GOVT. QUESTION PAPER - JUNE-2024

12TH STANDARD - MATHS

Time Allowed: 3 Hours

Maximum Marks: 90

PART-I

(i) All questions are compulsory.

 $20 \times 1 = 20$

(ii) Choose the most appropriate answer from the given four alternatives and write the option code and the corresponding answer.

If in 6 trials, X is a binomial variable which follows the relation 9P(X=4)=P(X=2), then the probability of success is:

a) 0.125

b) 0.25

c) 0.375

2. If $f(x) = \int t \cos t \, dt$, then $\frac{df}{dx} =$

a) cosx - xsinx b) sinx + xcosx

c) xcosx

d) xsinx

3. The value of the limit $\lim_{x\to 0} \left(\cot x - \frac{1}{x}\right)$ is:

a) 0

d) ∞

If x+y=k is a normal to the parabola $y^2=12x$, then the value of k is :

a) 3

d) 9

The polynomial x^3-kx^2+9x has three real zeros if and only if, k satisfies :

a) $|k| \leq 6$

b) k = 0

c) |k| > 6

d) $|k| \ge 6$

6. If $A^{T}A^{-1}$ is symmetric, then A^{2}

c) AT

d) $(A^{-1})^2$

The principal argument of $\frac{3}{-1+i}$ is:

a) $\frac{-5\pi}{6}$

The domain of the function defined by $f(x) = \sin^{-1} \sqrt{x-1}$ is:

a) [1, 2]

b) [-1, 1]

c) [0, 1]

d) [-1, 0]

9. If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i} + \hat{j}$, $\vec{c} = \hat{i}$ and $(\vec{a} \times \vec{b}) \times \vec{c} = \lambda \vec{a} + \mu \vec{b}$, then the value of $\lambda + \mu$ is:

a) 0

10. The order and degree of the differential equation $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^{\frac{1}{3}} + x^{\frac{1}{4}} = 0$ are respectively:

a) 2, 3

b) 3, 3

c) 2, 6

11. The point of inflection of the curve $y=(x-1)^3$ is :

a) (0, 0) b) (0, 1)

c) (1, 0) d) (1, 1)

						*
truth table is:	astatement invol	ves 3 simple sta	tementsy them	thapsy.mbi	er of ro	ws in t
a) 9				d) 3		
If $A = \begin{bmatrix} 7 & 3 \\ 4 & 2 \end{bmatrix}$, to		c) 6	Are "st			
[4 2], t	nen 9I ₂ – A =				a min	
a) Δ-1	1					

14. The radius of the circle
$$3x^2+by^2+4bx-6by+b^2=0$$
 is :

14. The radius of the circle
$$3x^2+by^2+4bx-6by+b^2=0$$
 is:

a) 1

b) 3

15. The value of ∫|x|dx is:

16. If f(x, y, z)=xy+yz+zx then $f_x - f_z$ is equal to:

a) z - x

17. If sin x is the integrating factor of the linear differential equation then P is:

a) logsinx

b) cosx

c) tanx

d) cotx

18. Distance from the origin to the plane 3x-6y+2z+7=0 is:

b) 1

The value of sin⁻¹(cosx), 0≤x≤π is :

20. If $z = \frac{(\sqrt{3} + i)^3 (3i + 4)^2}{(8 + 6i)^2}$, then |z| is equal to:

a) 0

PART-II

Note: Answer any seven questions. Question No.30 is compulsory.

 $7 \times 2 = 14$

21. Find z^{-1} , if z=(2+3i) (1-i). 22. Show that the equation $2x^2-6x+7=0$ cannot be satisfied by any real values of x.

23. Show that $F(x,y) = \frac{x^2 + 5xy - 10y^2}{3x + 7y}$ is a homogeneous function of degree 1.

24. Form the differential equation by eliminating the arbitrary constants A and B from y=A cosx + B sinx.

25. If $adj(A) = 6 \cdot 2 - 6$, find A^{-1}

26. Obtain the equation of the circle for which (3, 4) and (2, -7) are the ends of a diameter.

27. If X is the random yariable with distribution function F(x) given by

$$F(x) = \begin{cases} 0, & x < 0 \\ x, & 0 \le x < 1 \text{ then find the probability density function } f(x). \\ 1, & 1 \le x \end{cases}$$
Find the value of $\tan^{-1}(\tan^{\frac{5\pi}{4}})$.

- 28. Find the value of $tan^{-1}(tan\frac{5\pi}{4})$.
- 29. Prove that the function $f(x)=x^2-2x-3$ is strictly increasing in $(2, \infty)$.
- 30. The volume of the parallelo piped whose coterminous edges are $7\hat{i}+\lambda\hat{j}-3\hat{k}$, $\hat{i}+2\hat{j}-\hat{k}$, $-3\hat{i}+7\hat{j}+5\hat{k}$ is 90 cubic units. Find the value of λ .

PART-III

Note: Answer any seven questions. Question No.40 is compulsory.

- 3 -8 5 2 31. Find the rank of the matrix 2 -5 1 4
- 32. Find the equation of the ellipse whose foci $(\pm 3, 0)$ and $e = \frac{1}{3}$.
- 33. A particle moves so that the distance moved is according to the law $s(t) = \frac{t^3}{3} t^2 + 3$. At what time the velocity and acceleration are zero?
- 34. Prove that $q \rightarrow p = \neg p \rightarrow \neg q$.
- 35. Find the square root of -6 + 8i.
- 36. Find the Vector and Cartesian equations of the plane passing through the point with position vector $2\hat{i}+6\hat{j}+3\hat{k}$ and normal to the vector $\hat{i}+3\hat{j}+5\hat{k}$.
- 37. Solve: $(1+x^2)\frac{dy}{dx} = 1+y^2$
- 38. Show that the percentage error in the nth root of a number is approximately $\frac{1}{n}$ the percentage error in the number.
- 39. Find a polynomial equation of minimum degree with rational coefficients, having 2i+3 as a root.
- 40. Evaluate: $\int (3x^2 4x + 5)dx$.

PART-IV

Note: Answer all the questions.

$$7 \times 5 = 35$$

41. a) Solve the following system of linear equations by matrix inversion method.

$$2x + 3y - z = 9$$

 $x + y + z = 9$
 $3x - y - z = -1$

(OR)

b) Find the area of the region bounded between the parabolas $y^2=4x$ and $x^2=4y$.

42. a) If $tan^{-1}x + tan^{-1}x$ www.padasalak.Netan⁻¹z = π , show that x+y+z=xyzww.TrbTnpsc.com

b) Find the centre, foci and vertices of the hyperbola $9x^2-y^2-36x-6y+18=0$.

43. a) Find the angle between the rectangular hyperbola xy=2 and the parabola $x^2+4y=0$.

b) Prove by vector method that $cos(\alpha-\beta) = cos\alpha cos\beta + sin\alpha sin\beta$.

44. a) If $\vec{a} = \hat{i} - \hat{j}$, $\vec{b} = \hat{i} - \hat{j} - 4\hat{k}$, $\vec{c} = 3\hat{j} - \hat{k}$ and $\vec{d} = 2\hat{i} + 5\hat{j} + \hat{k}$, verify that $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = [\vec{a}, \vec{b}, \vec{d}] \vec{c} - [\vec{a}, \vec{b}, \vec{c}] \vec{d}$

b) Find the population of a city at any time t, given that the rate of increase of population is proportional to the population at that instant and that in a period of 40 years the population increased from 3,00,000 to 4,00,000.

45. a) A bridge has a parabolic arch that is 10 m high in the centre and 30 m wide at the bottom. Find the height of the arch 6 m from the centre, on either sides.

(OR) b). The mean and variance of a binomial variate X are respectively 2 and 1.5. Find (i) P(X=0) (ii) P(X=1) (iii) $P(X\ge 1)$.

46. a) Evaluate: $\int_{3}^{3} \frac{\sqrt{x}}{\sqrt{5-x} + \sqrt{x}} dx$

(OR) b) Verify (i) Closure property (ii) Commutative property (iii) Associative property (iv) Existence of identity and (v) Existence of inverse for the operation x_{11} on a subset $A=\{1, 3, 4, 5, 9\}$ of the set of remainders $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$.

47. a) If z=x+iy and $arg\left(\frac{z-1}{z+1}\right)=\frac{\pi}{2}$, show that $x^2+y^2=1$.

b) Prove that among all the rectangles of the given perimeter, the square has the maximum area.

GOVT: QUESTION PAPER - MARCH-2024

12TH STANDARD - MATHS

Maximum Marks: 90 Time Allowed: 3 Hours

PART-I

(i) All questions are compulsory.

 $20 \times 1 = 20$

(ii) Choose the most appropriate answer from the given four alternatives and write the option code and the corresponding answer.

The area between $y^2 = 4x$ and its latus rectum is :

a)
$$\frac{8}{3}$$

b)
$$\frac{2}{3}$$

c)
$$\frac{5}{3}$$

2. The value of $\int_0^a (\sqrt{a^2 - x^2})^3 dx$ is:

a)
$$\frac{3\pi a^2}{8}$$
 b) $\frac{\pi a^3}{16}$

b)
$$\frac{\pi a^3}{16}$$

c)
$$\frac{3\pi a^4}{8}$$

3. If P(x, y) be any point on $16x^2 + 25y^2 = 400$ with foci $F_1(3, 0)$ and $F_2(-3, 0)$, then PF₁ + PF₂ is:

a) 10

b) 8

c) 12

If $|z_1|=1$, $|z_2|=2$, $|z_3|=3$ and $|9z_1z_2+4z_1z_3+z_2z_3|=12$ then the value of $|z_1+z_2+z_3|$ is :

