Phanmapuni DT

SECOND REVISION EXAMINATION - 2025

CLASS:12

MATHEMATICS

Reg.No

Time: 3.00 Hours

MARKS: 90

SECTION - A

(i) All questions are compulsory.

 $20 \times 1 = 20$

(ii) Each question carries one mark.

(iii)Choose the most suitable answer from the given four alternatives

1. If $x^a y^b = e^m$, $x^c y^d = e^n$, $\Delta_1 = \begin{bmatrix} m & b \\ n & d \end{bmatrix}$, $\Delta_2 = \begin{bmatrix} a & m \\ c & n \end{bmatrix}$, $\Delta_3 = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, then the values of x and y are respectively,

(1) $e^{(\Delta_2/\Delta_1)}$, $e^{(\Delta_3/\Delta_1)}$

(2) $\log (\Delta_1/\Delta_3)$, $\log (\Delta_2/\Delta_3)$

(3) $\log (\Delta_2/\Delta_1)$, $\log (\Delta_3/\Delta_1)$

(4) $e^{(\Delta_1/\Delta_3)}$, $e^{(\Delta_2/\Delta_3)}$

2. The principal argument of $\frac{3}{-1+i}$ is

 $(3) \frac{-3\pi}{}$

3. The number of real numbers in $[0,2\pi]$ satisfying $\sin^4 x - 2\sin^2 x + 1$ is

(1) 2

4. If $\cot^{-1} 2$ and $\cot^{-1} 3$ are two angles of a triangle, then the third angle is

 $(3)^{\frac{\pi}{4}}$

 $(4)^{\frac{\pi}{2}}$

5. If P(x, y) be any point on $16x^2 + 25y^2 = 400$ with foci $F_1(3,0)$ and $F_2(-3,0)$ then $PF_1 + PF_2$ is

(4)12

6. If the distance of the point (1,1,1) from the origin is half of its distance from the plane x+y+z+k=0, then the values of k are

 $(1) \pm 3$

(3) - 3,9

7. The point of inflection of the curve $y = (x - 1)^3$ is

(1)(0,0)

8. Linear approximation for $g(x) = \cos x$ at $x = \frac{\pi}{2}$ is

(1) $x + \frac{\pi}{2}$

(2) $-x + \frac{\pi}{2}$ (3) $x - \frac{\pi}{2}$

9. If $\frac{\Gamma(n+2)}{\Gamma(n)} = 90$ then n is

(1)10

(4)9

10. The integrating factor of the differential equation $\frac{dy}{dx} + y = \frac{1+y}{\lambda}$ is

 $(2)\frac{e^x}{x}$

(3) λe^x (4) e^x

11. Let X represent the difference between the number of heads and the number of tails obtained when a coin is tossed n times. Then the possible values of X are

(1) i + 2n, i = 0,1,2...n

(2) 2i - n, i = 0,1,2...n

(3) n - i, i = 0,1,2 ... n

(4) 2i + 2n, i = 0,1,2...n

12-Maths-Page-1

The flevelom sook

- 12. Which one of the following statements has the truth value T?
 - (i) sinx is an even function.
 - (ii) Every square matrix is non-singular
 - (iii) The product of complex number and its conjugate is purely imaginary
 - (iv) $\sqrt{5}$ is an irrational number
- 13. If $f(x) = \int_1^x \frac{e^{\sin u}}{u} du$, x > 1 and $\int_1^3 \frac{e^{\sin x^2}}{x} dx = \frac{1}{2} [f(a) f(1)]$, then one of the possible value of a is
 - (1)3

- 14. If the planes $\vec{r} \cdot (2\hat{\imath} \lambda\hat{\jmath} + \hat{k}) = 3$ and $\vec{r} \cdot (4\hat{\imath} + \hat{\jmath} \mu\hat{k}) = 5$ are parallel, then the value of λ and μ are
 - $(1)^{\frac{1}{2}}, -2$
- $(3) \frac{1}{2}, -2$
- $(4)\frac{1}{2},2$
- 15. In the case n^{th} roots of unity, identify the correct statements.
 - the roots are in G.P (i)
 - (ii) sum of the roots is zero
 - (iii) Product of the roots is $(-1)^{n+1}$
 - (iv) The roots are lying on a unit circle
 - (1) (i) and (ii) only (2) (ii) and (iii) only
- (3) all
- (4) (i), (ii) and (iii) only
- 16. If $p + \sqrt{q}$ and $-i\sqrt{q}$ are the roots of a polynomial equation with rational coefficients then the least possible degree of the equation is

