LONDON SCHOOL

BOOK BACK ONE WORDS 2024-25

Practice Book

Shuffle and Without Answer

PREPARED BY SAMI SIR - 76 39 14 77 27

CHAPTER 1

APPLICATIONS OF MATRICES AND DETERMINANTS

- The rank of the matrix $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ -1 & -2 & -3-4 \end{bmatrix}$ is (c) 4 1. (d) 3
- 2.
- (a) 1 (b) 2 (c) 4 (d) 3

 If $A \begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix}$, then $A = \begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 2 \\ -1 & 4 \end{bmatrix}$ (c) $\begin{bmatrix} 4 & 2 \\ -1 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 4 & -1 \\ 2 & 1 \end{bmatrix}$ If $A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$ then adj(adjA) is

 (a) $\begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} 6 & -6 & 8 \\ 4 & -6 & 8 \\ 0 & -2 & 2 \end{bmatrix}$ (c) $\begin{bmatrix} -3 & 3 & -4 \\ -2 & 3 & -4 \\ 0 & 1 & -1 \end{bmatrix}$ (d) $\begin{bmatrix} 3 & -3 & 4 \\ 0 & -1 & 1 \\ 2 & -3 & 4 \end{bmatrix}$ If A is a non-singular matrix such that $A^{-1} = \begin{bmatrix} 5 & 3 \\ -2 & -1 \end{bmatrix}$ then $(A^T)^{-1}$ (a) $\begin{bmatrix} -5 & 3 \\ 2 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} 5 & 3 \\ -2 & -1 \end{bmatrix}$ (c) $\begin{bmatrix} -1 & -3 \\ 2 & 5 \end{bmatrix}$ (d) $\begin{bmatrix} 5 & -2 \\ 3 & -1 \end{bmatrix}$ If $\rho(A) = \rho([A|B])$, then the system AX = B of linear equations is

 (a) Consistent and has a unique solution (b) consistent
- 4.
- 5. (a) Consistent and has a unique solution (b) consistent (c) Consistent and has infinitely many solution (d) inconsistent If $A = \begin{bmatrix} 2 & 0 \\ 1 & 5 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 4 \\ 2 & 0 \end{bmatrix}$ then $|adj(AB)| = \begin{bmatrix} adj(AB) \\ 1 & 1 \end{bmatrix}$
- 6.
- If A is a 3 × 3 non-singular matrix such that $\overrightarrow{AA}^T = A^T$ and $B = A^{-1}\overrightarrow{A}^T$, then $BB^T = A^T$ 7. (b) B
- If A, B and C are invertible matrices of some order, then which one of the following is not 8.
 - (b) adj(AB) = (adjA)(adjB)(d) $(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$ $(a) adj A = |A|A^{-1}B$
- (c) $detA^{-1} = (detA)^{-1}$ (b) adj(AB) = (adjA)(adjB) (c) $detA^{-1} = (detA)^{-1}$ (d) $(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$ 9. If $(AB)^{-1} = \begin{bmatrix} 12 & -17 \\ -19 & 27 \end{bmatrix}$ and $A^{-1} = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$ then B^{-1} (a) $\begin{bmatrix} 2 & -5 \\ 3 & 8 \end{bmatrix}$ (b) $\begin{bmatrix} 8 & 5 \\ 3 & 2 \end{bmatrix}$ (c) $\begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 8 & -5 \\ -3 & 2 \end{bmatrix}$ 10. If $A^{T}A^{-1}$ is symmetric, then $A^{2} = (a)A^{-1}$ (b) $(A^{T})^{2}$ (c) A^{T} (d) $(A^{-1})^{2}$ 11. If $A = \begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix}$, B = adjA and C = 3A, then $\frac{|adjB|}{|C|} = (a)\frac{1}{3}$ (b) $\frac{1}{9}$ (c) $\frac{1}{4}$ (d) 1 $\begin{bmatrix} \frac{3}{4} & \frac{4}{3} \end{bmatrix}$

- 12. If $A = \begin{bmatrix} \frac{3}{5} & \frac{4}{5} \\ x & \frac{4}{5} \end{bmatrix}$ and $A^{T} = A^{-1}$ then the value of x is $(a) \frac{-4}{5} \qquad (b) \frac{-3}{5} \qquad (c) \frac{3}{5} \qquad (d) \frac{4}{5}$ 13. If $P = \begin{bmatrix} 1 & x & 0 \\ 1 & 3 & 0 \\ 2 & 4 & -2 \end{bmatrix}$ is the adjoint of 3×3 matrix A and |A| = 4, then x is

(a)15(b)12(c)14(d)11

- Which of the following is/are correct? 14.
 - (i) Adjoint of a symmetric matrix is also a symmetric matrix.
 - (ii) Adjoint of a diagonal matrix is also a diagonal matrix.
 - (iii) If Ais a square matrix of order nand λ is a scalar, then $adj(\lambda A) = \lambda^n adj(A)$.
 - (iv) A(adj A) = A(adj A) = |A|I
 - (b)(ii) and (iii) (c)(iii) and (iv)(a) Only (i)
- (d)(i), (ii) and (iv)
- **15.** If $A = \begin{bmatrix} 7 & 3 \\ 4 & 2 \end{bmatrix}$, then $9I A = \begin{bmatrix} 7 & 3 \\ 4 & 2 \end{bmatrix}$
- 16. If $A = \begin{bmatrix} 3 & 1 & -1 \\ 2 & -2 & 0 \\ 1 & 2 & -1 \end{bmatrix}$ and $A^{-1} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$ then the value of a_{23} is

 (a) 0 (b) -2 (c) -3 (d) -117. The augmented matrix of a system of linear equations is $\begin{bmatrix} 1 & 2 & 7 & 3 \\ 0 & 1 & 4 & 6 \\ 0 & 0 & \lambda 7\mu + 5 \end{bmatrix}$. The

system has infinitely many solutions if

- (a) $\lambda = 7, \mu \neq -5$ (b) $\lambda = -7, \mu = 5$ (c) $\lambda \neq 7, \mu \neq -5$, (d) $\lambda = 7, \mu = -5$ 18. If $A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$ and $A(adj A) = \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$, then $k = (a) \ 0$ (b) $\sin \theta$ (c) $\cos \theta$ (d) 1

 19. If $A = \begin{bmatrix} 2 & 3 \\ 5 & -2 \end{bmatrix}$ be such that $\lambda A^{-1} = A$, then λ is
- (a) 17 (b) 14 (c) 19 (d) 21 20. If $adjA = \begin{bmatrix} 2 & 3 \\ 4 & -1 \end{bmatrix}$ and $adjB = \begin{bmatrix} 1 & -2 \\ -3 & 1 \end{bmatrix}$, then adj(AB) is $(a) \begin{bmatrix} -7 & -1 \\ 7 & -9 \end{bmatrix} \qquad (b) \begin{bmatrix} -6 & 5 \\ -2 & -10 \end{bmatrix} \qquad (c) \begin{bmatrix} -7 & 7 \\ -1 & -9 \end{bmatrix} \qquad (d) \begin{bmatrix} -6 & -2 \\ 5 & -10 \end{bmatrix}$
- **21.** If $x^a y^b = e^m$, $x^c y^d = e^n$, $\Delta_1 = \begin{bmatrix} m & b \\ n & d \end{bmatrix}$, $\Delta_2 = \begin{bmatrix} a & m \\ c & n \end{bmatrix}$, $\Delta_3 = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ then the values of x and y are respectively,
 - (a) $e^{(\Delta_2/\Delta_1)}$, $e^{(\Delta_3/\Delta_1)}$

- (b) $log(\Delta_1/\Delta_3)$, $log(\Delta_2/\Delta_3)$ 3 (d) $e^{(\Delta_1/\Delta_3)}$, $e^{(\Delta_2/\Delta_3)}$
- (c) $log(\Delta_2/\Delta_1)$, $log(\Delta_3/\Delta_1)$
- If $0 \le \theta \le \pi$ and the system of equations $x + (\sin \theta)y (\cos \theta)z = 0$, $(\cos \theta)x y + (\sin \theta)y (\cos \theta)z = 0$ z = 0, $(\sin \theta)x - y + z = 0$ has a non-trivial solution then θ is

- $z = 0, (\sin \theta)x y + z = 0 \text{ has a non-trivial solution then } \theta \text{ is}$ $(a) \frac{2\pi}{3} \qquad (b) \frac{3\pi}{4} \qquad (c) \frac{5\pi}{6} \qquad (d) \frac{\pi}{4}$ 23. If $A = \begin{bmatrix} 1 & \tan \frac{\theta}{2} \\ -\tan \frac{\theta}{2} & 1 \end{bmatrix}$ and AB = I, then $B = (a) \left(\cos^2 \frac{\theta}{2}\right) A \qquad (b) \left(\cos^2 \frac{\theta}{2}\right) A^T \qquad (c) \left(\cos^2 \theta\right) I \qquad (d) \left(\sin^2 \frac{\theta}{2}\right) A$ 24. Let $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ and $AB = \begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & x \\ -1 & 1 & 3 \end{bmatrix}$. If B is the inverse of A, then the value
 - of x is (a) 2 (b) 4 (c) 3
- (d) 1 If $|adj(adj A)| = |A|^9$, then the order of the square matrix A is 25.
- (a)3 (b)4 (c)2 (d)5