The number of rows in the truth table of $(p \lor q) \land (p \lor r)$ is:

a) 6

d) 8

If a vector $\overrightarrow{\alpha}$ lies in the plane of $\overrightarrow{\beta}$ and $\overrightarrow{\gamma}$, then:

a)
$$[\vec{\alpha}, \vec{\beta}, \vec{\gamma}] = 0$$
 b) $[\vec{\alpha}, \vec{\beta}, \vec{\gamma}] = 1$ c) $[\vec{\alpha}, \vec{\beta}, \vec{\gamma}] = 2$ d) $[\vec{\alpha}, \vec{\beta}, \vec{\gamma}] = -1$

b)
$$[\vec{\alpha}, \vec{\beta}, \vec{\gamma}] = 1$$

c)
$$[\vec{\alpha}, \vec{\beta}, \vec{\gamma}] = 2$$

The differential equation of the family of curves y=Aex+Bex, where A and B are arbitrary constants is

a)
$$\frac{dy}{dx} + y = 0$$

a)
$$\frac{dy}{dx} + y = 0$$
 b) $\frac{d^2y}{dx^2} + y = 0$ c) $\frac{dy}{dx} - y = 0$

c)
$$\frac{dy}{dx} - y = 0$$

$$d) \frac{d^2y}{dx^2} - y = 0$$

The horizontal asymptote of $f(x) = \frac{1}{x}$ is:

$$d) x=0$$

9. If $f(x) = \frac{x}{x+1}$, then its differential is given by :

a)
$$\frac{1}{x+1}$$
dx

a)
$$\frac{1}{x+1} dx$$
 b) $\frac{-1}{(x+1)^2} dx$ c) $\frac{-1}{x+1} dx$

c)
$$\frac{-1}{x+1}$$
dx

$$d) \frac{1}{(x+1)^2} dx$$

10. If (1+i)(1+2i)(1+3i)...(1+ni) = x+iy then $2.5.10...(1+n^2)$ is :

a) x^2+y^2 b) 1
c) $1+n^2$

a)
$$x^2 + v^2$$

11,	The number given $\frac{3}{2}$	i Net	www.TrbT	ըթ₉₆ շջար 0, 3] is :
12.	a) 3 2 The •	b) 1	for the function $X = 3$ c) 2	d) √2
	The type of conic sec a) hyperbola	ction for $x^2 - 3 = 5x + 6$ b) ellipse	- 3y is : c) circle	d) parabola
13.	If A is a non-singula	r matrix such that A-	$\begin{bmatrix} 5 & 3 \end{bmatrix}$, then (A^T)	-1 =
	a) $\begin{bmatrix} -1 & -3 \\ 2 & 5 \end{bmatrix}$	b) $\begin{bmatrix} -5 & 3 \\ 2 & 1 \end{bmatrix}$	$\begin{bmatrix} -2 & -1 \end{bmatrix}$ c) $\begin{bmatrix} 5 & -2 \\ 3 & -1 \end{bmatrix}$	d) $\begin{bmatrix} 5 & 3 \\ -2 & -1 \end{bmatrix}$
14.	The angle between t	he line $\vec{r} = (\vec{i} + 2\vec{i} + 3\vec{i} + 3\vec{i}$	() + t(2) + (2) and t	he plane
	$\vec{r} \cdot (\vec{i} + \vec{j}) + 4 = 0$ is: a) 45°		() ((21+j-2k) allu (ne plane
15	If $\sin^{-1}x + \cot^{-1}\left(\frac{1}{2}\right)$	b) 0° = $\frac{\pi}{2}$, then x is equal to	c) 90°	d) 30°
16	a) <u>√</u> 5	b) $\frac{1}{2}$	c) $\frac{\sqrt{3}}{2}$	d) $\frac{1}{\sqrt{5}}$
10	. If α , β and γ are zer	os of $x^3 + pr^2 + qx +$	r then $\sum_{\alpha} \frac{1}{\alpha}$ is:	ng a ga yaya 4
100	a) $\frac{q}{r}$. The value of Var(3)	b) $-\frac{q}{r}$	c) $-\frac{q}{p}$	d) $-\frac{P}{r}$
s s	a) 0	b) 3	c) Var(3)	d) 9
18	The random variable deviation of X is:	W W W	ibution with n=25 and	p=0.8 then standard
10	a) 3	b) 6	c) 2	d) 4
19				one of the following is
	a) det $A^{-1} = (\text{det } A)$ c) $(ABC)^{-1} = C^{-1} B^{-1}$	A ⁻¹	b) adj $A= A A^{-1}$ d) adj $(AB) = (adj A)$) (adj B)
20	. A zero of x ³ +64 is : a) 4i	b) 0	c) -4	d) 4
		, DAL	OT TT	
No	te: Answer any seve	n questions. Question	RT-II n No. 30 is compulso r	y. 7 x 2 = 14
	Simplify: $\sum_{n=1}^{12} i^n$		e in a sature til	
22.	If α and β are the	roots of the quadra	tic equation $2x^2 - 7$	x + 13 = 0, construct

quadratic equation whose roots are α^2 and β^2 . 23. Find df for $f(x)=x^2+3x$ and evaluate it for x=3 and dx=0.02.

24. Find the differential equation for the family of all straight lines passing through the origin.

25. For the random variable X with the given probability mass function.

$$f(x) = \begin{cases} 0 & \text{otherwise} \end{cases}$$

26. Find the general equation of a circle with centre (-3, -4) and radius 3 units.

27. Find the rank of the matrix
$$\begin{bmatrix} -1 & 3 \\ 4 & -7 \\ 3 & -4 \end{bmatrix}$$

28. Evaluate:
$$\int_{0}^{\frac{\pi}{2}} \sin^{10} x \, dx$$

29. Evaluate:
$$\lim_{x\to 1} \frac{x^2 - 3x + 2}{x^2 - 4x + 3}$$

30. Show that the vectors $2\vec{i} - \vec{j} + 3\vec{k}$, $\vec{i} - \vec{j}$ and $3\vec{i} - \vec{j} + 6\vec{k}$ are coplanar.

Note: Answer any seven questions. Question No.40 is compulsory.

$$7 \times 3 = 21$$

31. Show that
$$\cot^{-1}\left(\frac{1}{\sqrt{x^2-1}}\right) = \sec^{-1}x, |x| > 1$$
.

32. Find the equation of tangent and normal to the parabola $x^2+6x+4y+5=0$ at

33. Prove that
$$[\overrightarrow{a}-\overrightarrow{b}, \overrightarrow{b}-\overrightarrow{c}, \overrightarrow{c}-\overrightarrow{a}]=0$$
.

34. If
$$u(x, y) = \frac{x^2 + y^2}{\sqrt{x + y}}$$
, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{3}{2}u$.

35. Find two positive numbers whose sum is 12 and their product is maximum

36. Evaluate:
$$\int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} \frac{1}{1 + \sqrt{\tan x}} dx$$

37. Simplify
$$\left(\frac{1+i}{1-i}\right)^3 - \left(\frac{1-i}{1+i}\right)^3$$
 into rectangular form.

38. Solve:
$$(1+x^2)\frac{dy}{dx} = 1 + y^2$$

39. Three fair coins are tossed simultaneously. Find the probability mass function for number of heads occurred.

40. If
$$A = \begin{bmatrix} 2 & -1 & 3 \\ -5 & 3 & 1 \\ -3 & 2 & 3 \end{bmatrix}$$
, then find |adj (adj A)|.

PART-IV

Note: Answer all the questions.

41. a) Find the angle between the curves
$$y=x^2$$
 and $y=(x-3)^2$. (OR)

b) Solve:
$$\tan^{-1}(\frac{x-1}{x-2}) + \tan^{-1}(\frac{x+1}{x+2}) = \frac{\pi}{2}$$

42. a) A six sided die leemarked '1' on one face, '3' on two of its faces, and '5' on remaining three faces. The die is thrown twice. If X denotes the total score in two throws, find:

(i) the probability mass function

(i) the probability mass function,(ii) the cumulative distribution function, (iii) P(4≤X<10)

(OR)

- b) If z=x+iy is a complex number such that $Im\left(\frac{2z+1}{iz+1}\right)=0$, show that the locus of z is $2x^2+2y^2+x-2y=0$.
- 43. a) A conical water tank with vertex down of 12 meters height has a radius of 5 meters at the top. If water flows into the tank at a rate 10 cubic m/min, how fast is the depth of the water increases when the water is 8 metres deep?

b) Prove by vector method that $sin(\alpha-\beta) = sin\alpha cos\beta - cos\alpha sin\beta$.

44. a) Assume that water issuing from the end of horizontal pipe, 7.5m above the ground, describes a parabolic path. The vertex of the parabolic path is at the end of the pipe. At a position 2.5m below the line of the pipe, the flow of water has curved outward 3m beyond the vertical line through the end of the pipe. How far beyond this vertical line will the water strike the ground?

(OR)

- b) Solve the Linear differential equation $\frac{dy}{dx} + \frac{y}{x} = \sin x$.
- **45. a)** The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given that the number triples in 5 hours, find how many bacteria-will be present after 10 hours?
 - b) Find the vector and Cartesian equations of the place containing $\frac{x-2}{2} = \frac{y-2}{3} = \frac{z-1}{3}$ and parallel to the line $\frac{x+1}{3} = \frac{y-1}{2} = \frac{z+1}{1}$.
- 46. a), Find the area of the region bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

b) Find the vertex, focus and equation of the directrix of the parabola $y^2-4x-8x+12=0$.

47. a) Show that $p \leftrightarrow q - ((\sim p) \lor q) \land ((\sim q) \lor p)$

(OR)

b) Solve the system of linear equations by Cramer's Rule.

$$\frac{3}{x} - \frac{4}{y} - \frac{2}{z} - 1 = 0$$
, $\frac{1}{x} + \frac{2}{y} + \frac{1}{z} - 2 = 0$, $\frac{2}{x} - \frac{5}{y} - \frac{4}{z} + 1 = 0$

GOVTPEXAM QUESTION PAPER JUNE 2023

12TH STANDARD - MATHS

Maximum Marks: 90 Time Allowed: 3 Hours

PART-I

20 11 1 = 20

1.	Answer all the question	115:
1.	If ATA-1 is symmetric, the	n A2 is:

a) A⁻¹

b) (A')4

d) $(A^{-1})^2$

2. The rank of the matrix
$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ -1 & -2 & -3 & -4 \end{bmatrix}$$
 is

b) 2

d) 3

3. If
$$|z-2+i| \le 2$$
, then the greatest value of $|z|$ is:

a) $\sqrt{3} - 2$

b) $\sqrt{3} + 2$

c) $\sqrt{5} - 2$

d) $\sqrt{5} + 2$

If $|z_1|=1$, $|z_2|=2$, $|z_3|=3$ and $|9z_1z_2+4z_1z_3+z_2z_3|=12$ then the value of $|z_1+z_2+z_3|$ is :

b) 2

c) 3

A zero of x3+64'is: 5.

a) 0

b) 4

c) 4i

d) -4

The number of positive zeros of the polynomial $\sum_{r=0}^{n} C_r(-1)^r x^{r-1}$ is:

b) n

d) r

If $\cot^{-1} x = \frac{2\pi}{5}$ for some $x \in \mathbb{R}$, then the value of $\tan^{-1} x$ is:

a) $\frac{-\pi}{10}$

d) $\frac{-\pi}{5}$

The radius of the circle $3x^2+by^2+4bx-6by+b^2=0$ is :

a) 1

d) $\sqrt{11}$

If $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 0$ then the value of $[\vec{a} \cdot \vec{b} \cdot \vec{c}]$ is:

d) -1

10. If $\sin^{-1} x + \cot^{-1} \left(\frac{1}{2}\right) = \frac{\pi}{2}$ then the value of x is :

a) =

11. The number given by the mean value theorem for the function $\frac{1}{x}$, $x \in [1,9]$ is :

a) 2

b) 2.5

c) 3

d) 3.5

12. The curve $y=ax^4+bx^2$ with a,b>0:

a) has no horizontal tangent

b) is concave up

c) is concave down

d) has no points of inflection

13. If $u(x, y) = e^{x^2 + y^2}$ then $\frac{\partial u}{\partial x}$ is :

a) extra www.padasalai.Neb) 2xu c) x²u www.TrbTnpsb.doth

14. The value of $\int |x| dx$ is:

15. Linear approximation for $g(x)=\cos x$ at $x=\frac{\pi}{2}$ is :

a) $x + \frac{\pi}{2}$

16. The value of $\int \sin^4 x \, dx$ is:

17. The solution of the differential equation $\frac{dy}{dx} = 2xy$ is:

a) $y = Ce^{x^2}$

b) $y=2x^2+C$ c) $y=Ce^{-x^2}$

18. The population P in any year t is such that rate of increase in the population is proportional to the population then :

a) P=Ce^{kt} b) P=Ce^{-kt}

c) P=Ckt

19. A random variable X-has binomial distribution with n=25 and p=0.8 then standard deviation of X is:

a) 6

b) 4

c) 3

20. If a compound statement involves 3 simple statements, then the number of rows in the truth table is :

a) 9

b) 8

PART-II

Note: Answer any seven questions. Question No.30 is compulsory.

