XII MATHS FULL PORTION -2025-E/M.

SIR .CV. RAMAN COACHING CENTRE – IDAPPADI, SALEM -637101 XII- MATHS FULL PORTION QUESTION PAPER [2& 3] -2025 PREPARED BY Dr.G.THIRUMOORTHI,M.Sc.B.Ed,Ph.D ,PHYSICS

thiruphysics1994@gmail.com,8610560810,8883610465

TOTAL MARK: 100 M TIME: 3 HRS

Date: 17.02.2025

SECTION - A (17 X 2 = 34 M)

I.ANSWER ANY 17 QUESTIONS.

1. Find the rank of the following matrices by minor method

$$\begin{bmatrix} 2 & -4 \\ -1 & 2 \end{bmatrix}$$

2. Simplify the following:

$$\sum_{n=1}^{10} i^{n+50}$$

3.

Which one of the points i, -2+i, and 3 is farthest from the origin?

4. Solve the equation $x^3 - 3x^2 - 33x + 35 = 0$

5. Find
$$\tan^{-1}\left(-\sqrt{3}\right)$$

6.A circle of radius 3 units touches both the axes. Find the equations of all possible circles formed in the general form

7_Find the vertex, focus, equation of directrix and length of the latus rectum of the following:

$$y^2 = 16x$$

8. Identify the type of conic section for each of the equations.

$$11x^2 - 25y^2 - 44x + 50y - 256 = 0$$

9. If $2\hat{i} - \hat{j} + 3\hat{k}$, $3\hat{i} + 2\hat{j} + \hat{k}$, $\hat{i} + m\hat{j} + 4\hat{k}$ are coplanar, find the value of m

10. Prove that $[\vec{a} - \vec{b}, \vec{b} - \vec{c}, \vec{c} - \vec{a}] = 0$

11. If the volume of a cube of side length x is $v = x^3$ Find the rate of change of the volume with respect to x when x = 5 units

12. Compute the value of '' c satisfied by the Rolle's theorem for the function

$$f(x) = x^2(1-x)^2, x \in [0,1].$$

$$\lim_{x \to \infty} \left(\frac{e^x}{x^m} \right), m \in \mathbb{N}$$

- 13. Evaluate
- 14. Prove that the function $f(x) = x^2 2x 3$ is strictly increasing in $(2, \infty)$
- 15. Show that the percentage error in the n th root of a number is approximately 1/n times the percentage error in the number

$$\int_0^{\frac{\pi}{2}} \left(\sin^2 x + \cos^4 x\right) dx$$

17. For each of the following differential equations, determine its order, degree (if exists)

$$y \left(\frac{dy}{dx} \right) = \frac{x}{\left(\frac{dy}{dx} \right) + \left(\frac{dy}{dx} \right)^3}$$

- 18. Find the differential equation for the family of all straight lines passing through the origin
- 19.Two balls are chosen randomly from an urn containing 6 white and 4 black balls. Suppose that we win `30 for each black ball selected and we lose `20 for each white ball selected. If *X* denotes the winning amount, find the values of *X* and number of points in its inverse images
- 20. Find the acute angle between the planes $\vec{r} \cdot (2\hat{i} + 2\hat{j} + 2\hat{k}) = 11$ and 4x 2y + 2z = 15.
- 21. Prove that $[\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}] = [\vec{a}, \vec{b}, \vec{c}]^2$.

If
$$\vec{a}, \vec{b}, \vec{c}$$
 are three vectors, prove that $[\vec{a} + \vec{c}, \vec{a} + \vec{b}, \vec{a} + \vec{b} + \vec{c}] = [\vec{a}, \vec{b}, \vec{c}]$.

- 23. Find the monic polynomial equation of minimum degree with real coefficients having $2-\sqrt{3}i$ as a root
- 24. Show that the equation $2x^2 6x + 7 = 0$ cannot be satisfied by any real values of x.
- 25. Show that the equation $z^2 = \overline{z}$ has four solutions.

SECTION – B
$$(22 \times 3 = 66 \text{ M})$$

II.ANSWER ANY 22 QUESTIONS.

26. If A is a non-singular matrix of odd order, prove that $|\operatorname{adj} A|$ is a positive.

$$A = \begin{bmatrix} 4 & 3 \\ 2 & 5 \end{bmatrix}$$
, find x and y such that $A^2 + xA + yI_2 = O_2$. Hence, find A^{-1} .

$$\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$
 is orthogonal.

29.A chemist has one solution which is 50% acid and another solution which is 25% acid. How much each should be mixed to make 10 litres of a 40% acid solution? (Use Cramer's rule to solve the problem)

30.Find
$$z^{-1}$$
, if $z = (2+3i)(1-i)$

$$z_1 = 2 - i$$
 and $z_2 = -4 + 3i$, find the inverse of $z_1 z_2$ and $\frac{z_1}{z_2}$.

