + \vec{c}$ $(3) \vec{b} = \vec{c} + \vec{a}$ (4) $4\vec{a} + \vec{b} + \vec{c} = \vec{0}$ (12) If $\vec{r} = \frac{9\vec{a} + 7\vec{b}}{12}$ then the point P whose position vector \vec{r} divides the line joining the points with position vectors \vec{a} and \vec{b} in the ratio (1) 7:9 internally (2) 9:7 internally (4) 7: 9 externally (3) 9:7 externally (13) If $\lambda \hat{i} + 2\lambda \hat{j} + 2\lambda \hat{k}$ is a unit vector, then the value of λ is (14) Two vertices of a triangle have position vectors $3\hat{i} + 4\hat{j} - 4\hat{k}$ and $2\hat{i} + 3\hat{j} + 4\hat{k}$. If the position vector of the centroid is $\hat{i} + 2\hat{j} + 3\hat{k}$, then the position vector of the third vertex is (2) $-2\hat{i} - \hat{j} - 6\hat{k}$ (3) $2\hat{i} - \hat{j} + 6\hat{k}$ (15) If $|\vec{a} + \vec{b}| = 60$, $|\vec{a} - \vec{b}| = 40$ and $|\vec{b}| = 46$, then $|\vec{a}|$ is (1) 42 (2) 12(3)22 (4) 32 (16) If \vec{a} and \vec{b} having same magnitude and angle between them is 60° and their scalar product is $\frac{1}{2}$ then $|\vec{a}|$ is (2) 3(3)7 (1) 2(4) 1 (17) The value of $\theta \in \left(0, \frac{\pi}{2}\right)$ for which the vectors $\vec{a} = (\sin \theta)\hat{i} + (\cos \theta)\hat{j}$ and are perpendicular, is equal to (18) If $|\vec{a}|=13$, $|\vec{b}|=5$ and $\vec{a} \cdot \vec{b}=60^{\circ}$ then $|\vec{a} \times \vec{b}|$ is (2) 35 (19) Vectors \vec{a} and \vec{b} are inclined at an angle $\theta = 120^\circ$. If $|\vec{a}| = 1, |\vec{b}| = 2$, then $[(\vec{a} + 3\vec{b}) \times (3\vec{a} - \vec{b})]^2$ is equal to (3) 325 (1) 225 (20) If \vec{a} and \vec{b} are two vectors of magnitude 2 and inclined at an angle 60° , then the angle $(1) 30^{\circ}$ $(2) 60^{\circ}$ (3) 45° (21) If the projection of $5i - \hat{j} - 3\hat{k}$ on the vector $\hat{i} + 3\hat{j} + \lambda\hat{k}$ is same as the projection of $\hat{i} + 3\hat{j} + \lambda\hat{k}$ on $5\hat{i} - \hat{j} - 3\hat{k}$, then λ is equal to (22) If (1, 2, 4) and (2, -3). -3) are the initial and terminal points of the vector $\hat{i} + 5\hat{j} - 7\hat{k}$, then the value of λ is equal to (1) $\frac{7}{3}$ $(3) -\frac{3}{3}$ $(4) \frac{3}{3}$ (23) If the points whose position vectors $10\hat{i}+3\hat{j}$, $12\hat{i}-5\hat{j}$ and $a\hat{i}+11\hat{j}$ are collinear then a is equal to (1) 6(2) 3(24) If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = 2\hat{i} + x\hat{j} + \hat{k}$, $\vec{c} = \hat{i} - \hat{j} + 4\hat{k}$ and $\vec{a} \cdot (\vec{b} \times \vec{c}) = 70$, then x is equal to (4) 10 (3) 26(25) If $\vec{a} = \hat{i} + 2\hat{j} + 2\hat{k}$, $|\vec{b}| = 5$ and the angle between \vec{a} and \vec{b} is $\frac{\pi}{6}$, then the area of the triangle formed by these two vectors as two sides, is OXFORD COACHING CENTRE, IDAPPADI. Cell: 99947 31113. OXFORD COACHING CENTRE, IDAPPADI, Cell: 99947 3111 (4) -2 (4) f(a) + af'(a) - $\begin{bmatrix} x-5 & \text{if } x \leq 1 \end{bmatrix}$ (17) If $f(x) = \begin{cases} 4x^2 - 9 & \text{if } 1 < x < 2 \text{, then the right hand derivative of } f(x) \text{ at } x = 2 \text{ is} \end{cases}$ 3x+4 if $x \ge 2$ - (1) 0 (3) 3 - (18) It is given that f'(a) exists, then $\lim_{x \to a} \frac{xf(a) af(x)}{x a}$ is - (1) f(a) af'(a) (2) f'(a)(3) - f'(a) - (19) If $f(x) = \begin{cases} x+1, & \text{when } x < 2 \\ 2x-1, & \text{when } x \ge 2 \end{cases}$, then f'(2) is - (20) If $g(x) = (x^2 + 2x + 1)$ f(x) and f(0) = 5 and $\lim_{x \to 0} \frac{f(x) 5}{x} = 4$, then g'(0) - (2) 14 - $\int x+2$, -1 < x < 3, then at x = 3, f'(x) is (21) If $f(x) = \begin{cases} 5 & x = 3 \end{cases}$ x x > 3(4) does not exist - (22) The derivative of f(x) = x |x| at x = -3 is - (23) If $f(x) = \begin{cases} 2a x, & \text{for } -a < x < a \\ 3x 2a & \text{for } x \ge a \end{cases}$, then which one of the following is true? - (1) f(x) is not differentiable at x = a(2) f(x) is discontinuous at x = a - elsewhere is differentiable at x = 1, then (24) If $f(x) = \begin{cases} 1 \\ 1 \end{cases}$ - (1) $a = \frac{1}{2}$, $b = \frac{-3}{2}$ (2) $a = \frac{-1}{2}$, $b = \frac{3}{2}$ (3) $a = -\frac{1}{2}$, $b = -\frac{3}{2}$ (4) $a = \frac{1}{2}$, $b = \frac{3}{2}$ - (25) The number of points in \mathbb{R} in which the function $f(x) = |x-1| + |x-3| + \sin x$ is not - (1) 3Integral Chapter - (1) If $\int f(x) dx = g(x) + c$, then $\int f(x) g'(x) dx$ - (1) $\int (f(x))^2 dx$ (2) $\int f(x)g(x)dx$ (3) $\int f'(x)g(x)dx$ $(4) \int (g(x))^2 dx$ - (2) If $\int \frac{3^{\frac{1}{x}}}{x^2} dx = k \left(3^{\frac{1}{x}}\right) + c$, then the value of k is - (3) If $\int f'(x)e^{x^2}dx = (x-1)e^{x^2} + c$, then f(x) is - (1) $2x^3 \frac{x^2}{2} + x + c$ (2) $\frac{x^3}{2} + 3x^2 + 4x + c$ (3) $x^3 + 4x^2 + 6x + c$ (4) - (4) The gradient (slope) of a curve at any point (x, y) is $\frac{x^2 4}{x^2}$. If the curve passes through the point (2, 7), then the equation of the curve is point (2, 7), then the equation of the curve is - (5) $\int \frac{e^x(1+x)}{\cos^2(xe^x)} dx \text{ is}$ - (1) $\cot(xe^x) + c$ - (6) $\int \frac{\sqrt{\tan x}}{\sin 2x} dx \text{ is}$ - (2) $2\sqrt{\tan x} + c$ (3) $\frac{1}{2}\sqrt{\tan x} + c$ (1) $\sqrt{\tan x}$ + - (7) $\int \sin^3 x dx$ is (2) $\frac{3}{4}\cos x + \frac{\cos 3x}{12} + c$ - (3) $\frac{-3}{4}\cos x + \frac{\cos 3x}{12} + c$ - (2) $\frac{x^3}{3} + c$ (3) $\frac{3}{x^3} + c$ (4) $\frac{1}{x^2} + c$ - (9) $\int \frac{\sec x}{\sqrt{\cos 2x}} dx \text{ is}$ - (2) $2\sin^{-1}(\tan x) + c$ (3) $\tan^{-1}(\cos x) + c$ (4) $\sin^{-1}(\tan x) + c$ - (10) $\int \tan^{-1} \sqrt{\frac{1-\cos 2x}{1+\cos 2x}} \, dx$ is - (1) $x^2 + c$ - (2) $2x^2 + c$ (3) $\frac{x^2}{2} + c$ (4) $-\frac{x^2}{2} + c$ - (11) $\int 2^{3x+5} dx$ is - (2) $\frac{2^{3x+5}}{2\log(3x+5)} + c$ (3) $\frac{2^{3x+5}}{2\log 3} + c$ - (12) $\int \frac{\sin^8 x \cos^8 x}{1 2\sin^2 x \cos^2 x} \ dx \text{ is}$ - (2) $-\frac{1}{2}\sin 2x + c$ (3) $\frac{1}{2}\cos 2x + c$ (1) $\frac{1}{2}\sin 2x + c$ - (13) $\int \frac{e^x (x^2 \tan^{-1} x + \tan^{-1} x + 1)}{x^2 + 1} dx \text{ is}$ - (1) $e^x \tan^{-1}(x+1) + c$ (2) $\tan^{-1}(e^x) + c$ (3) $e^x \frac{(\tan^{-1}x)^2}{2} + c$ - (14) $\int \frac{x^2 + \cos^2 x}{x^2 + 1} \csc^2 x dx$ is - (1) $\cot x + \sin^{-1} x + c$ - (3) $-\tan x + \cot^{-1} x + c$ - (15) $\int x^2 \cos x \, dx$ is - (1) $x^2 \sin x + 2x \cos x 2 \sin x + c$ - $(2) x^2 \sin x 2x \cos x 2 \sin x$ - (3) $-x^2 \sin x + 2x \cos x + 2 \sin x + c$ - (16) $\int \sqrt{\frac{1-x}{1+x}} dx$ is - (1) $\sqrt{1-x^2} + \sin^{-1} x + c$ - (2) $\sin^{-1} x \sqrt{1 x^2} + c$ - (3) $\log |x + \sqrt{1 + x^2}|$ - (4) $\sqrt{1-x^2} + \log \left| x + \sqrt{1-x^2} \right| + c$ - (17) $\int \frac{dx}{e^x 1}$ is - (1) $\log |e^x| \log |e^x 1| + c$ - (2) $\log |e^x| + \log |e^x 1| + c$ - (3) $\log |e^x 1| \log |e^x| + c$ - (4) $\log |e^x + 1| \log |e^x| + c$ - (18) $\int e^{-4x} \cos x \, dx \text{ is}$ - $(1)\frac{e^{-4x}}{17}[4\cos x \sin x] + c$ - (2) $\frac{e^{-4x}}{17} [-4\cos x + \sin x] + c$ - (3) $\frac{e^{-4x}}{17} [4\cos x + \sin x] + c$ - (4) $\frac{e^{-4x}}{17}[-4\cos x \sin x] + c$ - $(19) \int \frac{\sec^2 x}{\tan^2 x}$ - $(1) 2 \log \left| \frac{1 \tan x}{1 + \tan x} \right| + c$ - (2) $\log \left| \frac{1 + \tan x}{1 \tan x} \right| + c$ - (3) $\frac{1}{2} \log \left| \frac{\tan x + 1}{\tan x 1} \right| + c$ - $(20) \quad \int e^{-7x} \sin 5x \, dx \text{ is}$ - (1) $\frac{e^{-7x}}{74} [-7\sin 5x 5\cos 5x] + c$ - (2) $\frac{e^{-7x}}{74} [7\sin 5x + 5\cos 5x] +$ - (3) $\frac{e^{-tx}}{74} [7 \sin 5x 5 \cos 5x] + c$ - (21) $\int x^2 e^{\frac{x}{2}} dx$ is - (1) $x^2 e^{\frac{x}{2}} 4x e^{\frac{x}{2}} 8e^{\frac{x}{2}} + c$ - (3) $2x^2e^{\frac{x}{2}} 8xe^{\frac{x}{2}} + 16e^{\frac{x}{2}} + c$ - (22) $\int \frac{x+2}{\sqrt{x^2-1}} dx$ is - (1) $\sqrt{x^2 1} 2\log \left| x + \sqrt{x^2 1} \right|$ - (2) $\sin^{-1} x 2\log \left| x + \sqrt{x^2 1} \right| + c$ - (3) $2\log |x + \sqrt{x^2 1}| \sin^{-1} x + c$ - (4) $\sqrt{x^2-1} + 2\log |x + \sqrt{x^2-1}| + c$ - (23) $\int \frac{1}{x\sqrt{(\log x)^2 5}} dx \text{ is}$ - - (2) $\log \left| \log x + \sqrt{\log x 5} \right| + c$ - (3) $\log \left| \log x + \sqrt{(\log x)^2 5} \right| + c$ - (4) $\log \left| \log x \sqrt{(\log x)^2 5} \right| + c$ - (24) $\int \sin \sqrt{x} dx$ is - (1) $2\left(-\sqrt{x}\cos\sqrt{x}+\sin\sqrt{x}\right)+c$ - (2) $2\left(-\sqrt{x}\cos\sqrt{x}-\sin\sqrt{x}\right)+c$ - (3) $2\left(-\sqrt{x}\sin\sqrt{x}-\cos\sqrt{x}\right)+c$ - (4) $2\left(-\sqrt{x}\sin\sqrt{x}+\cos\sqrt{x}\right)+c$ - (25) $\int e^{\sqrt{x}} dx$ is - (1) $2\sqrt{x}(1-e^{\sqrt{x}})+c$ - (2) $2\sqrt{x}(e^{\sqrt{x}}-1)+c$ - (3) $2e^{\sqrt{x}}(1-\sqrt{x})+c$ - (4) $2e^{\sqrt{x}}(\sqrt{x}-1)+c$ | Chapter 12 Introduction to Probability Theory | (19) There are three events <i>A</i> , <i>B</i> and <i>C</i> of which one and only one can happen. If the odds are 7 to 4 against <i>A</i> and 5 to 3 against <i>B</i> , then odds against <i>C</i> is (1) 23: 65 (2) 65: 23 (3) 23: 88 (4) 88: 23 | |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | (1) Four persons are selected at random from a group of 3 men, 2 women and 4 children. The probability that exactly two of them are children is | (20) If a and b are chosen