21. If adj(A)= $\begin{vmatrix} 0 & -2 & 0 \\ 6 & 2 & -6 \\ -3 & 0 & 6 \end{vmatrix}$ then find A⁻¹.

22. Find the principal argument Arg z, when $z = \frac{-2}{1 + i\sqrt{3}}$

23. Find the equation of the hyperbola with vertices $(0, \pm 4)$ and Foci $(0, \pm 6)$.

24. Find the distance from a point (2, 5, -3) to the plane \vec{r} . $(6\vec{i}-3\vec{j}+2\vec{k})=5$.

25. Prove that the function $f(x)=x^2-2x-3$ is strictly increasing in $(2, \infty)$.

26. Show that the percentage error in the n^{th} root of a number is approximately $\frac{1}{n}$ times the percentage error in the number.

27. Evaluate: $\int x^5 e^{-3x} dx$

28. Assume that a spherical rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.

29. A pair of Fair dice is rolled once. Find the probability mass function to get the number of four. www.padasalai.Net www.TrbTnpsc.com

30. Let $A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ be any two Boolean matrices of the same type. Find AvB and $A \wedge B$.

PART-III

Note: Answer any seven questions. Question No.40 is compulsory.

31. Solve the system of linear equations 2x+5y=-2, x+2y=-3 using matrix inversion method.

32. State and prove triangle inequality.

33. Find the value of $\sin^{-1}\left(\sin\frac{5\pi}{9}\cos\frac{\pi}{9} + \cos\frac{5\pi}{9}\sin\frac{\pi}{9}\right)$

34. With usual notations in any triangle ABC, prove by vector method $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

35. Find two positive numbers whose sum is 12 and their product is maximum.

36. If U(x, y, z)=log(x³+y³+z³), find $\frac{\partial U}{\partial x} + \frac{\partial U}{\partial y} + \frac{\partial U}{\partial z}$

37. Prove that the point of intersection of the tangents at ${}^{\prime}t_1{}^{\prime}$ and ${}^{\prime}t_2{}^{\prime}$ on the parabola

 $v^2 = 4ax$ is $[at_1t_2, a(t_1+t_2)]$. 38. Find the population of a city at any time t, given that the rate of increase of population is proportional to the population at that instant and that in a period of 40 years the population increased from 3,00,000 to 4,00,000.

39. Establish the equivalence property connecting the bi-conditional with conditional

 $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p).$

40. Show that the polynomial equation $9x^9+2x^5-x^4-7x^2+2=0$ has at least six imaginary roots.

PART-IV

Note: Answer all the questions.

 $7 \times 5 = 35$

41. a) Solve the system of linear equations by Cramer's Rule. $x_1-x_2=3$, $2x_1+3x_2+4x_3=17$, $x_2+2x_3=7$

b) Solve: $\tan^{-1} \left(\frac{x-1}{x-2} \right) + \tan^{-1} \left(\frac{x+1}{x+2} \right) = \frac{\pi}{4}$

42. a) If z=x+iy and $arg(\frac{z-i}{z+2}) = \frac{\pi}{4}$, show that $x^2+y^2+3x-3y+2=0$.

b) If $u = \sin^{-1}\left(\frac{x+y}{\sqrt{x}-\sqrt{y}}\right)$, prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \frac{1}{2}$ tan u.

43. a) Evaluate: $\lim_{x \to \frac{\pi}{2}} (\sin x)^{\tan x}$

b) If $\vec{a} = 2\hat{i} + 3\hat{j} - \hat{k}$, $\vec{b} = 3\hat{i} + 5\hat{j} + 2\hat{k}$, $\vec{c} = -\hat{i} - 2\hat{j} + 3\hat{k}$, verify that $(\overrightarrow{a} \times \overrightarrow{b}) \times \overrightarrow{c} = (\overrightarrow{a} \cdot \overrightarrow{c}) \overrightarrow{b} - (\overrightarrow{b} \cdot \overrightarrow{c}) \times \overrightarrow{a}$

11

44. a) Solve the equation $2x^3+11x^2-9x-18=0$. www.padasalai.Net

www.TrbTnpsc.com

- b) Solve $(1+x^2) \frac{dy}{dy} = 1+y^2$
- 45. a) Find the equation of the circle passing through the points (1, 0), (-1, 0) and (0, 1).

b) The mean and variance of a binomial variate X are 2 and 1.5 respectively. Find (i) P(X=0), (ii) P(X=1), (iii) P(X≥1).

46. a) Find the foot of the perpendicular drawn from the point (5, 4, 2) to the line $\frac{x+1}{2} = \frac{y-3}{3} = \frac{z-1}{-1}$. Also, find the equation of the perpendicular.

(OR) b) Find the area of the region bounded by the lines 5x-2y=15, x+y+4=0 and the x-axis using integration.

47. a) A particle moves along a line according to the law $s(t)=2t^3-9t^2+12t-4$. Where $t \ge 0$.

At what time the particle changes direction?

Find the total distance travelled by the particle in the first 4 seconds.

iii) Find the particles' acceleration each time the velocity is zero.

b) Let $M = \left\{ \begin{pmatrix} x & x \\ x & x \end{pmatrix} : x \in \mathbb{R} - \{0\} \right\}$ and * be the matrix multiplication. Examine the closure, associative, existence of identity, existence of inverse for the operation * on M.

GOVT EXAM QUESTION PAPER - MARCH-2023

12TH STANDARD - MATHS

Time Allowed: 3 Hours Maximum Marks: 90

lin	ne Allowed : 3 Hours			
			RT-I	20 x 1 = 20
	All questions are con A square matrix A on a) p(A)>n	f order n has inverse b) ρ(A)=n	if and only if : c) ρ(A)≠n	d) ρ(A) <n< th=""></n<>
2.	Distance from the o	rigin to the plane 3x-(b) 0	6y+2z+7=0 is : c) 3	d) 1
	If $3 \cos^{-1} x = \cos^{-1} (4a)$ a) $x \in (\frac{1}{2}, 1)$	b) $x \in \left[\frac{1}{2}, 1\right]$	c) x ∈ (-∞, 1]	d) $x \in \left[\frac{1}{2}, \infty\right)$
4.	The general solution	of the differential equ	uation $\frac{dy}{dx} = \frac{y}{x}$ is:	
			c) log y=kx	d) y=k log x
5.	The number of norma) 3	nals that can be drawn b) 2	from a point to the pa c) 0	arabola y ² =4ax is : d) 1
6.	a) 1	rallel vectors then [a, b) 2	c) 0	d) -1
7,	a) 1	b) 2	tisfying $\sin^4 x-2 \sin^2 x$ c) ∞	d) 4
8.	Suppose that X take $P(X=i)=kP(X=i-1)$ for	s on one of the values or $i=1, 2$ and $P(X=0)=$	s 0, 1, 2. If for some $c = \frac{1}{7}$, then the value of	onstant k, k is :
	a) 3	b) 1	c) 4	d) 2
9.	The maximum value	of the function $x^2 e^{-2x}$	^x , x>0 is :	
	a) $\frac{1}{e^2}$	b) <u>1</u>	c) $\frac{4}{e^4}$	d) $\frac{1}{2e}$
10.	The operation * defin	ned by $a*b = \frac{ab}{7}$ is no	t a binary operation of	n:
	a) R	b) Q [†]	c) C	d) z
11.	The area between y^2 a) $\frac{8}{3}$	=4x and its latus rect b) $\frac{2}{3}$		d) 4/3
12.	Angle between the c	urves $y^2 = x$ and $x^2 = y$	at the origin is:	
	a) $\frac{\pi}{2}$	b) $tan^{-1}\left(\frac{3}{4}\right)$	c) $\frac{\pi}{4}$	d) $tan^{-1}\left(\frac{4}{3}\right)$
13.	$ adj(adjA) = A ^{16}$, t	hen the order of the	square matrix A is:	

www.TrbTnpsc.com

14. The value of

a) 8

c) 2

d) 6

15. If |z|=1, then the value of $\frac{1+z}{1+\overline{z}}$ is:

Z * 1

d) Z

16. The abscissa of the point on the curve $f(x) = \sqrt{8-2x}$ at which the slope of the tangent is -0.25?

a) -2

b) -8

d) -4

17. The value of \[\tanx dx is :

a) -log 2

b) log 2

c) -log 3

d) log 3

18. The number of positive zeros of the polynomial $\sum_{r=0}^{n} {}^{n}C_{r}(-1)^{r} \times r$ is:

a) < n</p>

19. The Principal value of $\sin^{-1}\left(\frac{-1}{2}\right)$ is :

 \cdot a) $\frac{-\pi}{6}$

20. Area of the greatest rectangle inscribed in the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is :

a) √ab

b) 2ab

PART-II

Note: Answer any seven questions. Question No.30 is compulsory.

 $7 \times 2 = 14$

21. If |z|=2, show that $3 \le |z+3+4i| \le 7$.

22. If p and q are the roots of the equation $1x^2+nx+n=0$, show that $\sqrt{\frac{p}{q}} + \sqrt{\frac{q}{p}} + \sqrt{\frac{n}{1}} = 0$.

23. If y=4x+c is a tangent to the circle $x^2+y^2=9$, find c.

24. If the radius of a sphere with radius 10cm, has to decrease by 0. 1cm, approximately how much will its volume decrease?