CHAPTER 2

COMPLEX NUMBERS

			2	
1.	The product of all four	r values of $(\cos^{\frac{\pi}{2}} + \sin^{\frac{\pi}{2}})$	$(n - 1)^{\frac{3}{4}}$ is	
	(a) - 2	(b)-1 3		(d)2
2.	The conjugate of a cor		Then, the complex nu	mber is
	$(a) \frac{1}{i+2}$	$(b) \frac{-1}{i+2}$		$(d) \frac{1}{i-2}$
3.	If α and β are the root	$\lim_{i \to 0} \frac{1}{i+2} = 0$. to	then $\alpha^{2020} + \beta^{2020}$ is	i-2
-	(a) - 2	(b) - 1		(<i>d</i>)2
4.	If $ z_1 = 1$, $ z_2 = 2$, $ z_3 $	$ z_3 = 3$ and $ 9z_1z_2 + 4z_3 $	$ z_1 z_3 + z_2 z_3 = 12$,the	n the value of
	$ z_1 + z_2 + z_3 $ is	(1.)2	(-)2	(1) 4
_	(a)1	(b)2	(c)3	(d)4
5.	If $\frac{z-1}{z+\frac{1}{4}}$ is purely imagin	ary, then $ z $ is		
	(a) $\frac{1}{2}$	(b) 1	(c) 2	(d) 3
_	- 2π ,		$ z+1 \omega$	ω^2
6.	If $\omega = \operatorname{cis} \frac{2\pi}{3}$, then the	number of distinct ro	pots of $\left \begin{array}{cc} \omega & z + \omega^2 \end{array}\right $	1 = 0
	(a)1	(b)2	(c)3	(d)4
7.	If z is a non zero comp			(4) 1
	(a) $\frac{1}{2}$	(b) 1		(d) 3
8.	The value of $\sum_{i=1}^{13} (i^n + \sum_{i=1}^{13} (i^n + \sum_{i=1}^{13$			
0.	(a)1+i		(c)1	(<i>d</i>)0
9.	If $\left z - \frac{3}{z}\right = 2$, then the	least value of z is		
	(a) 1	(b) 2	(c) 3	(d) 5
10.	If $ z = 1$, then the value	` '		
	(a) z	$(b) \bar{z}$	$(c)\frac{1}{z}$	(d) 1
11	$i^n + i^{n+1} + i^{n+2} + i^{n+4}$			(u) 1
11.	(a) 0	(b) 1	(c) - 1	(d) i
12.	The principal argume	` '	(0) 1	(4) !
	_		τ $(1)^{-\pi}$	
	$(a)\frac{-5\pi}{6}$	$(b)^{\frac{-2\pi}{3}}$ $(c)^{\frac{-3\pi}{4}}$		
13.	If z is a complex numb	er such that $z \in C \setminus R$	and $z + \frac{1}{z} \in R$, then	z is
	(a) 0	(b) 1	(c) 2	(d) 3
14.	If $z = x + iy$ is a comp			
15.	(a) real axis If $ z - 2 + i \le 2$, then	(b) imaginary axis		(d) circle
10.			$(c)\sqrt{5}-2$	$(d)\sqrt{5} + 2$
16.				dz + izin the Argand's
	diagram is			

 $(b)|z|^2$ $(d)2|z|^2$

The principal argument of $(\sin 40^\circ + i \cos 40^\circ)$ is $(a) - 110^\circ$ $(b) - 70^\circ$ (c) 70

$$(a) - 110^{\circ}$$
 $(b) - 70^{\circ}$

$$\frac{(h) - 70^{\circ}}{(c) 70^{\circ}}$$

(d)
$$110^{\circ}$$

If $z = \frac{(\sqrt{3}+i)^3(3i+4)^2}{(8+6i)^2}$, then |z|is equal to

19. The principal argument of the complex number $\frac{(1+i\sqrt{3})^2}{4i(1-i\sqrt{3})}$ is

(a)
$$\frac{2\pi}{3}$$

(b)
$$\frac{\pi}{6}$$

$$(c) \frac{5\pi}{c}$$

$$(d)^{\frac{\pi}{2}}$$

The solution of the equation |z| - z = 1 + 2iis 20.

$$(a)^{\frac{3}{2}} - 2i$$

$$(b)^{\frac{-3}{2}} + 2i$$

$$(c) 2 - \frac{3}{2}i$$

(d)
$$2 + \frac{3}{2}i$$

The solution of the equation |z| - z - 1 + 2iis $(a) \frac{3}{2} - 2i \qquad (b) \frac{-3}{2} + 2i \qquad (c) 2 - \frac{3}{2}i \qquad (d) 2 + \frac{3}{2}i$ If $\omega \neq 1$ is a cubic root of unity and $\begin{vmatrix} 1 & 1 & 1 \\ 1 & -\omega^2 - 1 & \omega^2 \\ 1 & \omega^2 & \omega^7 \end{vmatrix} = 3k$, then k is equal to

$$(b) - 1$$

$$(c)\sqrt{3}i$$

$$(d) - \sqrt{3}$$

If (1+i)(1+2i)(1+3i)...(1+ni) = x+iy, then 2.5.10.... $(1+n^2)$ is 22. $(c)x^2 + y^2$ (*b*)*i*

Let z_1 , z_2 and z_3 be complex numbers such that $z_1 + z_2 + z_3 = 0$ and $|z_1| = |z_2| = |z_3| = 0$ 1, then $z_1^2 + z_2^2 + z_3^2$ is

24. If $\omega \neq 1$ is a cubic root of unity and $(1 + \omega)^7 = A + B\omega$, then (A, B) equals (a) (1,0) (b) (-1,1) (c) (0,1) (d) (1,1)25. The value of $\left(\frac{1+\sqrt{3}i}{1-\sqrt{3}i}\right)^{10}$ is

(a) $cis\frac{2\pi}{3}$ (b) $cis\frac{4\pi}{3}$ (c) $-cis\frac{2\pi}{3}$ (d) $-cis\frac{4\pi}{3}$

(a)
$$cis \frac{2\pi}{3}$$

(b)
$$cis \frac{4\pi}{3}$$

$$(c) - cis \frac{2\pi}{3}$$

$$(d) - cis \frac{4\pi}{2}$$

CHAPTER 3

THEORY OF EQUATIONS

If α , β and γ are the roots of $x^3 + px^2 + qx + r = 0$, then $\sum_{\alpha=0}^{\infty} x^{\alpha} = 0$ 1.

(a)
$$\frac{-q}{r}$$

$$(b) \frac{-p}{r}$$

$$(c) \frac{q}{r}$$

$$(d)^{\frac{-q}{n}}$$

The number of real numbers in $[0,2\pi]$ satisfying $\sin^4 x - 2\sin^2 x + 1$ is 2.

If f and g are polynomials of degrees m and n respectively, and if $h(x) = (f \circ g)(x)$, then 3. the degree of *h* is

(a) mn

(b) m + n

 $(c)m^n$

The polynomial $x^3 - kx^2 + 9x$ has three real roots if and only if, ksatisfies 4.

(*b*) k = 0

(c) |k| > 6

 $(d) |k| \ge 6$

5. According to the rational root theorem, which number is not possible rational root of $4x^7 + 2x^4 - 10x^3 - 5$?

(a) -1 (b) $\frac{5}{4}$ (c) $\frac{4}{5}$ (c) $\frac{4}{5}$ (c) The number of positive roots of the polynomial $\sum_{j=0}^{n} {}^{n}C_{r}(-1)^{r}x^{r}$ is 6.

(b) n

If $x^3 + 12x^2 + 10ax + 1999$ definitely has a positive root, if and only if 7.

 $(a) a \geq 0$

(b) a > 0

(c) a < 0

(d) $a \leq 0$

8. A polynomial equation in x of degree n always has

(a) *n* distinct roots

(b) n real roots

(c) n imaginary roots (d) at most one root.

A zero of $x^3 + 64$ is 9.

(a)0

(c)4i

(d) - 4

The polynomial $x^3 + 2x + 3$ has 10.

(a) one negative and two real roots

(c) three real roots

(b) one positive and two imaginary roots

(d) no solution

CHAPTER 4 INVERSE TRIGONOMETRIC FUNCTIONS

The domain of the function defined by $f(x) = \sin^{-1} \sqrt{x-1}$ is 1.

(a)[1,2]

(b)[-1,1]

(d)[-1,0]

 $\sin^{-1}\left(\tan\frac{\pi}{4}\right) - \sin^{-1}\left(\sqrt{\frac{3}{x}}\right) = \frac{\pi}{6}$. Then x is a root of the equation 2.