- (4)4
- 17. The domain of secant function and $\sec^{-1} x$ function are respectively
 - (1) $[0,\pi]\setminus\left\{\frac{\pi}{2}\right\}$ and $\mathbb{R}\setminus(-1,1)$

(2) $\mathbb{Z}\setminus(-1,1)$ and $0,\pi\setminus\left\{\frac{\pi}{2}\right\}$

(3) $[0,\pi] \setminus \left\{ \frac{\pi}{2} \right\}$ and $\{-1,1\}$

- (4) $\mathbb{Z}\setminus\{-1,1\}$ and $0,\pi\setminus\left\{\frac{\pi}{2}\right\}$
- 18. The point of contact of the tangent y = mx + c and the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is

 - $(1)\left(\frac{a^2m}{c},\frac{b^2}{c}\right) \qquad (2)\left(\frac{a^2m}{c},\frac{-b^2}{c}\right)$
- $(3)\left(-\frac{a^2m}{c},\frac{b^2}{c}\right) \qquad (4)\left(-\frac{a^2m}{c},-\frac{b^2}{c}\right)$
- 19. The slant asymptote of $f(x) = \frac{x^2 6x + 7}{x + 5}$ is

 - (1) x + y + 11 = 0 (2) x + y 11 = 0 (3) x = -5 (4) y = x 11

en Mige Of Lake With Kit S.

- 20. Which of the following is not true?
 - A Boolean matrix is a real matrix whose entries are either 0 or 1 (1)
 - The product $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ is a Boolean matrix (2)
 - All identity matrices I_n are Boolean matrices (3)
 - $(4) \qquad \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \vee \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$

SECTION - B

Note: (i) Answer any 7 questions.

 $7 \times 2 = 14$

- (ii) Question No: 30 is compulsory:
- 21. If A is symmetric, prove that adj A is also symmetric.
- 22. Simplify : $i^{59} + \frac{1}{i^{59}}$
- 23. If α , β , γ are the roots of the equation $x^3 + px^2 + qx + r = 0$, find the value of $\sum \frac{1}{\beta \gamma}$ in terms of the coefficients.
- 24. If y = 4x + c is a tangent to the circle $x^2 + y^2 = 9$ find c,
- 25. Prove that the function $f(x) = x^2 2x 3$ is strictly increasing in $(2, \infty)$.
- 26. The relation between number of words y a person learns in x hours is given by $y = 52\sqrt{x}$, $0 \le x \le 9$. What is the approximate number of words learned when x changes from 1 to 1.1 hour?
- 27. Evaluate : $\int_0^{\frac{\pi}{2}} \cos^7 x \, dx$
- 28. The mean and variance of a binomial variate X are respectively 2 and 1.5. Find P(X = 1)
- 29. Let * be defined on \mathbb{R} by (a*b) = a+b+ab-7. Is * binary on \mathbb{R} ? If so, find $3*\left(\frac{-7}{15}\right)$
- 30. Find the angle between the lines: 4x = -3y, z = 0 and $\vec{r} = \hat{\imath} + t(4\hat{\imath} + 3\hat{\jmath})$.

SECTION - C

Note: (i) Answer any Seven Questions.