25. Evaluate: $\int \frac{1}{a^2 + x^2} dx$, a > 0, $b \in \mathbb{R}$.

26. Find the vector equation of a plane which is at a distance of 7 units from the origin having 3, -4, 5 as direction ratios of a normal to it.

 $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, B= $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ be any two Boolean matrices of the same type. Find AvB and $A \wedge B$.

28. Prove that $\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$ is orthogonal.

29. Find the equation of tangent to the curve $y=x^2+3x-2$ at the point (1, 2).

PART-III

Note: Answer any seven questions. Question No.40 is compulsory. 7 x 3 = 21

- 31. Find the equation of the parabola with vertex (-1, -2), axis parallel to y-axis and passing through (3,6).
- 32. The maximum and minimum distances of the Earth from the Sun respectively are 152×10^6 km and 94.5×10^6 km. The Sun is at one focus of the elliptical orbit. Find the distance from the Sun to the other focus.
- 33. For what value of x, the inequality $\frac{\pi}{2} < \cos^{-1}(3x-1) < \pi$ holds?
- 34. Find the angle made by the straight line $\frac{x+3}{2} = \frac{y-1}{2} = -z$ with coordinate axes.
- 35. Use the linear approximation to find an approximate value of $(123)^{\frac{2}{3}}$.
- 36. Solve: x cosy dy= $e^x(x \log x+1)d\bar{x}$.

37. If
$$F(\alpha) = \begin{bmatrix} \cos \alpha & 0 & \sin \alpha \\ 0 & 1 & 0 \\ -\sin \alpha & 0 & \cos \alpha \end{bmatrix}$$
, show that $[F(\alpha)]^{-1} = F(-\alpha)$.

- 38. Show that $p \rightarrow q$ and $q \rightarrow p$ are not equivalent.
- 39. If z=(2+3i)(1-i), then find z^{-1} .
- 40. If a+b+c=0 and a,b,c are rational numbers then, prove that the roots of the equation $(b+c-a)x^2+(c+a-b)x+(a+b-c)=0$ are rational numbers.

PART-IV

Note: Answer all the questions.

 $7 \times 5 = 35$

41. a) Solve the equation $z^3+8i=0$, where $z \in \mathbb{C}$.

- b) Solve: $(1+x+xy^2)+\frac{dy}{dx}(y+y^3)=0$.
- 42. a) Using vector method, prove that $cos(\alpha-\beta)=cos\alpha cos\beta + sin\alpha sin\beta$.
 - b) Suppose the amount of milk sold daily at a milk booth is distributed with a minimum of 200 litres and a maximum of 600 litres with probability density function of random variable X is $f(x) = \begin{cases} k & 200 \le x \le 600 \\ 0 & \text{otherwise} \end{cases}$
 - Find i) the value of k, ii) the distribution function
 iii) the probability that daily sales will fall between 300 litres and 500 litres
- 43. a) Identify the type of conic and find centre, foci and vertices of $18x^2+12y^2-144x+48y+120=0$.

(OR) b) If $\cos^{-1}x + \cos^{-1}y + \cos^{-1}z = \pi$ and 0 < x, y, z<1, show that $x^2 + y^2 + z^2 + 2xyz = 1$.

44. a) A boy is walking along the path y=ax²+bx+c through the points (-6, 8), (-2, -12) and (3, 8). He wants to meet his friend at P(7, 60). Will he meet his friend? (Use Gaussian Elimination method)

b) Prove that the ellipse $x^2+4y^2=8$ and the hyperbola $x^2-2y^2=4$ intersect orthogonally.

45. a) Find the parametric form of Vector equation and Cartesian equations of the plane containing the line $\vec{r} = (\hat{i} - \hat{j} + 3\hat{k}) + t(2\hat{i} - \hat{j} + 4\hat{k})$ and perpendicular to the plane $\vec{r} \cdot (\hat{l} + 2\hat{j} + \hat{k}) = 8$.

b) Solve the equation $6x^4-5x^3-38x^2-5x+6=0$ if it is known that $\frac{1}{3}$ is a solution.

46. a) Prove that $p \rightarrow (\neg q \lor r) \equiv \neg p \lor (\neg q \lor r)$ using truth table.

- b) Suppose a person deposits ₹ 10,000 in a bank account at the rate of 5% per annum compounded continuously. How much money will be in his bank account 18 months later?
- 47. a) Find the maximum value of $\frac{\log x}{\log x}$

b) Find the area of the region common to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the straight line

GOVT. EXAM QUESTION PAPER ... JULY-2022

HIGHER SECONDARY SECOND YEAR - MATHS

Max. Marks: 90 Time: 3 Hrs.

PART-I

 $20 \times 1 = 20$

(ii) Choose the most appropriate answer from the given four alternatives and write the option code and the corresponding answer.

1. If $A = \begin{bmatrix} \frac{3}{5} & \frac{4}{5} \\ x & \frac{3}{5} \end{bmatrix}$ and $A^T = A^{-1}$, then the value of x is:

(a)
$$\frac{-4}{5}$$

(b)
$$\frac{-3}{5}$$

(c)
$$\frac{3}{5}$$

(d)
$$\frac{4}{5}$$

2. If A is a non-singular matrix such that $A^{-1} = \begin{bmatrix} 5 & 3 \\ -2 & -1 \end{bmatrix}$ then $(A^T)^{-1} = \begin{bmatrix} 5 & 3 \\ -2 & -1 \end{bmatrix}$

(a)
$$\begin{bmatrix} -5 & 3 \\ 2 & 1 \end{bmatrix}$$

(a)
$$\begin{bmatrix} -5 & 3 \\ 2 & 1 \end{bmatrix}$$
 (b) $\begin{bmatrix} 5 & 3 \\ -2 & -1 \end{bmatrix}$ (c) $\begin{bmatrix} -1 & -3 \\ 2 & 5 \end{bmatrix}$ (d) $\begin{bmatrix} 5 & -2 \\ 3 & -1 \end{bmatrix}$

(c)
$$\begin{bmatrix} -1 & -3 \\ 2 & 5 \end{bmatrix}$$

$$(d) \begin{bmatrix} 5 & -2 \\ 3 & -1 \end{bmatrix}$$

If z=x+iy is a complex number such that |z+2|=|z-2|, then the locus of z is _ 3. (b) imaginary axis (c) ellipse (d) circle (a) real axis

 $i^{n} + i^{n+1} + i^{n+2} + i^{n+3}$ is :

(c) -1

(d) i

A zero of x^3+64 is:

(a) 0

(b) 4

(c) 4i

(d) -4

6. The principal value of $\cos^{-1}\left(\cos\frac{\pi}{6}\right)$ is:

(a) $\frac{\pi}{6}$

(b) $\frac{5\pi}{6}$

(d) $\frac{\pi}{2}$

The equation of the circle passing through the foci of the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ having centre at (0,3) is:

(a) $x^2 + y^2 - 6y - 7 = 0$

(b) $x^2 + y^2 - 6y + 7 = 0$

(c) $x^2 + y^2 - 6y - 5 = 0$

(d) $x^2 + y^2 - 6y + 5 = 0$

The eccentricity of the hyperbola $\frac{x^2}{16} - \frac{(y-3)^2}{4} = 1$ is:

(a) $\frac{\sqrt{3}}{2}$

(b) $\frac{\sqrt{5}}{2}$

If a vector $\overrightarrow{\alpha}$ lies in the plane of $\overrightarrow{\beta}$ and $\overrightarrow{\gamma}$ then :

(a) $[\alpha, \beta, \gamma] = 1$ (b) $[\alpha, \beta, \gamma] = -1$ (c) $[\alpha, \beta, \gamma] = 0$

10.	Distance from the (a) 0	origin to the plane: 3 (b) 1	x-6y+2z+7=0 is (c) 2	TrbTnpsc.gom
11.	A stone is thrown x=80t-16t ² . The s	up vertically. The helg stone reaches the max (b) 2.5	ht it reaches at tin imum height in tim (c) 3	ne t seconds is given by ne t seconds is given by : (d) 3.5
12,	The angle betwee	n the parabolas $y^2 = x$ a	and x ² =y at the ori	gin is : 🔑 🙀
	(a) $\frac{\pi}{4}$		(c) $\frac{\pi}{2}$	(d) 0
13.	 The percentage e percentage error 	rror of fifth root of 31 i in 31 ?	is approximately ho	ow many times the
	(a) $\frac{1}{31}$	(b) $\frac{1}{5}$	(c) 5	(d) 31
14	The value of $\int_{-1}^{2} x $	dx is :		
**	(a) $\frac{1}{2}$	(b) $\frac{3}{2}$	(c) $\frac{5}{2}$	(d) $\frac{7}{2}$
15	. The area betwee	n y ² =4x and its latus re	ectum is :	
	(a) $\frac{2}{3}$	(b) $\frac{4}{3}$	(c) $\frac{8}{3}$	(d) $\frac{5}{3}$
16	5. The order of the		all circles with cen	tre at (h, k) and radius 'a' is
	(a) 2	(b) 3	(c) 4	(d) 1
17	 The differential e B are parameter 		he family of curves	$y=A \cos(x+B)$, where A and
	(a) $\frac{d^2y}{dx^2} - y = 0$	(b) $\frac{d^2y}{dx^2} + y = 0$	$(c) \frac{d^2y}{dx^2} = 0$	$(d) \frac{d^2x}{dy^2} = 0$
18	3. If a fair die is th	own once then the pro	bability to get a pr	ime number on the face is :
	(a) 0	(b) $\frac{1}{2}$	(c) $\frac{1}{4}$	(d) $\frac{1}{6}$
19	A random variab	le X takes the probabil	ity mass function:	The second of th
	$\begin{array}{c cccc} & X & \frac{1}{2} & \frac{3}{3} \\ & P(X-x) & \frac{\lambda}{6} & \frac{\lambda}{4} \end{array}$	$\frac{\lambda}{12}$		
	The value of λ is			The sol of the
	(a) 1	(b) 2	(c) 3	(d) 4
20	Which one of the (a) Subtraction	following is a binary ((b) Multiplication	operation on N? (c) Division	(d) All of the above
NI.		P	ART-II	
	(ii) Question n	y seven questions. number 30 is Compuls	sory.	$7 \times 2 = 14$
21	. Find df for f(x)=	x ² +3x and evaluate it	for $x=3$ and $dx=0$.	02.
			18	

22. If α and the spats of $x^2 + 5x + 6 = 0$, the show that $\alpha^2 + \beta^2 = 13$.

www.TrbTnpsc.com

23. Find the value of $\sin^{-1}(1) + \cos^{-1}(1)$.

24. Find the acute angle between the two straight lines.

$$\frac{x-4}{2} = \frac{y}{1} = \frac{z+1}{-2}$$
 and $\frac{x-1}{4} = \frac{y+1}{-4} = \frac{z-2}{2}$

25. Find the tangent to the curve $y=x^2-x^4$ at (1,0).

26. If $z_1=3$, $z_2=7i$ and $z_3=5+4i$, show that $z_1(z_2+z_3)=z_1z_2+z_1z_3$

27. Show that $y=ae^x + be^{-x}$ is a solution of the differential equation y-y=0

28. A random variable X has the following probability mass function.

Wigi	luoi	ii vai	Iduic		Carrieron
X	1	2	3	4	5
f(x)	k ²	2k²	$3k^2$	2k	3k

Show that the value of k is $\frac{1}{6}$.