(a) $x^2 - x - 6 = 0$

 $(b) x^2 - x - 12 = 0$

 $(c)x^2 + x - 12 = 0$

 $(d)x^2 + x - 6 = 0$

If $\cot^{-1}(\sqrt{\sin \alpha}) + \tan^{-1}(\sqrt{\sin \alpha})$, then $\cos 2u$ is equal to 3.

(d) $\tan 2\alpha$

If $\sin^{-1}\frac{x}{5} + \csc^{-1}\left(\frac{5}{4}\right) = \frac{\pi}{2}$, then the value of x is 4.

(d)3

(a)4 (b)5 (c)2 $\sin^{-1}\frac{3}{5} - \cos^{-1}\frac{12}{13} + \sec^{-1}\frac{5}{3} - \csc^{-1}\frac{13}{12}$ is equal to

 $(b) \pi$

(d) $\tan^{-1}\frac{12}{65}$

If $\sin^{-1} x = 2 \sin^{-1} \alpha$ has a solution, then 6.

 $(b) |\alpha| \ge \frac{1}{\sqrt{2}}$

 $(d) |\alpha| > \frac{1}{\sqrt{2}}$

If $\cot^{-1} x = \frac{2\pi}{5}$ for some $x \in R$, the value of $\tan^{-1} x$ is

(a) $\frac{-\pi}{10}$ (b) $\frac{\pi}{5}$ (c) $\frac{\pi}{10}$ If $x = \frac{1}{5}$, the value of $\cos(\cos^{-1} x + 2\sin^{-1} x)$ is 8.

 $\tan^{-1}\left(\frac{1}{4}\right) + \tan^{-1}\left(\frac{2}{9}\right)$ is equal to

(a) $\frac{1}{2}\cos^{-1}\left(\frac{3}{5}\right)$ (b) $\frac{1}{2}\sin^{-1}\left(\frac{3}{5}\right)$ (c) $\frac{1}{2}\tan^{-1}\left(\frac{3}{5}\right)$ (d) $\cos^{-1}\left(\frac{1}{2}\right)$

If the function $f(x) = \sin^{-1}(x^2 - 3)$, then x belongs to

(a)[-1,1]

(b) $[\sqrt{2}, 2]$

 $(c)\left[-2,-\sqrt{2}\right]\cup\left[\sqrt{2},2\right]$

 $(d)\left[-2,-\sqrt{2}\right]\cap\left[\sqrt{2},2\right]$

11. If $\cot^{-1} 2$ and $\cot^{-1} 3$ are two angles of a triangle, then the third angle is

The equation $\tan^{-1} x - \cot^{-1} x = \tan^{-1} \left(\frac{1}{\sqrt{3}}\right) x$ has

(a) no solution

(b) unique solution

(c) two solutions

(d) infinite number of solutions

13.	The value of sin-	$c^{-1}(\cos x)$, 0	$\leq x \leq \pi$ is
-----	-------------------	----------------------	----------------------

(a)
$$\pi - x$$

(b)
$$x - \frac{\pi}{2}$$

(c)
$$\frac{\pi}{2} - \chi$$

(d)
$$x - \pi$$

14.
$$\sin^{-1}(2\cos^2 x - 1) + \cos^{-1}(1 - 2\sin^2 x) =$$

$$(a) \frac{\pi}{2}$$

(b)
$$\frac{\pi}{3}$$

$$(c)^{\frac{\pi}{4}}$$

$$(d)^{\frac{\pi}{6}}$$

13. The value of shift
$$(\cos x)$$
, $0 \le x \le \pi$ is
$$(a) \pi - x \qquad (b) x - \frac{\pi}{2} \qquad (c) \frac{\pi}{2} - x$$
14. $\sin^{-1}(2\cos^2 x - 1) + \cos^{-1}(1 - 2\sin^2 x) = (a) \frac{\pi}{2} \qquad (b) \frac{\pi}{3} \qquad (c) \frac{\pi}{4}$
15. If $|x| \le 1$, then $2\tan^{-1} x - \sin^{-1} \frac{2x}{1+x^2}$ is equal to
$$(a) \tan^{-1} x \qquad (b) \sin^{-1} x \qquad (c) 0$$

(a)
$$tan^{-1}x$$

(b)
$$\sin^{-1} x$$

$$(d) \pi$$

16. If
$$\sin^{-1} x + \cot^{-1} \left(\frac{1}{2}\right) = \frac{\pi}{2}$$
, then *x* is equal to

(a)
$$\frac{1}{2}$$

$$(b) \frac{1}{\sqrt{\epsilon}}$$

$$(c)^{\frac{2}{\sqrt{c}}}$$

$$(d) \frac{\sqrt{3}}{2}$$

17. If
$$\sin^{-1} x + \sin^{-1} y = \frac{2\pi}{3}$$
 then $\cos^{-1} x + \cos^{-1} y$ is equal to

(a)
$$\frac{2\pi}{3}$$

$$(b)^{\frac{\pi}{2}}$$

$$(c)^{\frac{\pi}{c}}$$

$$(d) \pi$$

(a)
$$\frac{2\pi}{3}$$
 (b) $\frac{\pi}{3}$
18. $\sin^{-1}(\cos x) = \frac{\pi}{2} - x$ is valid for

$$(a) - \pi \le x \le 0$$

$$(b)0 \le x \le \pi$$

$$(c)^{\frac{-\pi}{2}} \le x \le \frac{\pi}{2}$$

$$(d)^{\frac{-\pi}{4}} \le x \le \frac{3\pi}{4}$$

16. Sin
$$-(\cos x) = \frac{1}{2} - x$$
 is valid for
$$(a) - \pi \le x \le 0 \qquad (b)0 \le x \le \pi \qquad (c)\frac{-\pi}{2} \le x \le \frac{\pi}{2} \qquad (d)\frac{-\pi}{4} \le x \le \frac{3\pi}{4}$$
19. If $\sin^{-1} x + \sin^{-1} y + \sin^{-1} z = \frac{3\pi}{2}$, the value of $x^{2017} + y^{2018} + z^{2019} - \frac{9}{x^{101} + y^{101} + z^{101}}$ is
$$(a) 0 \qquad (b) 1 \qquad (c) 2 \qquad (d) 3$$

$$(c)$$
 2

20. $\sin(\tan^{-1} x)$, |x| < 1 is equal to

(a)
$$\frac{x}{\sqrt{1-x^2}}$$

(a)
$$\frac{x}{\sqrt{1-x^2}}$$
 (b) $\frac{1}{\sqrt{1-x^2}}$

(c)
$$\frac{1}{\sqrt{1+x^2}}$$

(c)
$$\frac{1}{\sqrt{1+x^2}}$$
 (d) $\frac{x}{\sqrt{1+x^2}}$

CHAPTER 5

TWO DIMENSIONAL ANALYTICAL GEOMETRY- II

1. The area of quadrilateral formed with foci of the hyperbolas
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 and $\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$ is

$$(a) 4(a^2 + b^2)$$

(b)
$$2(a^2 + b^2)$$

(c)
$$a^2 + b^2$$

$$(d) \frac{1}{2}(a^2+b^2)$$

The ellipse $E_1: \frac{x^2}{9} + \frac{y^2}{4} = 1$ is inscribed in a rectangle R whose sides are parallel to the 2. coordinate axes. Another ellipse E_2 passing through the point (0,4) circumscribes the rectangle *R*. The eccentricity of the ellipse is

(a)
$$\frac{\sqrt{2}}{2}$$

$$(b) \frac{\sqrt{3}}{2}$$

$$(c)^{\frac{1}{2}}$$

$$(d)^{\frac{3}{4}}$$

(a) $\frac{\sqrt{2}}{2}$ (b) $\frac{\sqrt{3}}{2}$ (c) $\frac{1}{2}$ (d) $\frac{3}{4}$ The eccentricity of the hyperbola whose latus rectum is 8 and conjugate axis is equal to 3. half the distance between the foci is

$$(a)^{\frac{4}{3}}$$

(b)
$$\frac{4}{\sqrt{3}}$$

(c)
$$\frac{2}{\sqrt{3}}$$

$$(d)^{\frac{3}{2}}$$

(a) $\frac{4}{3}$ (b) $\frac{4}{\sqrt{3}}$ (c) $\frac{2}{\sqrt{3}}$ (d) $\frac{3}{2}$ The length of the diameter of the circle which touches the x –axis at the point (1,0) and 4. passes through the point (2,3).

$$(a)^{\frac{6}{5}}$$

$$(d)^{\frac{3}{5}}$$

- (a) $\frac{6}{5}$ (b) $\frac{5}{3}$ (c) $\frac{10}{3}$ (d) $\frac{3}{5}$ If the coordinates at one end of a diameter of the circle $x^2 + y^2 8x 4y + c = 0$ are 5. (11,2) the coordinates of the other end are
 - (a)(-5,2)
- (b)(2,-5)
- (c)(5,-2)
- The radius of the circle passing through the point (6,2) two of whose diameter are x + 16. y = 6 and x + 2y = 4 is