- 32. Find the square roots of 5 12i
- 33. Show that |z+2-i| < 2 represents interior points of a circle. Find its centre and radius
- 34_Find the modulus and principal argument of the following complex numbers. $\sqrt{3} + i$

35. Solve the equation
$$6x^4 - 5x^3 - 38x^2 - 5x + 6 = 0 \text{ if it is known that } \frac{1}{3} \text{ is a solution.}$$

- 36. Find the exact number of real zeros and imaginary of the polynomial $x^9 + 9x^7 + 7x^5 + 5x^3 + 3x$.
- 37. Find the principal value of $\sin^{-1}(2)$ if it exists.
- 38. For what value of x does $\sin x = \sin^{-1} x$?
- 39. Find the vertices, foci for the hyperbola $9x^2 16y^2 = 144$.
- 40. A concrete bridge is designed as a parabolic arch. The road over bridge is 40m long and the maximum height of the arch is 15m. Write the equation of the parabolic arch.

$$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4} \text{ and } \frac{x-4}{5} = \frac{y-1}{2} = z.$$
41. Find the point of intersection of the lines

$$\vec{r} \cdot (2\hat{i} - \hat{j} - 2\hat{k}) = 6$$
 and $\vec{r} \cdot (6\hat{i} - 3\hat{j} - 6\hat{k}) = 27$

42 Find the distance between the planes

$$\vec{r} \cdot (2\hat{i} + 2\hat{j} + 2\hat{k}) = 11$$
 and $4x - 2y + 2z = 15$

43. Find the acute angle between the planes

44. Prove by vector method that if a line is drawn from the centre of a circle to the midpoint of a chord, then the line is perpendicular to the chord.

45. Find the magnitude and direction cosines of the torque of a force represented by $3\hat{i} + 4\hat{j} - 5\hat{k}$ about the point with position vector $2\hat{i} - 3\hat{j} + 4\bar{k}$; acting through a point whose position vector is $4\hat{i} + 2\hat{j} - 3\bar{k}$.

46.If
$$\vec{a} = -3\hat{i} - \hat{j} + 5\hat{k}$$
, $\vec{b} = \hat{i} - 2\hat{j} + \hat{k}$, $\vec{c} = 4\hat{j} - 5\hat{k}$, find $\vec{a} \cdot (\vec{b} \times \vec{c})$.

- 47. Suppose X is the number of tails occurred when three fair coins are tossed once simultaneously. Find the values of the random variable X and number of points in its inverse images.
- 48.Two balls are chosen randomly from an urn containing 6 white and 4 black balls. Suppose that we win `30 for each black ball selected and we lose `20 for each white ball selected. If *X* denotes the winning amount, find the values of *X* and number of points in its inverse images.
- 49. Form the differential equation by eliminating the arbitrary constants A and B from $y = A\cos x + B\sin x$.
- 50 Find the differential equations of the family of all the ellipses having foci on the y-axis and centre at the origin.

51. Solve :
$$\frac{dy}{dx} = (3x + y + 4)^2$$
.

52. Solve
$$\frac{dy}{dx} + 2y = e^{-x}.$$

- 53. Prove that among all the rectangles of the given area square has the least perimeter
 - x^2y^2 on the line x + y = 10.
- 54. Find the local maximum and minimum of the function
- 55. Evaluate the following limits, if necessary use l'Hôpital Rule $\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x$

$$\int_0^1 e^{-2x} (1 + x - 2x^3) dx.$$
56.Evaluate

57. Evaluate the following
$$\int_0^{\frac{\pi}{2}} \sin^3 (\pi - \pi)^{-\frac{\pi}{2}} \sin^3 (\pi)^{-\frac{\pi}{2}} \sin^3 (\pi)^{-\frac{\pi}{2}} \sin^3 (\pi)^{-\frac{\pi}{2}} \sin^3 (\pi)^{-\frac{\pi}$$

- $\int_0^{\frac{\pi}{2}} \sin^3 \theta \cos^5 \theta d\theta$ lowing
- 58. Find the differential equation of the family of (i) all non-vertical lines in a plane (ii) all nonhorizontal lines in a plane.
- 59.Two fair coins are tossed simultaneously (equivalent to a fair coin is tossed twice). Find the probability mass function for number of heads occurred.
- 60. The mean and variance of a binomial variate X are respectively 2 and 1.5. Find P(X=0)

SIR .CV. RAMAN COACHING CENTRE – IDAPPADI, SALEM -637101 XII- MATHS FULL PORTION QUESTION PAPER [2& 3] -2025 PREPARED BY

Dr.G.THIRUMOORTHI,M.Sc.B.Ed,Ph.D,PHYSICS

thiruphysics1994@gmail.com,

8610560810,8883610465