29. Suppose the amount of milk solid daily at a milk booth is distributed with a minimum of 200 litres and a maximum of 600 litres with probability density function X is :

$$f(x) = \begin{cases} k, & 200 \le x \le 600 \\ 0 & \text{otherwise} \end{cases}$$
 Find the value of k.

30. Form the differential equation of the curve y=ax²+bx+c where a, b and c are arbitrary constants.

PART-III

Note: (i) Answer any seven questions.

(ii) Question number 40 is Compulsory.

31. Verify
$$(AB)^{-1} = B^{-1}A^{-1}$$
 with $A = \begin{bmatrix} 0 & -3 \\ 1 & 4 \end{bmatrix}$, $B = \begin{bmatrix} -2 & -3 \\ 0 & -1 \end{bmatrix}$

32. Find the rank of the matrix
$$\begin{bmatrix} 1 & -2 & 3 \\ 2 & 4 & -6 \\ 5 & 1 & -1 \end{bmatrix}$$

33. Show that the square roots of 6 – 8i are $\pm \left(2\sqrt{2} - i\sqrt{2}\right)$.

34. Prove that the roots of the equation $x^4-3x^2-4=0$ are ± 2 , $\pm i$.

35. Find centre and radius of the circle $x^2+y^2+6x-4y+4=0$.

36. A particle acted on by constant forces $8\hat{i}+2\hat{j}-6\hat{k}$ and $6\hat{i}+2\hat{j}-2\hat{k}$ is displaced from the point (1,2,3) to the point (5,4,1). Find the total work done by the forces.

37. Show that $\lim_{x\to 0^+} x \log x$ is 0.

38. A circular plate expands uniformly under the influence of heat. If its radius increases from 10.5 cm to 10.75 cm, then find an approximate change in the area.

39. Verify (i) Closure property, (ii) Commutative property of the following operation on the given set.

40. Prove that $\int_{0}^{1} x e^{x} dx = 1$.

ANSWER ALL THE QUESTIONS

(7X5=35)

- 41. (a) Solve the system of linear equations by Cramer's Rule 3x+3y-z=11, 2x-y+2z=9, 4x+3y+2z=25.
 - (b) A particle is fired straight up from the ground to reach a height of a feet in t seconds, where $s(t)=128t-16t^2$.
 - (i) Compute the maximum height of the particle reached.
 - (ii) What is the velocity when the particle hits the ground ?
 - 42. (a) Show that $(2+i\sqrt{3})^{10} (2-i\sqrt{3})^{10}$ is purely imaginary.
 - (b) Find the area of the region bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ using integration.
 - 43. (a) Show that the value of $\sin^{-1}\left(\sin\frac{5\pi}{9}\cos\frac{\pi}{9}+\cos\frac{5\pi}{9}\sin\frac{\pi}{9}\right)$ is $\frac{\pi}{3}$.
 - (b) The parabolic communication antenna has a focus at 2 mts, distance from the vertex of the antenna. Show that the width of the antenna 3 mts. from the vertex is $4\sqrt{6}$ mts.
 - 44. (a) Solve the differential equation $\frac{dy}{dx} + \frac{y}{x} = \sin x$.
 - (b) Verify whether the following compound proposition is tautology or contradiction or contingency. $(p\rightarrow q) \leftrightarrow (\neg p\rightarrow q)$
 - 45. (a) Prove by using vector method that cos(A-B) = cosA cosB + sinA sinB.
 - (b) Prove that among all the rectangles of the given perimeter, the square has the maximum area.
 - 46. (a) Find the eccentricity, foci, vertices and centre for the ellipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$ and draw the rough diagram.
 - (b) The cumulative distribution function of a discrete random variable is given by:

$$F(x) = \begin{cases} 0 & \text{for } -\infty < x < 0 \\ \frac{1}{2} & \text{for } 0 \le x < 1 \\ \frac{3}{5} & \text{for } 1 \le x < 2 \\ \frac{4}{5} & \text{for } 2 \le x < 3 \\ \frac{9}{10} & \text{for } 3 \le x < 4 \\ 1 & \text{for } 4 \le x < \infty \end{cases}$$

Find (i) The probability mass function, (ii) P(x<3) and (iii) $P(x \ge 2)$

47. (a) Show that the area between the parabola $y^2=16x$ and its latus rectum (using integration) is $\frac{128}{3}$.

(or)

(b) Show that the Cartesian equation of the plane passing through the points (a,0,0), (0,b,0), (0,0,c) is $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$.

GOVT: EXAM QUESTION PAPER TOMAY 2022 HIGHER SECONDARY SECOND YEAR - MATHS

Time: 3 Hrs. Max. Marks: 90

PART-I

Vote:	(i)	All	questions	are	compul
		The state of the s			

 $20 \times 1 = 20$

sory. (ii) Choose the most appropriate answer from the given four alternatives and write the option code and the corresponding answer.

1. If $f(x) = \begin{cases} 2x & 0 \le x \le a \\ 0 & \text{otherwise} \end{cases}$ is a probability density function of a random variable then the

value of a is:

(a) 3

(b) 1

(c) 4

(d) 2

2. Which one of the following is not true in the case of discrete random variable X?

(a) $\lim_{x\to -\infty} F(x) = F(\infty) = 1$

(b) $0 \le F(x) \le 1$ for all $x \in R$

(c) F(x) is real valued decreasing function (d) $\lim_{x \to -\infty} F(x) = F(-\infty) = 0$

3. If $f(x) = \frac{x}{x+1}$, then its differential is:

(a) $\frac{1}{x+1} dx$ (b) $\frac{-1}{(x+1)^2} dx$ (c) $\frac{-1}{x+1} dx$

(d) $\frac{1}{(x+1)^2} dx$

4. The value of $\int_{0}^{1} x(1-x)^{99} dx$ is : (a) $\frac{1}{10010}$ (b) $\frac{1}{11000}$ (c) $\frac{1}{10001}$

5. The principal value of $\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$ is :

(a) $\frac{\pi}{2}$

(b) $\frac{\pi}{3}$ (c) $\frac{5\pi}{6}$

(d) $\frac{\pi}{6}$

6. If $A = \begin{bmatrix} 2 & 3 \\ 5 & -2 \end{bmatrix}$ be such that $\lambda A^{-1} = A$, then λ is:

(d) 14

7. If α , β and γ are the zeros of $x^3 + px^2 + qx + r$, then $\sum \frac{1}{a}$ is :

(a) $\frac{q}{a}$

(b) $-\frac{q}{r}$ (c) $-\frac{q}{p}$

 $(d) - \frac{p}{a}$

8. If (1+i)(1+2i)(1+3i)...(1+ni) = x+iy then the value 2.5.10... $(1+n)^2$ is : (a) x^2y^2 (b) 1 (c) $1+n^2$ (d) i

(c) 1+n²

	9.	The minimum value (a) 6 _{www.padasalai.}	N(p) 0	(c) 9 www.TrbTnp	(d) 3 osc.com
	10.	The value of $\sum_{i=1}^{n} i^n$	is:		AND SURE
	3.75	(a) 0	(b) 1	(c) -1	(d) i
	11	If the vectors 2 i i	$+3\hat{k} + 3\hat{i} + 2\hat{i} + \hat{k} \cdot \hat{i} + m$	i+4k are coplanar, t	hen the value of m is:
		(2) 2	(h) 3	(C) -Z	(4)
	12.	The general equation (a) $x^2+y^2-6x+8y-1$ (c) $x^2+y^2+6x-8y+1$	on of a circle with cent 6=0	re (-3, -4) and radius (b) $x^2+y^2-6x-8y+16$ (d) $x^2+y^2+6x+8y+16$	
	13.	The solution of $\frac{dy}{dx}$	+ p(x)y = 0 is :		
			(b) $y = ce^{\int pdx}$	(c) $x = ce^{\int pdy}$	(d) $y = ce^{-\int pdx}$
	14.	The value of $\int_{0}^{\infty} e^{-3x}$	x ² dx is:	neral in the winds	THE PART OF STREET
			(b) $\frac{7}{27}$	The second secon	(d) $\frac{5}{27}$
		No. of the last of	on of the curve y=(x-: (b) (0,0)		(d) (0,1)
	16.	The angle between	the lines $\frac{x-4}{2} = \frac{y}{1} = \frac{y}{1}$	$\frac{x+1}{-2}$ and $\frac{x-1}{4} = \frac{y+1}{-4}$	$=\frac{2}{2}$ is:
	, A-	(a) $\frac{\pi}{2}$	(b) $\frac{\pi}{4}$	40 m 17 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m	(d) $\frac{\pi}{3}$
	17.	Which one of the fo (a) Multiplication	ollowing is a binary ope (b) Division	eration on N ? (c) Subtraction	(d) All the above
	•	 (a) If A is a square (b) Adjoint of a system (c) A(Adj A)=(Adj (d) Adjoint of a dia 	mmetric matrix is also A)A= A I. agonal matrix is also a	d λ is a scalar, then A a symmetric marix. diagonal matrix.	n constant de s
	19.	If sin x is the integr	rating factor of the line	ear differential equatio	n $\frac{dy}{dx} + Py = Q$, then P is
		(a) tan x	(b) log sin x	(c) cot x	(d) coś x
	20.	The length of the la (a) 8	itus rectum of the par (b) 24	abola x ² =24y is : (c) 6	(d) 12
0.4	Ni-	A (1) A	E 10 827	RT-II	$7 \times 2 = 14$
	NO	te: (i) Answer any (ii) Question num	seven questions. nber 30 is Compulso	ry.	7 x 2 = 14
	21.	Prove the following	properties : Re(z)=	$\frac{z+\overline{z}}{2}$ and $Im(z)=\frac{z-\overline{z}}{2i}$	i nemata ka kabi ati
			· Or Control of the C	23	
			Entropy of the work of the Lord		

(7C-X1) (2 -2/2) 22. Find a polynomial equation of minimum degree with rational coefficients, having 2

- 23. Find the principal value of $\tan^{-1}(\sqrt{3})$.
- 24. Find the points on the curve $y=x^3-3x^2+x-2$ at which the tangent is parallel to the line
- 25. Find df for $f(x)=x^2+3x$ and evaluate it for x=2 and dx=0.1.