	(a) 10	(b) $2\sqrt{5}$		(d) 4
7.	If the normals of the p			
	tangents to the circle	$(x-3)^2 + (y+2)^2 =$	= r^2 , then the value o	f r^2 is
	(a) 2	(b) 3	(c) 1	(d) 4
8.	Consider an ellipse w	nose centre is of the o	rigin and its major as	x is along x —axis. If
	itseccentrcity is 35 an	d the distance betwee	en its foci is 6, then th	ne area of the
	quadrilateral inscribe	d in the ellipse with d	liagonals as major an	d minor axis of the
	ellipse is			
	(a) 8	(b) 32	(c) 80	(d) 40
9.	Area of the greatest re	ectangle inscribed in t	the ellipse $\frac{x^2}{3} + \frac{y^2}{13} = 1$	lis
	(a) 2ab			a
4.0	• •			$(d)\frac{a}{b}$
10.		4x + 8y + 5 intersects	s the line $3x - 4y = 7$	m at two distinct points
	if $(a) 15 < m < 65$		(b) 2F < m < 0F	
	(a) $15 < m < 65$ (c) $-85 < m < -35$		(b) 35 < m < 85 (d) - 35 < m < -1	r
11.	` /			and $F_2(-3.0)$ then PF_1 +
11.	PF_2 is	01110x + 25y = 4	FUU WILLI TUCL $r_1(3,0)$	and $r_2(-3,0)$ then $r_1 +$
	(a) 8	(b) 6	(c) 10	(d) 12
12.	• •			ouching y – axis is x^2 +
14.	$y^2 - 5x - 6y + 9 + \lambda$			dening y axis is x
	(a) $0, \frac{-40}{9}$	(b) 0	$(c) \frac{40}{9}$	$(d)^{-40}$
12	7		7	7
13.			$+ y^2 - 2x - 2y + 1$	= 0 which is parallel to
	the line $2x + 4y = 3$ i (a) $x + 2y = 3$	$\binom{h}{x} + 2y + 3 = 0$	$(c)2x \pm 4y \pm 3 = 0$	(d)x - 2y + 3 = 0
14.				straight line $2x - y = 1$.
	One of the points of co			
	(a) $\left(\frac{9}{2\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)$	(b) $\left(\frac{-9}{2\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$	$(c) \left(\frac{9}{2\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$	$(d)\left(3\sqrt{3},2\sqrt{2}\right)$
15.	The equation of the ci			
13.	The equation of the cr	icle passing unrough	the foci of the empse	$\frac{1}{16}$ $\frac{1}{9}$ $\frac{1}{9}$ I having
	centre at $(0,3)$ is $(a) x^2 + y^2 - 6y - 7$	0	(b) $x^2 + y^2 - 6y +$	7 0
	(a) $x + y - 6y - 7$ (c) $x^2 + y^2 - 6y - 5$		$(b) x + y - 6y + (d) x^2 + v^2 - 6v +$	
16.	Let C be the circle wit			
10.				ternally, then the radius
	of <i>T</i> is equal to	agn the origin and tot	tening the chere o ex	ternany, then the radius
		$\sqrt{3}$	() 1	(J) 1
	$(a) \frac{\sqrt{3}}{\sqrt{2}}$	(b) $\frac{\sqrt{3}}{2}$	_	$(d)^{\frac{1}{4}}$
17.	The eccentricity of the	e ellipse $(x-3)^2 + (y)^2$	$(y-4)^2 = \frac{y^2}{9}$ is	
	_	(b) $\frac{1}{3}$		$(d) \frac{1}{}$
40	2		•	•
18.			$\mathfrak{a} F$ its foci and the ai	ngle FBF' is a right angle.
	Then the eccentricity	4	. 1	(p. 1
	(a) $\frac{1}{\sqrt{2}}$	4	$(c)^{\frac{1}{4}}$	γο
19.	If the two tangents dr	awn from a point P to	the parabola $y^2 = 4$	x are at right angles
	then the locus of P is	<i>(</i> 1)	() 0	
	(a) 2x + 1 = 0	(b) x = -1	(c)2x - 1 = 0	(d)x = 1

- 20. If x + y = k is a normal to the parabola y² = 12x, then the value of k is

 (a) 3
 (b) -1
 (c) 1
 (d) 9

 21. The circle passing through (1, -2) and touching the axis of x at (3,0) passing through the point
- (a) (-5,2) (b) (2,-5) (c) (5,-2) (d) (-2,5)22. The locus of a point whose distance from (-2,0) is $\frac{2}{3}$ times its distance from the line x = -9 is
- $\stackrel{\scriptstyle 2}{(a)}$ a parabola $\stackrel{\scriptstyle 2}{(b)}$ a hyperbola $\stackrel{\scriptstyle 2}{(c)}$ an ellipse $\stackrel{\scriptstyle 2}{(d)}$ a circle
- 23. The values of m for which the line $y = mx + 2\sqrt{5}$ touches the hyperbola $16x^2 9y^2 = 144$ are the roots of $x^2 (a+b)x 4 = 0$ then the value of (a+b) is (a) 2 (b) 4 (c) 0 (d) 2
- (a) 2 (b) 4 (c) 0 (d) -2 **24.** The radius of the circle $3x^2 + by^2 + 4bx - 6by + b^2 = 0$ is (a) 1 (b) 3 (c) $\sqrt{10}$ (d) $\sqrt{11}$
- **25.** The centre of the circle inscribed in a square formed by the lines $x^2 8 12 = 0$ and $y^2 14y + 45 = 0$ is (a) (4,7) (b) (7,4) (c) (9,4) (d) (4,9)

CHAPTER 6

APPLICATIONS OF VECTOR ALGEBRA

- 1. If the direction cosines of a line are $\frac{1}{c}$, $\frac{1}{c}$, $\frac{1}{c}$, then $(a) c = \pm 3 \qquad (b) c = \pm \sqrt{3} \qquad (c) c > 0 \qquad (d) 0 < c < 1$
- 2. If a vector $\vec{\alpha}$ lies in the plane of $\vec{\beta}$ and $\vec{\gamma}$, then $(a) \left[\vec{\alpha}, \vec{\beta}, \vec{\gamma} \right] = 1 \qquad (b) \left[\vec{\alpha}, \vec{\beta}, \vec{\gamma} \right] = -1 \qquad (c) \left[\vec{\alpha}, \vec{\beta}, \vec{\gamma} \right] = 0 \qquad (d) \left[\vec{\alpha}, \vec{\beta}, \vec{\gamma} \right] = 2$
- 3. Distance from the origin to the plane 3x 6y + 2z + 7 = 0 is
 (a) 0 (b) 1 (c) 2 (d) 3
- **4.** If \vec{a} , \vec{b} , \vec{c} are three unit vectors such that \vec{a} is perpendicular to \vec{b} , and is parallel to \vec{c} then $\vec{a} \times (\vec{b} \times \vec{c})$ is equal to
- $(a) \vec{a} \qquad \qquad (b) \vec{b} \qquad \qquad (c) \vec{c} \qquad \qquad (d) \vec{0}$
- 5. If the planes $\vec{r} \cdot (2\vec{\imath} \lambda \vec{\jmath} + \vec{k}) = 3$ and $\vec{r} \cdot (4\vec{\imath} + \vec{\jmath} \mu \vec{k}) = 5$ are parallel, then the value of λ and μ are
- (a) $\frac{1}{2}$, -2 (b) $\frac{-1}{2}$, 2 (c) $\frac{-1}{2}$, -2 (d) $\frac{1}{2}$, 2
- 6. The volume of the parallelepiped with its edges represented by the vectors $\vec{t} + \vec{j}$, $\vec{t} + 2\vec{j}$, $\vec{t} + \vec{j} + \pi \vec{k}$ is
- $(a) \frac{\pi}{2}$ $(b) \frac{\pi}{3}$ $(c) \pi$ $(d) \frac{\pi}{4}$
- 7. If $\vec{a} = \vec{i} + \vec{j} + \vec{k}$, $\vec{b} = \vec{i} + \vec{j}$, $\vec{c} = \vec{i}$ and $(\vec{a} \times \vec{b}) \times \vec{c} = \lambda \vec{a} \times \mu \vec{b}$, then the value of $\lambda + \mu$ is (a) 0 (b) 1 (c) 6 (d) 3
- (a) 0 (b) 1 (c) 6 (a) 3 8. If $[\vec{a}, \vec{b}, \vec{c}] = 1$, then the value of $\frac{\vec{a}.(\vec{b} \times \vec{c})}{(\vec{c} \times \vec{a}).\vec{b}} + \frac{\vec{b}.(\vec{c} \times \vec{a})}{(\vec{c} \times \vec{b}).\vec{c}} + \frac{\vec{c}.(\vec{a} \times \vec{b})}{(\vec{c} \times \vec{b}).\vec{a}}$ is

 (a) 1 (b) -1 (c) 2 (d) 3
- 9. If \vec{a} and \vec{b} are parallel vectors, then $[\vec{a}, \vec{c}, \vec{b}]$ is equal to
 (a) 2 (b) -1 (c) 1 (d) 0