 $7 \times 3 = 21$

- (ii) Question No.40 is compulsory
- 31. If $A = \begin{bmatrix} 3 & 2 \\ 7 & 5 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & -3 \\ 5 & 2 \end{bmatrix}$, verify that $(AB)^{-1} = B^{-1}A^{-1}$.
- 32. Show that the points $1, \frac{-1}{2} + i\frac{\sqrt{3}}{2}$, and $\frac{-1}{2} i\frac{\sqrt{3}}{2}$ are the vertices of an equilateral triangle.
- 33. Find a polynomial equation of minimum degree with rational coefficients, having $\sqrt{5} \sqrt{3}$ as a root.
- 34. Find the value of $\cos^{-1}\left(\cos\frac{\pi}{7}\cos\frac{\pi}{17}-\sin\frac{\pi}{7}\sin\frac{\pi}{17}\right)$.
- 35. With usual notations, in any triangle ABC, prove by vector method that $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin c}$
- 36. Write the Maclaurin series expansion of the functions: $tan^{-1}(x)$; $-1 \le x \le 1$
- 37. If $w(x,y) = xy + \sin(xy)$, then prove that $\frac{\partial^2 w}{\partial y \partial x} = \frac{\partial^2 w}{\partial x \partial y}$.
- 38. Solve the Linear differential equations: $\cos x \frac{dy}{dx} + y \sin x = 1$
- The probability density function of X is given by $f(x) = \begin{cases} kxe^{-2x} & \text{for } x > 0 \\ 0 & \text{for } x \le 0 \end{cases}$. Find the value of k.
- 40. Evaluate the integrals using properties of integration: $\int_{-5}^{5} \sin\left(\frac{e^{x}-1}{e^{x}+1}\right) dx$

12-Maths-Page-3

SECTION - D

Answer all questions of the following:

$$7 \times 5 = 35$$

41. a) Find the value of k for which the equations kx - 2y + z = 1, x - 2ky + z = -2, x - 2y + kz = 1 have (i) no solution (ii) unique solution (iii) infinitely many solution

(OR)

- b) Solve $tan^{-1}\frac{1-x}{1+x} = \frac{1}{2}tan^{-1}x$ for x > 0.
- 42.a) If $2\cos\alpha = x + \frac{1}{x}$ and $2\cos\beta = y + \frac{1}{y}$, show that

(i)
$$xy - \frac{1}{xy} = 2i \sin(\alpha + \beta)$$
 (ii) $\frac{x^m}{y^n} - \frac{y^n}{x^m} = 2i \sin(m\alpha - n\beta)$

b) If
$$\vec{a} = 2\hat{i} + 3\hat{j} - \hat{k}$$
, $\vec{b} = 3\hat{i} + 5\hat{j} + 2\hat{k}$, $\vec{c} = -\hat{i} - 2\hat{j} + 3\hat{k}$, verify that $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c}$

43. a) Two coast guard stations are located 600km apart at points A(0,0) and B(0,600). A distress signal from a ship at P is received at slightly different times by two stations. It is determined that the ship is 200km farther from station A than it is from station B. Determine the equation of hyperbola that passes through the location of the ship.

(OR)

- b) Evaluate the $\lim_{x\to 0^+} (\cos x)^{\frac{1}{x^2}}$ limits, if necessary use I'Hôpital Rule:
- 44. a) Find the vertex, focus, equation of directrix and length of the latus rectum of the $x^2 2x + 8y + 17 = 0$ (OR)
 - b) If we blow air into a balloon of spherical shape at a rate of $1000cm^3$ per second. At what rate the radius of the baloon changes when the radius is 7cm? Also compute the rate at which the surface area changes.
- 45. a) Find the area of the region bounded by x -axis, the curve $y = |\cos x|$, the lines x = 0 and $x = \pi$.

(OR)

- b) Solve the differential equations: $\frac{dy}{dx} = \frac{y}{x} \cot(\frac{y}{x})\cos(\frac{y}{x})$, $y = \frac{\pi}{4}$ when x = 1
- 46. a) Suppose a person deposits ₹10,000 Indian rupees in a bank account at the rate of 5% per annum compounded continuously. How much money will be in his bank account 18 months later?

(OR)

- b) To prove that $p \to (\neg q \lor r) \equiv \neg p \lor (\neg q \lor r)$
- 47. a) Find the vector parametric, vector non-parametric and Cartesian form of the equation of the plane passing through the points (-1,2,0), (2,2,-1) and parallel to the straight line $\frac{x-1}{1} = \frac{2y+1}{2} = \frac{z+1}{-1}$.

(OR

- b) A six sided die is marked '1' on one face, '2' on two of its faces, and '3' on remaining three faces. The die is rolled twice. If X denotes the total score in two throws,
 - (i) Find the probability mass function
 - (ii) Find the cumulative distribution function
 - (iii) Find $P(3 \le X < 6)$ (iv) Find $P(X \ge 4)$

B. Sugader. M.Sc. P. E. Ph: 81 48406242

12-Maths-Page-4