26. Show that the differential equation of the family of curves y=Aex+Bex, where A and B are arbitrary constants, is $\frac{d^2y}{dv^2} - y = 0$.

27. Solve: $\frac{dy}{dx} = \frac{\sqrt{1-y^2}}{\sqrt{1-x^2}}$

as a root.

28. A random variable X has the following probability mass function.

X	1	2	3	4	5	6
f(x)	k	2k	6k	5k	6k	10k

- 29. X is the number of tails occurred when three fair coins are tossed simultaneously. Find the values of the random variable X and number of points in its reverse images.
- 30. Show that the distance from the origin to the plane 3x+6y+2z+7=0 is 1.

PART-III

Note: (i) Answer any seven questions. (ii) Question number 40 is Compulsory.

- 31. Show that the rank of the matrix $\begin{bmatrix} 3 & -1 & 2 \\ 1 & -2 & 3 \end{bmatrix}$ is 3.
- 32. Solve the following system of linear equations, using matrix inversion method : 5x+2y=3, 3x+2y=5.
- 33. Which one of the points 10-8i, 11+6i is closest to 1+i.
- 34. Solve the equation $2x^3-9x^2+10x=3$, if 1 is a root, find the other roots.
- 35. Find the magnitude and the direction cosines of the torque about the point (2, 0, -1) of a force $2\hat{i}+\hat{j}-\hat{k}$, whose line of action passes through the origin.
- 36. Evaluate : $\lim_{x \to \infty} \frac{2x^2 3}{x^2 5x + 3}$
- 37. Assume that the cross section of the artery of human is circular. A drug is given to a patient to dilate his arteries. If the radius of an artery is increased from 2 mm to 2.1 mm, how much is cross-sectional area increased approximately.
- 38. Show that $\int_{0}^{3} \frac{\sec x \tan x}{1 + \sec^{2} x} dx = \tan^{-1}(2) \frac{\pi}{4}.$
- 39. Let * be defined on **R** by (a*b)=a+b+ab-7. Is * binary on **R**? If so, find $3*\left(\frac{-7}{15}\right)$.

40. Prove that the general equation of the circle whose diameter is the line segment joining the points (Net 1), is x²+y²+5x+3y+6=0. www.TrbTnpsc.com

PART-IV

ANSWER ALL THE QUESTIONS

 $7 \times 5 = 35$

41. (a) Cramer's rule is not applicable to solve the system 3x+y+z=2, x-3y+2z=1, 7x-y+4z=5. Why?

(or)

- (b) Prove that the local minimum values for the function $f(x)=4x^6-6x^4$ attain at -1 and 1.
- 42. (a) Show that the locus of z=x+iy if |z+i|=|z-1|, is x+y=0.

(or)

- (b) Show that $\int_0^a \frac{f(x)}{f(x) + f(a x)} dx = \frac{a}{2}.$
- 43. (a) Show that the equation of the parabola with focus $\left(-\sqrt{2},0\right)$ and directrix $x=\sqrt{2}$ is $y^2=-4\sqrt{2}x$.

(or

- (b) Find the value of $\cot^{-1}(1) + \sin^{-1}(\frac{-\sqrt{3}}{2}) \sec^{-1}(-\sqrt{2})$
- 44. (a) The maximum and minimum distances of the Earth from the Sun respectively are 152×10^6 km and 94.5×10^6 km. The Sun is at one focus of the elliptical orbit. Show that the distance from the Sun to the other focus is 575×10^5 km.
 - (b) Prove by vector method sin(A+B) = sinA.cosB + cosA.sinB.
- 45. (a) Find the vector equation (any form) or Cartesian equation of a plane passing through the points (2,2,1), (9,3,6) and perpendicular to the plane 2x+6y+6z=9.

(or)

- (b) Show that the angle between the curves $y=x^2$ and $x=y^2$ at (1,1) is $\tan^{-1}\left(\frac{3}{4}\right)$.
- 46. (a) The distribution function of a continuous random variable X is :

$$F(x) = \begin{cases} 0, & x < 1 \\ \frac{x-1}{4}, & 1 \le x \le 5 \\ 1, & x > 5 \end{cases}$$

Find (i) P(X < 3), (ii) P(2 < X < 4), (iii) $P(3 \le X)$ (or)

(b) Show that the area of the region bounded by 3x-2y+6=0, x=-3, x=1 and a-axis, is $\frac{15}{2}$.

- 47. (a) www.TrbTnpscdym that the solution of the differential equation $(1+x^2)\frac{dy}{dx} = 1+y^2$ is
 - $\tan^{-1} y = \tan^{-1} x + C$ (or) $\tan^{-1} x = \tan^{-1} y + C$.
 - (b) Prove $p \to (q \to r) = (p \land q) \to r$ using truth table.

26

GOVT EXAM QUESTION PAPER - AUGUST-2021

HIGHER SECONDARY SECOND YEAR - MATHS

Max. Marks: 90 Time: 3 Hrs.

(i) All questions are compulsory.

 $20 \times 1 = 20$

(ii) Choose the most appropriate answer from the given four alternatives and write the option code and the corresponding answer:

1. The inverse of $\begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix}$ is the parameter of the model of the state o

1)
$$\begin{bmatrix} 3 & -1 \\ -5 & -3 \end{bmatrix}$$
 2) $\begin{bmatrix} 2 & -1 \\ -5 & 3 \end{bmatrix}$ 3) $\begin{bmatrix} -3 & 5 \\ 1 & -2 \end{bmatrix}$ 4) $\begin{bmatrix} -2 & 5 \\ 1 & -3 \end{bmatrix}$

$$2)\begin{bmatrix} 2 & -1 \\ -5 & 3 \end{bmatrix}$$

3)
$$\begin{bmatrix} -3 & 5 \\ 1 & -2 \end{bmatrix}$$

4)
$$\begin{bmatrix} -2 & 5 \\ 1 & -3 \end{bmatrix}$$

2. The centre of the hyperbola $\frac{(x-1)^2}{16} - \frac{(y+1)^2}{25} = 1$ is: 1) $\left(\frac{1}{2}, -\frac{1}{2}\right)$ 2) (-1, 1) 3) (1, -1)

$$1)\left(\frac{1}{2},-\frac{1}{2}\right)$$

4) (0, 0)

3. The order and degree of the differential equation $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^{\frac{1}{3}} + x^{\frac{1}{4}} = 0$ are :

1) 2.6 2) 2.3 3) 2, 4 4) 3, 3

4. A pair of dice numbered 1,2,3,4,5,6 of a six sided die and 1,2,3,4 of a four side die is rolled and the sum is determined. If the random variable X denote the sum, then the number of elements in the inverse image of 7 is :

5. If |z|=1, then the value of $\frac{1+z}{1+z}$ is:

1)
$$\frac{1}{z}$$

6. The value of sir x cosx dx is:

1) 0

7. The function $f(x)=x^2$, in the interval $[0, \infty)$ is :

- 1) cannot be determined
- 2) increasing function
- 3) increasing and decreasing function
- 4) decreasing function

8. The volume of the parallelepiped with its edges represented by the vectors

$$\overrightarrow{i}$$
 \overrightarrow{j} \overrightarrow{i} \overrightarrow{j} \overrightarrow{i} \overrightarrow{j} \overrightarrow{j} \overrightarrow{k} is:

1) π

4) 1 7 9 9 6 9 6 9 6 9 6

bin 1)	The set R of real ATX Operation of a*b=a	numbers '*' is defin	ned as follows, Which	one of the following is not
		21	3) a*b=a ^b 4) a*b	=max (a,b)
		article 's' moving at he particle is at res	any time t is given by	$y s(t) = 5t^2 - 2t - 8$
and the same		2) 0	3) 3	$=$ 4) $\frac{1}{3}$
11.If th	ne function f(x)=	$\frac{1}{12} \text{ for a < x < b,}$	represents a probabili	ty density function of a
p.5	· undoll	variable X, then wh	ich of the following ca	annot be the values of a and
7)	/ and 19	2) 0 and 12	3) 16 and 24	4) 5 and 17
- J.		nt on 16x ² +25y ² =40 2) 8	00 with foci F ₁ (3,0) ar 3) 12	and $F_2(-3,0)$, then PF_1+PF_2 is:
13. If t	he planes r • (2 î-	$-\lambda \hat{i} + \hat{k}) = 3$ and $\hat{r} = 0$	Aî.î.û E are na	rallel, then the values of λ
100	ADD RESPONSED AND ADDRESS OF THE PROPERTY OF T	- 7	41+ j-μκ) = 5 are pa	railer, then the values of λ
1)	$-\frac{1}{2}$,-2	2) $\frac{1}{2}$,-2	3) $\frac{1}{2}$,2	4) $-\frac{1}{2}$,2
14. A ze	ero of x ³ +64 is		3) $\frac{1}{2}$,2	
	i designation in	2) 0	3) -4	4) 4
	solution of $\frac{dy}{dx}$ +	P(x)y = 0 is:		SELECTION SOS IN THE SELECTION OF THE SE
1) >	$C = ce^{-\int Pdy}$	2) $y = ce^{\int Pdx}$	3) $x = ce^{\int Pdy}$	4) $y = ce^{-\int Pdx}$
16. ∫siı	$n^7 \times dx =$			CONTRACTOR
, o.				
π		# 2		
1) $\frac{\pi}{2}$		2) $\int \cos^7 x dx$	3) 0	4) 1
17. The	value of $\sin^{-1}\left(\frac{1}{2}\right)$	$+\cos^{-1}\left(\frac{1}{2}\right)$ is:		
1) 0		2) $\frac{\pi}{2}$	3) $\frac{\pi}{3}$	4) π
18. If A,	B and C are inve	rtible matrices of so	me order, then which	one of the following is
		2) adj A= A A ⁻¹ 4) adj(AB)=(adj A) (one of the following is
19. The Va	alue of te comple	ex number $(i^{25})^3$ is ϵ	equal to	
1) 1	2	2) i	3) -i	4) -1
			28	

20. If we measure the saide were cube to be 4 cm with an error of Orb consthem the error in calculation of the volume is (in cube cm):

1) 2

3) 4.8

4) 0.45

PART-II

Note: Answer any 7 questions. Question No.30 is compulsory.

 $7 \times 2 = 14$

21.If z=(2+3i) (1-i) then prove that
$$z^{-1} = \frac{5}{26} - i\frac{1}{26}$$
.