		ORAT	HANADU	
10.	If \vec{a} , \vec{b} , \vec{c} are three no	n-coplanar vectors	such that $\vec{a} \times (\vec{b} \times \vec{c}) =$	$\frac{\vec{b}+\vec{c}}{\sqrt{2}}$, then the angle
	between $ec{a}$ and $ec{b}$ is			V 2
	(a) $\frac{\pi}{2}$	$(b)^{\frac{3\pi}{4}}$	(c) $\frac{\pi}{4}$	$(d) \pi$
11.	If the volume of the p	parallelepiped with	$\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}$ as co	terminous edges is 8
			llelepiped with $(\vec{a} \times \vec{b})$	
	$(\vec{c} \times \vec{a})$ and $(\vec{c} \times \vec{a})(\vec{c} \times \vec{a})$			
			its (c) 64 cubic units	(d) 24 cubic units
12.			$ne x + 3y - \alpha z + \beta = 0$	
	(a)(-5,5)	(\bar{b}) (-6,7)	(c)(5,-5)	(d)(6,-7)
13.	If \vec{a} and \vec{b} are unit ve	ctors such that $[\vec{a}, \vec{b}]$	$[\vec{b}, \vec{a} \times \vec{b}] = \frac{\pi}{4}$, then the an	ngle between \vec{a} and \vec{b} is
	$(a) \frac{\pi}{6}$		_	$(d)^{\frac{\pi}{2}}$
14.	If $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} =$	T	J	2
	$(a) \vec{a} \vec{b} \vec{c} $			(d) - 1
15				
13.	15. If $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \times \vec{c}$, where $\vec{a}, \vec{b}, \vec{c}$ are any three vectors such that $\vec{b} \cdot \vec{c} \neq 0$ and $\vec{a} \cdot \vec{b} \neq 0$, then \vec{a} and \vec{c} are			
	$a. b \neq 0$, then a and a (a) perpendicular	c are	(b) parallel	
	(c) inclined at an ang	ole #	(d) inclined at an a	$ngle \frac{\pi}{}$
16.				3, then $\{[\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{c}\}$
10.	2	anai, non-zero vec	[0] Such that $[a, b, c]$ –	5, then $\{[a \times b, b \times c, c \times$
	\vec{a}] 2 is equal to	(h) 0	(a) 27	(4)10
17	(a) 81	(b) 9	(c) 27 $z = 2 \text{ and } \frac{x-1}{1} = \frac{2y+3}{3} = \frac{2y+3}{3}$	(<i>u</i>)18 z+5
17.	The angle between the π	the lines $\frac{\pi}{3} = \frac{\pi}{-2}$,	$z = 2$ and $\frac{\pi}{1} = \frac{\pi}{3} = \frac{\pi}{3}$	$\frac{1}{2}$ IS
	U	7	$(c) \frac{\pi}{3}$	2
18.		ne line $\vec{r} = (\vec{\imath} + 2\vec{\jmath} - \vec{\imath})$	$-3\vec{k}$) + t (2 \vec{i} + \vec{j} – 2 \vec{k}) \vec{k}	and the plane \vec{r} . $(\vec{i} + \vec{j})$ +
	4 = 0 is	(1) 200	() 450	(I) 000
10	· /	` '	$(c) 45^{\circ}$	
19.	_		line $\vec{r} = (6\vec{\imath} - \vec{\jmath} + 3\vec{k}) +$	$-t(-t+4\kappa)$ meets the
	plane \vec{r} . $(\vec{i} + \vec{j} - \vec{k}) =$		(a) (1.2 6)	(d) (E 11)
20.	(a) $(2,1,0)The distance between$		(c) $(1,2,-6)$ y + 3z + 7 = 0 and $2x + 1$	
20.			$(c) \frac{\sqrt{7}}{2}$	
	2 y 2	<u> </u>	<u> </u>	2 4 2
21.			$=3\vec{\imath}+5\vec{\jmath}-\vec{k}$, then a vec	tor perpendicular to \vec{a}
	and lies in the plane			_ →
	$(a) - 17\vec{\imath} + 21\vec{\jmath} - 97$		(b) $17\vec{i} + 21\vec{j} - 12\vec{i}$	
	$(c) - 17\vec{\imath} - 21\vec{\jmath} + 97$		$(d) - 17\vec{i} - 21\vec{j} - 9$	
22.	_	$\vec{r} = (\vec{\imath} - 2\vec{\jmath} - k) +$	$t(6\vec{\imath}-\vec{k})$ represents a s	straight line passing
	through the points $(a)(0.6 - 1)$ and $(1.6 - 1)$	2 1)	(h)(06 1) and (1 / 2)
	(a)(0,6,-1) and $(1,-1)$		(b)(0,6,-1) and $(-(d)(1,-2,-1)$ and	, , ,
	(v)(x) = (v)(x)	-,-, - ,	$(\omega_j(x), u)$	(~) ~) ~ /

		<u> </u>		
23.	Consider the ve	ctors \vec{a} , \vec{b} , \vec{c} , \vec{d} such tha	at $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d})$ =	$= \vec{0}$ Let P_1 and P_2 be the planes
	determined by tand P_2 is	the pairs of vectors \vec{a} ,	$ec{b}$ and $ec{c}$, $ec{d}$ respectivel	ly. Then the angle between P_1
	$(a) 0^{\circ}$	(b) 45°	(c) 60°	(d) 90°
24.	` '	()	` '	its distance from the plane
		= 0, then the values of	_	•
	$(a) \pm 3$		(c) - 3.9	
25.	If the length of t	the perpendicular fror	n the origin to the pla	ane $2x + 3y + \lambda z = 1, \lambda > 0$ is
	$\frac{1}{5}$, then the value	e of λ is		
	(a) $2\sqrt{3}$	$(b)\ 3\sqrt{2}$	(c) 0	(d) 1
		CI	HAPTER 7	
		APPLICATION OF I	DIFFERENTIAL CA	LCULUS
1.	The maximum v	value of the function x	$^{2}e^{-2x}$, $x > 0$ is	
	$(a)^{\frac{1}{a}}$	$(b) \frac{1}{2e}$	$(c) \frac{1}{e^2}$	$(d) \frac{4}{e^4}$
2.	C	$ax^4 + bx^2$ with $ab > 0$	C	e -
	(a) has no horiz		(b) is concave	up
	(c) is concave d	own		nts of inflection
3.	One of the close	est points on the curve	$x^2 - y^2 = 4 \text{ to the p}$	oint (6,0) is
	(a)(2,0)	$(b)\left(\sqrt{5},1\right)$	$(c)\left(3,\sqrt{5}\right)$	$(d)\left(\sqrt{13},-\sqrt{3}\right)$
4.	A stone is throv	vn up vertically. The h	eight it reaches at tin	ne t seconds is given by $x =$
	$80t - 16t^2$. The	e stone reaches the ma	ximum height in tim	e t seconds is given by
	(a) 2	(b) 2.5	(c) 3	(d) 3.5
5.		$1^4 x + \cos^4 x$ is increas		r _1
	(a) $\left[\frac{5\pi}{8}, \frac{3\pi}{4}\right]$	$(b) \left \frac{\pi}{2}, \frac{5\pi}{8} \right $	$(c) \left[\frac{\pi}{4}, \frac{\pi}{2}\right]$	$(d)\left[0,\frac{\pi}{4}\right]$
6.	The position of			fany time t is given by $s(t) =$
	$3t^2 - 2t - 8$. The	ne time at which the p	article is at rest is	
	(a) t = 0	` '	(c) t = 1	$(d)\ t=3$
7.	The abscissa of is -0.25 ?	the point on the curve	$ef(x) = \sqrt{8 - 2x} \text{ at v}$	which the slope of the tangent
	(a) - 8	(b) - 4	(c) - 2	(d) 0
8.	The volume of a	sphere is increasing i	in volume at the rate	of 3π cm^3/sec . The rate of
	change of its rad	dius when radius is $\frac{1}{2}a$	cm -	
	(a) 3 cm/s	L	(c) 1 cm/s	(d) 12cm/s
9.	The number giv			$1x^3 - 3x^2, x \in [0,3]$ is
	(a) 1	$(b)\sqrt{2}$	$(c)^{\frac{3}{2}}$	(d) 2
10.	The slope of the	e line normal to the cu		$at x = \frac{\pi}{12} is$
	$(a) - 4\sqrt{3}$	(b) - 4	$(c) \frac{\sqrt{3}}{12}$	$(d) 4\sqrt{3}$
11.	balloon left the	straight up at $10 m/s$.	An observer is 40 m of change of the ballo	away from the spot where the oon's angle of elevation in e ground.