randomly from the set $\{1,2,3,4\}$ with replacement, then the probability | | $ (1) \frac{3}{4} $ (2) $\frac{10}{23}$ (3) $\frac{1}{2}$ (4) $\frac{10}{21}$ | of the real roots of the equation $x^2 + ax + b = 0$ is (1) $\frac{3}{16}$ (2) $\frac{5}{16}$ (3) $\frac{7}{16}$ (4) $\frac{11}{16}$ | | (2) A number is selected from the set $\{1,2,3,,20\}$. The probability that the selected number is divisible by 3 or 4 is | | | (1) $\frac{2}{5}$ (2) $\frac{1}{8}$ (3) $\frac{1}{2}$ (4) $\frac{2}{3}$ | (21) It is given that the events A and B are such that $P(A) = \frac{1}{4}$, $P(A/B) = \frac{1}{2}$ and | | (3) A , B , and C try to hit a target simultaneously but independently. Their respective probabilities | J | | of hitting the target are $\frac{3}{4}$, $\frac{1}{2}$. $\frac{5}{8}$. The probability that the target is hit by A or B but not by C is | (1) $\frac{1}{6}$ (2) $\frac{1}{3}$ (3) $\frac{2}{3}$ (4) $\frac{1}{2}$ | | (1) $\frac{21}{64}$ (2) $\frac{7}{32}$ (3) $\frac{9}{64}$ (4) $\frac{7}{8}$ | (22) In a certain college 4% of the boys and 1% of the girls are taller than 1.8 meter. Further 60% of the students are girls. If a student is selected at random and is taller than 1.8 meters, then | | (4) If A and B are any two events, then the probability that exactly one of them occur is (1) $P(A \cup \overline{B}) + P(\overline{A} \cup B)$ (2) $P(A \cap \overline{B}) + P(\overline{A} \cap B)$ | the probability that the student is a girl is $(1) \frac{2}{11} \qquad (2) \frac{3}{11} \qquad (3) \frac{5}{11}$ $(4) \frac{7}{11}$ | | (3) $P(A) + P(B) - P(A \cap B)$ (4) $P(A) + P(B) + 2P(A \cap B)$ | (23) Ten coins are tossed. The probability of getting at least 8 heads is | | (5) Let A and B be two events such that $P(\overline{A \cup B}) = \frac{1}{4}$. $P(A \cap B) = \frac{1}{4}$ and $P(\overline{A}) = \frac{1}{4}$. Then | $(1)^{\frac{7}{2}}$ $(2)^{\frac{7}{2}}$ $(3)^{\frac{7}{2}}$ | | the events A and B are | (24) The probability of two events <i>A</i> and <i>B</i> are 0.3 and 0.6 respectively. The probability that both | | (1) Equally likely but not independent (2) Independent but not equally likely (3) Independent and equally likely (4) Mutually inclusive and dependent | A and B occur simultaneously is 0.18. The probability that neither A nor B occurs is $(1) 0.1 \qquad (2) 0.72 \qquad (3) 0.42 \qquad (4) 0.28$ | | (6) Two items are chosen from a lot containing twelve items of which four are defective, then the probability that at least one of the item is defective | (25) If m is a number such that $m \le 5$, then the probability that quadratic equation | | $(1) \frac{19}{33} \qquad (2) \frac{10}{33} \qquad (3) \frac{23}{33} \qquad (4) \frac{13}{33}$ | $2x^2 + 2mx + m + 1 = 0$ has real roots is | | (7) A man has 3 fifty rupee notes, 4 hundred rupees notes and 6 five hundred rupees notes in his | (1) $\frac{1}{5}$ (2) $\frac{2}{5}$ (3) $\frac{3}{5}$ (4) $\frac{4}{5}$ | | pocket. If 2 notes are taken at random, what are the odds in favour of both notes being of hundred rupee denomination? | | | (1) 1:12 (2) 12:1 (3) 13:1 (4) 1:13 | | | (8) A letter is taken at random from the letters of the word 'ASSISTANT' and another letter is