22. If α and β are the roots of $x^2 - 5x + 6 = 0$ then prove that $\alpha^2 - \beta^2 = \pm 5$.

23. For what value of x does sinx=sin-1x?

24. Show that the three vectors $2\hat{i}+3\hat{j}+\hat{k}$, $\hat{i}-2\hat{j}+2\hat{k}$ and $3\hat{i}+\hat{j}+3\hat{k}$ are coplanar.

25. Prove that $\lim_{x\to a} \left(\frac{e^x}{x^m}\right)$, where m is a positive integer, is ∞ .

26. If $g(x)=x^2+\sin x$, then find dg.

27. Show that the solution of $\frac{dy}{dx} = \sqrt{\frac{1-y^2}{1-x^2}}$ is $\sin^{-1} y = \sin^{-1} x + C$ (or) $\sin^{-1} x = \sin^{-1} y + C$.

28.If X is the random variable with distribution function F(x), given by:

$$F(x) = \begin{cases} 0 & ; & -\infty < x < 0 \\ \frac{1}{2}(x^2 + x) & ; & 0 \le x < 1 \\ 1 & ; & 1 \le x < \infty \end{cases}$$

Then prove that the p.d.f. is $f(x) = \begin{cases} \frac{1}{2}(2x+1) & 0 \le x < 1 \\ 0 & \text{otherwise} \end{cases}$

29. The probability density function of x is given by $f(x) = \begin{cases} k \times e^{-2x} & \text{for } x > 0 \\ 0 & \text{for } x \le 0 \end{cases}$

Prove that the value of k is 4.

30. Show that the differential equation corresponding to y=A sinx, where A is an arbitrary constant, is y=y tanx.

PART-III

Note: Answer any 7 questions. Question No.40 is compulsory. $7 \times 3 = 21$

31. Show that the rank of the matrix 0 2 4 3 is 3.

32. If $A = \begin{bmatrix} 8 & -4 \\ -5 & 3 \end{bmatrix}$, verify that A(adj A) = (adj A)A = |A|I.

33. Show that the points $1, -\frac{1}{2} + i\frac{\sqrt{3}}{2}$ and $-\frac{1}{2} - i\frac{\sqrt{3}}{2}$ are the vertices of an equilateral triangle of side length $\sqrt{3}$.

- 34. If the sides of padasaraicubit box are increased by 1,2,3 units respectively to form a cubold they the volume is increased by 52 cubic units. Show that the volume of the cuboid is 60 cubic units.
- 35. Prove that the equation of the parabola with foucs (4,0) and directrix x=-4 is $y^2 = 16x$.
- 36.A force $13\hat{i}+10\hat{j}-3\hat{k}$ acts on a particle which is displaced from the point with position vector $4\hat{i}-3\hat{j}-2\hat{k}$ to the point with position vector $6\hat{i}+\hat{j}-3\hat{k}$. Show that the work done by the force is 69 units.
- 37. Show that the point on the curve $y=x^2-5x+4$ at which the tangent is parallel to the line 3x+y=7, is (1,0).
- 38. An egg of a particular bird is spherical in shape. If the radius to the inside of the shell is 4mm and radius to the outside of the shell is 4.2mm, prove that the approximate volume of the shell is 12.8π mm³.
- 39.Define an operation * on Q, the set of all rational numbers, as follows: $a*b = \left(\frac{a+b}{2}\right); a,b \in Q. \text{ Examine the closure and commutative properties satisfied by }*$ on Q.
- 40. Show that $\int_0^1 \frac{\sqrt{x}}{\sqrt{1-x} + \sqrt{x}} dx = \frac{1}{2}.$

PART-IV

Note: Answer the following questions.

 $7 \times 5 = 35$

- 41.a) Solve the systems of equations. x-y+2z=2, 2x+y+4z=7, 4x-y+z=4 by Cramer's rule. (OR)
 - b) A camera is accidently knocked off an edge of a cliff 400 ft. high. The camera falls a distance of s=-16t² in t seconds. Show that the camera hits the ground when t=5 seconds and also prove that the velocity when it hits the ground is -160 ft./sec.
- 42.a) If z=x+iy is a complex number such that $\left|\frac{z-4i}{z+4i}\right|=1$, show that the locus of z is real axis or y=0.
 - b) Show that $\int_{0}^{1} \sqrt{\frac{1-x}{1+x}} dx = \frac{\pi}{2} 1$.
- 43.a) Prove that $\cos^{-1} \left[\cos \left(\frac{4\pi}{3} \right) \right] + \cos^{-1} \left[\cos \frac{5\pi}{4} \right] = \frac{17\pi}{12}$.
 - b) Find the eccentricity, centre, vertices and foci of the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ and also draw the rough diagram.

44.a) Solve $(e^y+1) \cos x dx + e^y \sin x dy=0$.

www.TrbTnpsc.com

- b) Show that $\neg (p \rightarrow q) = p \land (\neg q)$.
- 45.a) Using Vector method, prove that cos(A-B)=cosA cosB + sinA + sinB.
 - b) Find two positive numbers whose project is 20 and their sum is minimum.
- On lighting a rocket cracker it gets projected in a parabolic path and reaches a maximum height of 4m when it is 6m away from the point of projection. Finally it reaches the ground 12m away from the starting point. Show that the angle of projection is tan-1

(OR)

A random variable X has the following probability mass function:

X	1	2 .	3	4	5
f(x)	k ²	2k ²	3k ²	2k	3k

Find:

- i) the value of k.
- ii) $P(2 \le X < 5)$.
- iii) P(3 < X).
- 47.a) Show that the area of the region bounded by 3x-2y=0, x=-3 and x=1 is $\frac{13}{2}$.

(OR)

Show that the Cartesian equation of the plane passing through the points (1, 2, 3) and (2, 3, 1) and also perpendicular to the plane 3x-2y+4z+5=0 is 2y+z-7=0.

GOVT EXAM QUESTION PAPER - SEPTEMBER-2020 HIGHER SECONDARY SECOND YEAR - MATHS

Time: 3 Hrs.	HIGHER SECONDARY SECONDARY	Max. Marks: 90
(II) Cr	PART-I II questions are compulsory: noose the most appropriate answer from ne option code and the corresponding an	$20 \times 1 = 20$ the given four alternatives and we swer.
 If A^TA⁻¹ is A⁻¹ If x^ay^b = 	is symmetric, then $A^2 =$ $(2) (A^T)^2 \qquad (3) A^T$ $= e^m, x^c y^d = e^n, \Delta_1 = \begin{vmatrix} m & b \\ n & d \end{vmatrix}, \Delta_2 = \begin{vmatrix} a & m \\ c & n \end{vmatrix},$ where respectively	$\Delta_3 = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$, then the values of
(3) $\log(\Delta)$	(Δ_1) , $_{e}(\Delta_3/\Delta_1)$ (2) log (Δ_3/Δ_1) (4) $_{e}(\Delta_3/\Delta_1)$	$g(\Delta_1/\Delta_3)$, $\log(\Delta_2/\Delta_3)$ Δ_1/Δ_3 , $e(\Delta_2/\Delta_3)$
(1) $\frac{1}{2}$ 4. If a=3+, az, 3az a (1) Verti	(2) 1 (3) 2 and z=2-3i, then the points on the Arga and -az are: ces of a right angled triangle (2) Ve	(4) 3 nd diagram representing ertices of an equilateral triangle
 The poly (1) k ≤6 	nomial x^3 - kx^2 +9x has three real zeros if	>6 (4) k ≥6
(1) $\frac{-\pi}{10}$ 7. $\sin^{-1}(\cos \theta)$	$(2) \frac{\pi}{5} \qquad (3) \frac{\pi}{10}$ $(3) \frac{\pi}{10}$ $(3) \frac{\pi}{10}$	$(4) \frac{-\pi}{5}$
(1) $-\pi \le$ 8. The length	$x \le 0$ (2) $0 \le x \le \pi$ (3) $\frac{-\pi}{2}$ th of the latus rectum of the parabola y^2	$\frac{\pi}{4} \le x \le \frac{\pi}{2}$ (4) $\frac{-\pi}{4} \le x \le \frac{3\pi}{4}$ $-4x + 4y + 8 = 0$ is:
9. If the co-	ordinates at one end of a diameter of the co-ordinates of the other and is	(4) 2 ne circle $x^2 + y^2 - 8x - 4y + c = 0$ are
10. If $\vec{a} = \hat{i} + \hat{j}$ (1) 0	(2) $(2,-5)$ (3) (5) $\hat{j}+\hat{k}, \ \vec{b}=\hat{i}+\hat{j}, \ \vec{c}=\hat{i} \ \text{and} \ (\vec{a}\times\vec{b}) \times \vec{c} = \lambda$ (2) 1 (3) 6	$\overrightarrow{a} + \mu \overrightarrow{b}$, then the value of $\lambda + \mu$ is: (4) 3

11.	The co-ordinates of t	he point where the li	ne r=(6î-j-3k)\\\(\frac{\fir}{\fir}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fir}{\fir}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fir}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\	Akymeets the plane
	$\vec{r} \cdot (\hat{i} + \hat{j} - \hat{k}) = 3$ are :	A THE STOCK STOCK OF THE STOCK	northern gostic dec	different december
	(1) (2, 1, 0)	(2) (7, -1, -7)	(3) (1, 2, -6)	(4) (5, -1, 1)
12.	Angle between $y^2=x$	and $x^2=y$ at the origi	n is :	- A π = 22 - A 2 - A 2
	(1) $\tan^{-1}\frac{3}{4}$	(2) $\tan^{-1}\left(\frac{3}{4}\right)$	$(3) \frac{\pi}{2}$	$(4)\frac{\pi}{4}$
13.	The number given by	the Rolle's theorem	for the function x^3-3x^4	, x∈[0,3] is :
		(2) √2	(3) $\frac{3}{2}$	(4) 2 ¹ and a scient
14.	If $W(x,y)=x^y$, $x>0$, t	hen $\frac{\partial W}{\partial x}$ is equal to :		939USWI 1
	and the state of t	(2) y log x.	THE PARTY OF THE P	(4) x log y
15.	The value of $\int_{-\pi/2}^{\pi/2} \left(\frac{s}{2+1} \right)^{\pi/2}$	inx osx dx is:	eceration of the opera	and animex3 &
	(1) 0	(2) 2 00 10 ISUED 31	(3) log 2	(4) log 4
16.	If $f(x) = \int_0^x t \cos t dt$,			
	(1) cos x - x sin x	(2) $\sin x + x \cos x$	(3) x cos x	(4) x sin x
17.	If cos x is an integra	ting factor of the diffe	erential equation $\frac{dy}{dx}$ +	
	(1) -cot x	(2) cot x	(3) tan x	(4) -tan x
18.	The solution of the d	lifferential equation $\frac{d}{d}$	$\frac{ y }{ x } = \frac{y}{x} + \frac{\phi(\frac{y}{x})}{\phi(\frac{y}{x})} \text{ is :}$	e a la l
71 5.	(1) $x.\phi \left(\frac{y}{x}\right) = k$	$(2) \phi \left(\frac{1}{x}\right) = KX$	$(3) y \phi \left(\frac{x}{x}\right) = K$	
	variance of the succe (1) 4	esses is : (2) 6	nber is considered a su	(4) 256
20.	The operation * defin	ned by $a*b = \frac{ab}{7}$ is no	ot a binary operation o	n : A Suppose coppus A
	(1) Q ⁺	(2) Z	(3) R	(4) C
			RT-II	7 x 2 = 14
Not	e: (i) Answer any set (ii) Question num	even questions. ber 30 is Compulso i	ry.	
	- 하는 2명 전 , 주 나는 [15] - 첫			
21.	Find the least positiv	e integer n such that	$\left\lfloor \left(\frac{1}{1} \right) \right\rfloor = 1$	