(a) $\frac{3}{25}$ radians/sec

(b) $\frac{4}{25}$ radians/sec

(c) $\frac{1}{5}$ radians/sec

(d) $\frac{1}{3}$ radians/sec

12. Find the point on the curve $6y = x^3 + 2$ at which y –coordinate changes 8 times as fast as x —coordinate is

(d)(-4,-11)

(a) (4,11) (b) (4,-11) (c) (-4,11) (d) (-4,-11)

13. Angle between $y^2 = x$ and $x^2 = y$ at the origin is
(a) $\tan^{-1}\frac{3}{4}$ (b) $\tan^{-1}\frac{4}{3}$ (c) $\frac{\pi}{2}$ (d) $\frac{\pi}{4}$ 14. The number given by the Mean value theorem for the function $\frac{1}{x}$, $x \in [1,9]$ is

(b) 2.5

(c) 3

15. The maximum slope of the tangent to the curve $y = e^x \sin x$, $x \in [0,2\pi]$ is at

(a) $x = \frac{\pi}{4}$ (b) $x = \frac{\pi}{2}$ (c) $x = \pi$ 16. The tangent to the curve $y^2 + xy + 9 = 0$ is vertical when

(b) $y = \pm 3$

(*d*) v = +3

17. What is the value of the limit $\lim_{x\to 0} \left(\cot x - \frac{1}{x}\right)$ is

 $(d) \infty$

18. The minimum value of the function |3 - x| + 9 is

(b) 3

(d)9

19. The point of inflection of the curve $y = (x - 1)^3$ is

(b)(0,1)

(c)(1,0)

(d)(1,1)

20. The maximum product of two positive numbers, when their sum of the squares is 200, is

(a) 100

(b) $25\sqrt{7}$

(d) $24\sqrt{14}$

DIFFERENTIALS AND PARTIAL DERIVATIVES

1. If $w(x, y, z) = x^2(y - z) + y^2(z - x) + z^2(x - y)$, then is

(d) 0

 $(a) xy + yz + zx \qquad (b) x(y+z) \qquad (c) y(z+x)$ If $u(x,y) = x^2 + 3xy + y - 2019$, then $\left(\frac{\partial u}{\partial x}\right)_{(4,5)}$ is equal to 2.

(a) - 4

(d) 13

The approximate change in the volume V of a cube of side x metres caused by increasing 3. the side by 1% is

(c) $0.3 x^2 m^3$

(d) $0.03 x^3 m^3$

(a) $0.3xdx m^3$ (b) $0.3x m^3$ (c) 0If $v(x, y) = \log(e^x + e^y)$, then $\frac{\partial v}{\partial x} + \frac{\partial v}{\partial y}$ is equal to

5. A circular template has a radius of 10 cm. The measurement of radius has an approximate error of 0.02 cm. Then the percentage error in calculating area of this template is

(a) 0.2%

(b) 0.4%

(d) 0.08%

If $f(x, y) = e^{xy}$, then $\frac{\partial^2 f}{\partial x \partial y}$ is equal to

(b) $(1+xy)e^{xy}$ (c) $(1+y)e^{xy}$ (d) $(1+x)e^{xy}$

- If $u(x, y) = e^{x^2 + y^2}$, then $\frac{\partial u}{\partial x}$ is equal to
 - (a) $e^{x^2+y^2}$
- (b) 2xu
- $(d) y^2 u$
- The change in the surface area $S = 6x^2$ of a cube when the edge length varies from x_0 to 8. $x_0 + dx$ is
 - (a) $12x_0 + dx$
- (b) $12x_0 dx$
- $(c) 6x_0 dx$
- $(d) 6 x_0 + dx$

- If $(x, y) = x^y, x > 0$, then $\frac{\partial w}{\partial x}$ is equal to 9.
 - (a) $x^y \log x$
- (b) $y \log x$
- $(c) yx^{y-1}$
- $(d) x \log y$
- **10.** If f(x, y, z) = xy + yz + zx, then $f_x f_z$ is equal to

- 11. If $f(x) = \frac{x}{x+1}$, then its differential is given by
- (b) $\frac{1}{(x+1)^2} dx$ (c) $\frac{1}{x+1} dx$
- $(d) \frac{-1}{x+1} dx$
- If we measure the side of a cube to be 4 cm with an error of 0.1 cm, then the error in our calculation of the volume is
 - (a) 0.4 cu. cm
- (b) 0.45 cu. cm
- (c) 2 cu. cm
- (d) 4.8 cu. cm
- Linear approximation for $g(x) = \cos x$, at $x = \frac{\pi}{2}$ is
- (b) $-x + \frac{\pi}{2}$ (c) $x \frac{\pi}{2}$
- $(d) x \frac{\pi}{2}$
- The percentage error of fifth root of 31 is approximately how many times the percentage error in 31?
- (c) 5
- If $g(x,y) = 3x^2 5y + 2y^2$, $x(t) = e^t$ and $y(t) = \cos t$, then $\frac{dg}{dt}$ is equal to
 - (a) $6e^{2t} + 5\sin t 4\cos t\sin t$ (b) $6e^{2t} 5\sin t + 4\cos t\sin t$ (c) $3e^{2t} + 5\sin t + 4\cos t\sin t$ (d) $3e^{2t} 5\sin t + 4\cos t\sin t$

CHAPTER 9

APPLICATIONS OF INTEGRATION

- The value of $\int_{-4}^{4} \left[\tan^{-1} \left(\frac{x^2}{x^4 + 1} \right) + \tan^{-1} \left(\frac{x^4 + 1}{x^2} \right) \right] dx$ is 1.

- $(d) 4\pi$

- If $f(x) = \int_0^x t \cos t \, dt$, then $\frac{df}{dx} =$

- $(d) x \sin x$
- (a) $\cos x x \sin x$ (b) $\sin x + x \cos x$ (c) $x \cos x$ For any value of $n \in \mathbb{Z}$, $\int_0^{\pi} e^{\cos^2 x} \cos^3[(2n+1)x] dx$ is 3.

- (d) 2

- If $\frac{\Gamma(n+2)}{\Gamma(n)} = 90$ then n is
- (b) 5
- (c)8
- (d)9

- The value of $\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \sin^2 x \cos x \, dx$ is 5.

- (c) 0
- $(d)^{\frac{2}{3}}$

- The value of $\int_0^\infty e^{-3x} x^2 dx$ is
 - (a) $\frac{7}{27}$
- $(c) \frac{4}{27}$
- $(d) \frac{2}{27}$

- The value of $\int_0^{\frac{2}{3}} \frac{dx}{\sqrt{4-9x^2}}$ is 7.

- $(d) \pi$
- The area between $y^2 = 4x$ and its latus rectum is $(a) \frac{2}{3} \qquad (b) \frac{4}{3} \qquad (c) \frac{8}{3}$ 8.

- If $f(x) = \int_1^x \frac{e^{\sin u}}{u} du$, x > 1 and $\int_1^3 \frac{e^{\sin x^2}}{x} dx = \frac{1}{2} [f(a) f(1)]$, then one of the possible

- (c) 9
- (d) 5

- The value of $\int_0^1 x(1-x)^{99} dx$ is 10.

- $(d) \frac{1}{10001}$
- (a) $\frac{1}{11000}$ (b) $\frac{1}{10100}$ (c) $\frac{1}{10010}$ 11. If $\int_0^x f(t)dt = x + \int_x^1 tf(t)dt$, then the value of f(1) is

- (c) 1
- $(d)^{\frac{3}{4}}$

- **12.** The value of $\int_{-1}^{2} |x| dx$ is

- $(c)^{\frac{5}{2}}$

- 13. The value of $\int_0^1 (\sin^{-1} x)^2 dx$ is
- $(c) \frac{\pi^2}{4} + 1$
- $(d) \frac{\pi^2}{4} 2$

- (a) $\frac{\pi^2}{4} 1$ (b) $\frac{\pi^2}{4} + 2$ **14.** The value of $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \left[\frac{2x^7 3x^5 + 7x^3 x + 1}{\cos^2 x} \right] dx$ is

- (c) 2
- (d) 0

- 15. The value of $\int_0^1 \frac{dx}{1+5^{\cos x}}$ is $(a)^{\frac{\pi}{2}}$

- $(d) 2\pi$

- **16.** The value of $\int_0^{\pi} \sin^4 x \, dx$ is
- $(c) \frac{3\pi}{4}$
- $(d) \frac{3\pi}{2}$

- 17. The value of $\int_0^a (\sqrt{a^2 x^2})^3 dx$ is

- (a) $\frac{\pi a^3}{16}$ (b) $\frac{3\pi a^4}{16}$ (c) $\frac{3\pi a^2}{8}$ (d) $\frac{3\pi a^4}{8}$ The volume of solid of revolution of the region bounded by $y^2 = x(a-x)$ about x –axis
 - $(a) \pi a^3$
- (b) $\frac{\pi a^3}{4}$
- (c) $\frac{\pi a^3}{5}$
- $(d) \frac{\pi a^3}{4}$

- **19.** If $\int_0^a \frac{1}{4+x^2} dx$ then *a* is (*a*) 4

- (b) 1
- (c) 3
- (d) 2

- **20.** The value of $\int_0^{\frac{\pi}{6}} \cos^3 3x \, dx$ is
 - $(a)^{\frac{2}{3}}$
- $(c)^{\frac{1}{\alpha}}$
- $(d)^{\frac{1}{2}}$