taken at random from the letters of the word 'STATISTICS'. The probability that the selected
letters are the same is | | | (1) $\frac{7}{45}$ (2) $\frac{17}{90}$ (3) $\frac{29}{90}$ (4) $\frac{19}{90}$ | | | (9) A matrix is chosen at random from a set of all matrices of order 2, with elements 0 or 1 only. The probability that the determinant of the matrix chosen is non zero will be | | | (1) $\frac{3}{16}$ (2) $\frac{3}{8}$ (3) $\frac{1}{4}$ (4) $\frac{5}{8}$ | | | $(10) \ A bag contains 5 white and 3 black balls. Five balls are drawn successively without replacement.$ | | | The probability that they are alternately of different colours is $(1) \frac{3}{14} \qquad (2) \frac{5}{14} \qquad (3) \frac{1}{14} \qquad (4) \frac{9}{14}$ | | | (1) 14 (2) $\frac{1}{14}$ (3) $\frac{1}{14}$ (4) $\frac{1}{14}$ (11) If A and B are two events such that $A \subset B$ and $P(B) \neq 0$, then which of the following is | | | correct? | | | (1) $P(A/B) = \frac{P(A)}{P(B)}$ (2) $P(A/B) < P(A)$ | | | (3) $P(A/B) \ge P(A)$ (4) $P(A/B) > P(B)$ | | | (12) A bag contains 6 green, 2 white, and 7 black balls. If two balls are drawn simultaneously, then the probability that both are different colours is | | | (1) $\frac{68}{105}$ (2) $\frac{71}{105}$ (3) $\frac{64}{105}$ (4) $\frac{73}{105}$ | | | (13) If <i>X</i> and <i>Y</i> be two events such that $P(X/Y) = \frac{1}{2}$, $P(Y \setminus X) = \frac{1}{3}$ and $P(X \cap Y) = \frac{1}{6}$, then $P(X \cup Y)$ is | | | $(1)\frac{1}{3}$ $(2)\frac{2}{5}$ $(3)\frac{1}{6}$ $(4)\frac{2}{3}$ | | | (14) An urn contains 5 red and 5 black balls. A ball is drawn at random, its colour is noted and is returned to the urn. Moreover, 2 additional balls of the colour drawn are put in the urn and | | | then a ball is drawn at random. The probability that the second ball drawn is red will be $(1) \frac{5}{12} \qquad (2) \frac{1}{2} \qquad (3) \frac{7}{12} \qquad (4) \frac{1}{4}$ | 2,5 | | (15) A number x is chosen at random from the first 100 natural numbers. Let A be the event of | | | numbers which satisfies $\frac{(x-10)(x-50)}{x-30} \ge 0$, then $P(A)$ is | OXFORD | | (1) 0.20 (2) 0.51 (3) 0.71 (4) 0.70 | Since 1996 • :99947 31113 | | (16) If two events A and B are independent such that $P(A) = 0.35$ and $P(A \cup B) = 0.6$, then $P(B)$ is | | | (1) $\frac{5}{13}$ (2) $\frac{1}{13}$ (3) $\frac{4}{13}$ (4) $\frac{7}{13}$ | Name: | | (17) If two events A and B are such that $P(\overline{A}) = \frac{3}{10}$ and $P(A \cap \overline{B}) = \frac{1}{2}$, then $P(A \cap B)$ is | School: | | $(1)\frac{1}{2}$ (2) $\frac{1}{3}$ (3) $\frac{1}{4}$ (4) $\frac{1}{5}$ | | | (18) If A and B are two events such that $P(A) = 0.4$, $P(B) = 0.8$ and $P(B/A) = 0.6$, then | | | $P(\bar{A} \cap B)$ is (1) 0.96 (2) 0.24 (3) 0.56 (4) 0.66 | | OXFORD COACHING CENTRE, IDAPPADI. Cell: 99947 31113. OXFORD COACHING CENTRE, IDAPPADI. Cell: 99947 31113.