ORDINARY DIFFERENTIAL EQUATIONS

1.	The solution of $\frac{dy}{dx}$	-p(x)y = 0 is		
		$(b) y = ce^{-\int p dx}$	$(c) x = ce^{-\int p dy}$	$(d) x = ce^{\int pdy}$
2.	The population P in	n any year t is such tha		
	proportional to the	population. Then	() =	(1) = -
2		$(b) P = Ce^{-kt}$		
3.	respectively	trary constants in the	general solutions of of	n = n = n = n
		(b) $n, n + 1$	$(c) n + 1 \cdot n + 2$	(d) n + 1.n
4.				a differential equation of
	third order is			
_	(a) 3	(b) 2	(c) 1	(d) 0
5.	arbitrary constants			
	(a) $\frac{d^2y}{dx^2} + y = 0$	(b) $\frac{d^2y}{dx^2} - y = 0$	$(c) \frac{dy}{dx} + y = 0$	$(d) \frac{dy}{dx} + y = 0$
6.	2270	227	2272	te of evaporation of the
		rtional to the amount r		
		$(b) P = Ce^{-kt}$		(d) P = C
7.		n of the differential eq	un n	
	(a) xy = k	$(b) y = k \log x$	(c) y = kx	$(d)\log y = kx$
8.	If the solution of th	e differential equation	$\frac{dy}{dx} = \frac{dx+3}{2y+f}$ represents	a circle, then the value of
	a is			li.
	(a) 2	(b) - 2	(c) 1	(d) - 1
9.	The integrating fact	tor of the differential e	un n	
	(a) $\frac{x}{e^{\lambda}}$	(b) $\frac{e^{\lambda}}{x}$	(c) λe^x	$(d) e^x$
10.	The integrating fact	tor of the differential e	$quation \frac{dy}{dx} + P(x)y =$	Q(x) is x , then $P(x)$
	(a) x	(b) $\frac{x^2}{2}$	$(c)\frac{1}{x}$	$(d) \frac{1}{r^2}$
11.	The degree of the d	ifferential equation $y()$	$(x) = 1 + \frac{dy}{dx} + \frac{1}{2} \left(\frac{dy}{dx}\right)^{\frac{1}{2}}$	$\frac{1}{x} + \frac{1}{x} \left(\frac{dy}{x}\right)^3 + is$
	(a) 2	(b) 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1.2.3 \left(dx \right) \\ (d) 4 \end{array}$
12.		3 5		t (h, k) and radius 'a' is
	(a) 2	(b) 3	(c) 4	(d) 1
13.	The solution of the	differential equation $\frac{d}{dt}$	$\frac{y}{x} = 2xy$ is	
	$(a) y = Ce^{x^2}$	$(b) y = 2x^2 + C$	$(c) y = Ce^{-x^2} + C$	3 7 7
14.	The general solutio	n of the differential eq	uation $\log\left(\frac{dy}{dx}\right) = x + 1$	y is
		$(b) e^x + e^{-y} = C$		
15.	The solution of $\frac{dy}{dx}$ =	$=2^{y-x}$ is		
		$(b)2^x - 2^y = C$	$(c)^{\frac{1}{2}} - \frac{1}{c} = C$	(d) x + v = C
			<u> </u>	
16.	The order and degr	ee of the differential e	quation $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^3 +$	$x^{\frac{1}{4}} = 0$ are respectively
	(a) 2, 3	(<i>b</i>) 3, 3	(c) 2,6	

17.	If $\sin x$ is the integrati	ng factor of the linear	differential equation	$\frac{dy}{dx} + Py = Q$, then P is
	(a) $\log \sin x$	$(b)\cos x$	$(c) \tan x$	$(d) \cot x$
18.	The solution of the dif	fferential equation $2x$	$x \frac{dy}{dx} - y = 3$ represent	ts
	(a) straight lines		(c) parabola	
19.	The order and degree	of the differential equ	uation $\sqrt{\sin x} (dx + a)$	dy) = $\cos x (dx - dy)$ is
	(a) 1, 2		(c) 1,1	(d) 2, 1
20.	Integrating factor of t	he differential equation	on $\frac{dy}{dx} = \frac{x+y+1}{x+1}$ is	
	A 1 I	(b) $x + 1$	γ <i>λ</i> 1 1	$(d)\sqrt{x+1}$
21.	The solution of the dif	fferential equation $\frac{dy}{dx}$	$=\frac{y}{x}+\frac{\phi(\frac{y}{x})}{\phi'(\frac{y}{x})}$ is	
	$(a) x\phi\left(\frac{y}{x}\right) = k$	$(b) \phi\left(\frac{y}{x}\right) = kx$	$(c) y\phi\left(\frac{y}{x}\right) = k$	$(d) \phi\left(\frac{y}{x}\right) = ky$
22.	The solution of the dif	fferential equation $\frac{dy}{dx}$	$+\frac{1}{\sqrt{1-x^2}}=0$ is	
	$(a) y + \sin^{-1} x = c$		$(b) x + \sin^{-1} y = 0$	
	(c) $y^2 + 2\sin^{-1}x = 0$	C .	(b) $x + \sin^{-1} y = 0$ (d) $x^2 + 2\sin^{-1} y = 0$	0
23.	The differential equat		family of curves $y = \lambda$	$A\cos(x+B)$, where A
	and B are parameters a^2v		$a > d^2 v$	d^2x
	$(a) \frac{d^2y}{dx^2} - y = 0$	ux	ux	uy
24.	If p and q are the order	er and degree of the d	ifferential equation y	$\frac{dy}{dx} + x^3 \frac{d^2y}{dx^2} + xy =$
	$\cos x$, when			
				exists, q does not exist
25.	The slope at any point	t of a curve $y = f(x)$ i	is given by $\frac{dy}{dx} = 3x^2$	and it passes through
	$(-1,1)$. Then the equal $(a) y = x^3 + 2$	ation of the curve is		2 . =
	$(a) y = x^3 + 2$	(b) $y = 3x^2 + 4$	$(c) y = 3x^3 + 4$	$(a) y = x^3 + 5$
		CHAPT	ER 11	
	PR	OBABILITY DISTRI	BUTIONS LAPLAC	F
	110	ODINDIDITI DISTRI	DOTTONO LIN LING	_
1.	A computer salespers	on knows from h is particular h	ast experience that he	e sells computers to one
		-	-	e probability that he will
	sell a computer to exa	ctly two of the next th		
	$(a) \frac{57}{20^3}$	$(b) \frac{57}{20^2}$	$(c) \frac{19^3}{20^3}$	$(d) \frac{57}{20}$
2.	20	ed 1, 2, 3, 4, 5, 6 of a si	20	3, 4 of a four-sided die is
	rolled and the sum is	determined. Let the ra	andom variable X dei	note this sum. Then the
	number of elements in	_		
9	(a) 1	(b) 2	(c) 3	(d) 4 constant $k P(V = i) =$
3.				constant k , $P(X = i) =$
	kP(X = i - 1) for $i =$		•	
	(a) 1	(b) 2	(c) 3	(d) 4

				(2
4.	Let <i>X</i> be random varia	able with probability	density function $f(x)$	$u = \begin{cases} \frac{2}{x^3}, & x \ge 1\\ 0, & x < 1 \end{cases}$. Which of
	the following stateme			,
	(a) both mean and va	riance exist	(b) mean exists but	variance does not exist
				out Mean does not exist.
5.	Let <i>X</i> represent the di	fference between the	number of heads and	l the number of tails
	obtained when a coin	is tossed n times. The	en the possible values	of X are
	(a) $i + 2n$, $i = 0,1,2$.n	(b)2i-n, i = 0,1,2	n
	(c) $n-i$, $i = 0,1,2n$		(b)2i-n, i = 0,1,2 (d) 2i + 2n, i = 0,1,	2n
6.	If the function $f(x) =$	$\frac{1}{12}$ for $a < x < b$, rep	presents a probability	density function of a
		ariable X , then which	of the following cann	ot be the value of a and
	b?	(h) F d 17	(a) 7 and 10	(4) 10 4 24
7			(c) 7 and 19	
7.				t a football stadium. The
	buses carry, respectiv			
	selected. Let <i>X</i> denote randomly selected stu			•
	•			-
	denote the number of (a) 50,40		(c) 40.75, 40	
_	(a) 50, 40 $(2x.0 < x < 0)$	(<i>b</i>) 40,30	(0) 40.73,40	(<i>a</i>) 41,41
8.	If $f(x) = \begin{cases} 2x, & = x \\ 0, & \text{Otherw} \end{cases}$	- `` is a probability de <i>ise</i>	ensity function of a rai	ndom variable, then the
	value of a is			
	(a) 1	(b) 2	(c) 3	(d) 4
9.	Consider a game when	• •		ne face that comes up is
	6, the player wins `36			
	{1, 2, 3, 4, 5}. The expe	ected amount to win a	nt this game in `is	
	$(a)^{\frac{19}{6}}$	$(b)^{\frac{-19}{}}$	$(c) \frac{3}{2}$	$(d)^{-3}$
10.	Ü	0	_	d p = 0.8 then standard
10.	deviation of <i>X</i> is	ias biiioiiiiai aisti iba	20 and	p 0.0 then standard
	(a) 6	(b) 4	(c) 3	(d) 2
11.				of the 5 questions, the
	probability that a stud			
	$(a) \frac{11}{243}$	$(b)^{\frac{3}{8}}$		$(d)\frac{5}{243}$
10		U	273	243
12.	A rod of length 21 is b	roken into two pieces	s at random. The prop	ability density function
	of the shorter of the t	wo pieces is $f(x) = \begin{cases} 1 & \text{if } x = x \\ 1 & \text{if } x = x \end{cases}$	$\frac{1}{l}$, $0 < x < l$	
	The mean and variance	ce of the shorter of th	e two pieces are resp	
	(a) $\frac{l}{2}$, $\frac{l^2}{3}$	$(b) \frac{l}{2}, \frac{l^2}{6}$	(c) $l, \frac{l^2}{12}$	$(d) \frac{l}{2}, \frac{l^2}{12}$
13.	2 3			riance 2.4, Then $P(X =$
	5) is			(
	,	(1) (10) (3) (10)	$()$ (10) $(3)^4$ $(2)^6$	(1) (10) $(3)^5$ $(2)^5$
	$(a) \left(\frac{10}{5}\right) \left(\frac{3}{5}\right)^6 \left(\frac{2}{5}\right)^4$	(b) $\left(\frac{-}{5}\right)\left(\frac{-}{5}\right)$	$\binom{c}{5}\binom{-}{5}\binom{-}{5}$	$(a) \left(\frac{-}{5}\right) \left(\frac{-}{5}\right) \left(\frac{-}{5}\right)$
14.	The random variable	X has the probability	density function $f(x)$	$0 = \begin{cases} ax + b, & 0 < x < 1 \\ 0, & Otherwise \end{cases}$
	and $E(X) = \frac{7}{12}$, then a	and <i>b</i> are respective	ly	(o, once wise
	. 14			(d) 1 and 2
	(a) 1 and $\frac{1}{2}$	(u) = allu I	(c) 4 allu 1	(d) 1 and 2

15. Let X have a Bernoulli distribution with mean 0.4, then the variance of (2X-3) is

(a) 0.24

(b) 0.48

(c) 0.6

(d) 0.96

16. Two coins are to be flipped. The first coin will land on heads with probability 0.6, the second with Probability 0.5. Assume that the results of the flips are independent, and let X equal the total number of heads that result. The value of E[X] is

(a) 0.11

(b) 1.1

(d)1

17. The probability function of a random variable is defined as:

x	-2	-1	0	1	2
f(x)	k	2 <i>k</i>	3 <i>k</i>	4 <i>k</i>	5 <i>k</i>

Then E(X) is equal to:

(a) $\frac{1}{15}$ (b) $\frac{1}{10}$ (c) $\frac{1}{3}$ If P(X = 0) = 1 - P(X = 1). If E[X] = 3Var(X), then P(X = 0).

- **19.** Which of the following is a discrete random variable?
 - *I*. The number of cars crossing a particular signal in a day.
 - *II*. The number of customers in a queue to buy train tickets at a moment.
 - *III*. The time taken to complete a telephone call.

(a) *I* and *II*

(b) II only

(c) III only

(d) II and III

If in 6 trials, *X* is a binomial variate which follows the relation 9P(X = 4) = P(X = 2), 20. then the probability of success is

(a) 0.125

(b) 0.25

(c) 0.375

(d) 0.75

CHAPTER 12

DISCRETE MATHEMATICS

1. Determine the truth value of each of the following statements:

(a) 4 + 2 = 5 and 6 + 3 = 9(b) 3 + 2 = 5 and 6 + 1 = 7(c) 4 + 5 = 9 and 1 + 2 = 4(d) 3 + 2 = 5 and 4 + 7 = 11

	(1)	(2)	(3)	(4)
(a)	F	T	F	T
(b)	T	F	T	F
(c)	T	T	F	F
(d)	F	F	T	T

2.

p	q	$(p \land q) \rightarrow (\neg P)$
T	T	(1)
T	F	(2)
F	T	(3)
F	F	(4)

Which one of the following is correct for the truth value of $(p \land q) \rightarrow (\neg P)$

	(1)	(2)	(3)	(4)
(a)	T	T	T	T
(b)	F	T	T	T
(c)	F	F	T	T
(d)	T	T	T	F

3. The truth table for $(p \land q) \lor \neg q$ is given below

p	q	$(p \lor q) \lor (\neg q)$
T	T	(1)
T	F	(2)
F	T	(3)
F	F	(4)

Which one of the following is true?

_	0				
		(1)	(2)	(3)	(4)
	(a)	T	T	T	T
	(b)	T	F	T	T
	(c)	T	T	F	T
	(d)	T	F	F	F

Which one is the contra positive of the statement $(p \lor q) \rightarrow r$? 4.

- (a) $\neg r \rightarrow (\neg p \land \neg q)$ (b) $\neg r \rightarrow (p \lor q)$ (c) $r \rightarrow (p \land q)$ (d) $p \rightarrow (q \lor r)$ In the last column of the truth table for $\neg (p \lor \neg q)$ the number of final outcomes of the 5. truth value 'F' are
 - (a) 1

- (b) 2
- (d) 4
- The operation * defined by $a * b = \frac{ab}{7}$ is not a binary operation on 6.
- $(b) \mathbb{Z}$
- $(c) \mathbb{R}$
- In the set \mathbb{Q} define $a \odot b = a + b + ab$. For what value of y, $3 \odot (y \odot 5) = 7$? 7. (a) $y = \frac{2}{3}$ (b) $y = \frac{-2}{3}$ (c) $y = \frac{-3}{2}$ (d) y = 4

- If $a * b = a^2 + b^2$ on the real numbers then * is 8.
 - (a) commutative but not associative
- (b) associative but not commutative
- (c) both commutative and associative
- (d) neither commutative nor associative
- 9. The proposition $p \land (\neg p \lor q)$ is
 - (a) a tautology

- (b) a contradiction
- (c) logically equivalent to $p \land q$
 - (d) logically equivalent to $p \lor q$
- In the set \mathbb{R} of real numbers ' * ' is defined as follows. Which one of the following is not a binary operation on \mathbb{R} ?
 - (a) a * b = min(a.b)

(b) a * b = max(a, b)

(c) a * b = a

- $(d) \ a * b = a^b$
- Which one of the following statements has the truth value *T*?
 - (a) $\sin x$ is an even function.
- (b) Every square matrix is non-singular
- (c) The product of complex number and its conjugate is purely imaginary
- (*d*) 5 is an irrational number
- **12.** A binary operation on a set *S* is a function from
 - (a) $S \rightarrow S$
- $(b) (S \times S) \rightarrow S$
- (c) $S \to (S \times S)$ (d) $(S \times S) \to (S \times S)$
- **13.** The dual of $\neg(p \lor q) \lor [p \lor (p \land \neg r)]$ is
 - $(a) \neg (p \land q) \land [p \lor (p \land \neg r)]$
- $(b) (p \lor q) \land [p \land (p \lor \neg r)]$
- $(c) \neg (p \land q) \land [p \land (p \land r)]$
- $(d) \neg (p \land q) \land [p \land (p \lor \neg r)]$
- **14.** Which one is the inverse of the statement $(p \lor q) \to (p \land q)$?
 - $(a) (p \land q) \rightarrow (p \lor q)$

- $(b) \neg (p \lor q) \rightarrow (p \land q)$
- $(c)(\neg p \lor \neg q) \to (\neg p \land \neg q)$
- $(d)(\neg p \land \neg q) \rightarrow (\neg p \lor \neg q)$
- **15.** Which one of the following is a binary operation on \mathbb{N} ?
 - (a) Subtraction
- (b) Multiplication
- (c) Division
- (d) All the above
- Which one of the following statements has truth value *F* ?
 - (a) Chennai is in India or 2 is an integer

- (b) Chennai is in India or 2 is an irrational number
- (c) Chennai is in China or 2 is an integer
- (d) Chennai is in China or 2 is an irrational number
- **17.** Subtraction is not a binary operation in
 - $(a) \mathbb{R}$
- $(b) \mathbb{Z}$
- (*c*) ℕ
- (d) 0
- **18.** Which one of the following is incorrect? For any two propositions p and q, we have
 - $(a) \neg (p \lor q) \equiv \neg p \land \neg q$

 $(b) \neg (p \land q) \equiv \neg p \lor \neg q$

 $(c) \neg (p \lor q) \equiv \neg p \lor \neg q$

- $(d) \neg (\neg p) \equiv p$
- **19.** If a compound statement involves 3 simple statements, then the number of rows in the truth table is
 - (a) 9

- (b) 8
- (c) 6
- (d) 3

- **20.** Which one of the following is not true?
 - (a) Negation of a negation of a statement is the statement itself.
 - (b) If the last column of the truth table contains only *T* then it is a tautology.
 - (c) If the last column of its truth table contains only F then it is a contradiction
 - (d) If p and q are any two statements then $p \leftrightarrow q$ is a tautology.

Padasalai