22. Obtain the Gastesian form of the locus of z=x+iy in |z+1|=||Z-i||psc.com

- 23. If α , β , γ and δ are the roots of the polynomial equation $2x^4 + 5x^3 7x^2 + 8 = 0$, find a quadratic solution $2x^4 + 5x^3 7x^2 + 8 = 0$, find $2x^4 + 5x^3 7x^2 + 8 = 0$, find $2x^4 + 5x^3 7x^2 + 8 = 0$, find $2x^4 + 5x^3 7x^2 + 8 = 0$, find $2x^4 + 5x^3 7x^2 + 8 = 0$, find $2x^4 + 5x^3 7x^2 + 8 = 0$, find $2x^4 + 5x^3 7x^2 + 8 = 0$, quadratic equation with integer coefficients whose roots are $\alpha+\beta+\gamma+\delta$ and $\alpha\beta\gamma\delta$.
- 24. Find the principal value of $tan^{-1}(\sqrt{3})$.
- 25. If $\hat{a}, \hat{b}, \hat{c}$ are three unit vectors such that \hat{b} and \hat{c} are non-parallel and $\hat{a} \times (\hat{b} \times \hat{c}) = \frac{1}{2}\hat{b}$,

find the angle between \hat{a} and \hat{c} .

- 26. Evaluate the limit : $\lim_{x\to 0} \left(\frac{\sin x}{x} \right)$
- 27. Evaluate $\int \frac{dx}{x^2-4}$.
- 28. Find the differential equation of the family of y=ax2+bx+c where a, b are parameters and c is a constant.
- 29. Examine the binary operation of the operation $a \cdot b = \left(\frac{a-1}{b-1}\right), \forall a, b \in \mathbb{Q}$.
- 30. Show that, if $x=r\cos\theta$, $y=r\sin\theta$, then $\frac{\partial u}{\partial x}$ is equal to $\cos\theta$.

PART-III

Note: (i) Answer any seven questions.

 $7 \times 3 = 21$

(ii) Question number 40 is Compulsory.

31. Verify
$$(AB)^{-1} = B^{-1}A^{-1}$$
 with $A = \begin{pmatrix} 0 & -3 \\ 1 & 4 \end{pmatrix}$, $B = \begin{pmatrix} -2 & -3 \\ 0 & -1 \end{pmatrix}$.

32. If
$$A = \begin{bmatrix} 8 & -4 \\ -5 & 3 \end{bmatrix}$$
, verify that $A(adj A) = (adj A)A = |A|I$.

- 33. Obtain the condition that the roots of $x^3+px^2+qx+r=0$ are in A.P.
- 34. A circle of area 9π square units has two of its diameters along the lines x+y=5 and x-y=1. Find the equation of the circle.
- 35. Prove that with usual notations $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ by using area of the triangle property.
- 36. Find the absolute extrema of the function $f(x)=x^2-12x+10$ on [1,2].
- 37. Suppose that $z = ye^{x^2}$, where x=2t and y=1-t then find $\frac{dz}{dt}$.

- 38. Two fair coins are tossed simultaneously. Find the probability mass function for number of heads occurred. Net
- 39. The mean and variance of a binomial variate X are respectively 2 and 1.5. Find P(X=0).
- 40. Show that $((\neg q) \land p) \land q$ is a contradiction.

PART-IV

ANSWER ALL THE QUESTIONS

 $7 \times 5 = 35$

the House and Secretary

41. (a) Test for consistency and if possible, solve the following system of equations by rank method. 2x + 2y + z = 5, x - y + z = 1, 3x + y + 2z = 4

(or)

- (b) Prove that $arg(z_1z_2)=arg(z_1)+arg(z_2)$
- 42. (a) Draw the graph of tan x in $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ and $\tan^{-1} x$ in $\left(-\infty, \infty\right)$.

4

- (or)
- (b) Find the centre, foci and eccentricity of the hyperbola : $11x^2-25y^2-44x+50y-256=0$.
- 43. (a) A rod of length 1.2 m moves with its ends always touching the co-ordinate axes.

 The locus of a point P on the rod, which is 0.3 m from the end in contact with x-axis is an ellipse. Find the eccentricity.

(or)

- (b) Using vector method, prove $\cos(\alpha \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$.
- 44. (a) Find the vector and Cartesian equations of the plane passing through the point (1, -2, 4) and perpendicular to the plane x+2y-3z=11 and parallel to the line $\frac{x+7}{3} = \frac{y+3}{-1} = \frac{z}{1}.$

(or

- (b) Prove that among all the rectangles of the given perimeter, the square has the maximum area.
- 45. (a) Show that $\int_{0}^{1} (\tan^{-1}x + \tan^{-1}(1-x))dx = \frac{\pi}{2} \log 2.$ (or)
 - (b) A pot of boiling water at 100°C is removed from the solve at time t=0 and left to cool in the kitchen. After 5 minutes, the water temperature has decreased to 80°C, and another 5 minutes later it has dropped to 63°C. Determine the temperature of the kitchen.
- 46. (a) Solve $\frac{dy}{dx} = e^{x+y} + x^3 e^y$.

(or)

- (b) If $X \sim B$ (n, p) such that 4P(X=4)=P(X=2) and n=6, find the distribution, mean and standard d and standard deviation of X.
- 47. (a) A Car A is travelling from west at 50 km/hr and Car B is travelling towards north at 60 km/hr. 60 km/hr. Both are headed for the intersection of the two roads. At what rate are the Cars approaching each other when Car A is 0.3 kilometers and Car B is 0.4 kilometers from the intersection ?

(or)

(b) Find the area of the region bounded by the ellipse rectums.

GOVT EXAM QUESTION PAPER - MARCH-2020 HIGHER SECONDARY SECOND YEAR - MATHS

Max. Marks: 90 Time: 3 Hrs.

	1000	1	
			- T
$\boldsymbol{\nu}_{l}$	ΛR	40 16	-

Note:	(i) All questions are compulsory.	100
	(i) All questions are compulsory . (ii) Choose the most appropriate answer from the given four alternatives and write	- CO.
	(II) Choose the most approximating answer.	2018

 $20 \times 1 = 20$

the option code and the corresponding answer.

1. If $u(x,y) = e^{x^2 + y^2}$, then $\frac{\partial u}{\partial x}$ is equal to

- (1) $y^2 u$ (2) $e^{x^2+y^2}$
- (3) 2xu (4) x²u

Subtraction is not a binary operation in :

- DIE (1) Q DA DATE A.O. (2) R

- (3) Z

The value of $\int \sin^4 x \, dx$ is:

- (1) $\frac{3\pi}{2}$

A polynómial equation of degree n always has :

- (1) exactly n roots (2) n distinct roots (3) n real roots
- (4) n imaginary roots

If $\rho(A) = \rho([A|B])$, then the system AX=B of linear equation is :

- (1) inconsistent
- (2) consistent and has a unique solution
- (3) consistent
- (4) consistent and has infinitely many solutions

The vertex of the parabola x^2 -8y-1 is :

- (1) $\left(0, -\frac{1}{8}\right)$ (2) $\left(-\frac{1}{8}, 0\right)$ (3) $\left(\frac{1}{8}, 0\right)$
- $(4)\left(0,\frac{1}{8}\right)$

If $\sin^{-1}x + \sin^{-1}y = \frac{2\pi}{3}$; then $\cos^{-1}x + \cos^{-1}y$ is equal to :

 $(1) \pi$

- (2) $\frac{2\pi}{2}$

 $(4) \frac{\pi}{6}$

The value of $\sum_{i=1}^{13} (i^n + i^{n-1})$ is:

- (3) i
- (4) 1

9. $\vec{r} = s \hat{i} + t \hat{j}$ is the equation of (s, t are parameters):

- (1) zox plane
- A YOUR AND AND A STANK (2) a straight line joining the points i and j
- (3) xoy plane
- (4) yoz plane

10. The order of the differential equation of all circles with centre at (h, k) and radius 'a'. Where h, k and a are arbitrary constants, is: (4) 4

(1) 1

 $(2)^{2}$

(3) 3

37

11. arg(0) is adasalai.Net

www.TrbTn(4).undefined

12. $\tan^{-1}\left(\frac{1}{4}\right) + \tan^{-1}\left(\frac{2}{9}\right)$ is :

(1) $\tan^{-1}\left(\frac{1}{2}\right)$

(2) $\frac{1}{2}\cos^{-1}\left(\frac{3}{5}\right)$ (3) $\frac{1}{2}\sin^{-1}\left(\frac{3}{5}\right)$

 $(4) \frac{1}{2} \tan^{-1} \left(\frac{3}{5} \right)$

13. The position of a particle moving along a horizontal line of any time t is given by $s(t)=3t^2-2t$ $s(t)=3t^2-2t-8$. The time at which the particle is at rest, is:

(1) t=3

(2) t=0

(4) t=1

14. The least possible perimeter (in meter) of a rectangle of area 100 m² is :

(4) 40

(1)50

(2) 10

(3) 20

15. A random variable X has binomial distribution with n=25 and p=0.8, then the standard deviation of X deviation of X is :

(1) 2

(2)6

(3)4

16. The radius of the circle $3x^2+by^2+4bx-6by+b^2=0$ is :

 $(1) \sqrt{11}$

(2) 1

(3) 3

 $(4) \sqrt{10}$

17. The distance between the planes x+2y+3z+7=0 and 2x+4y+6z+7=0 is :

(1) $\frac{7}{2\sqrt{2}}$ (2) $\frac{\sqrt{7}}{2\sqrt{2}}$ (3) $\frac{7}{2}$

18. If $(AB)^{-1} = \begin{bmatrix} 12 & -17 \\ -19 & 27 \end{bmatrix}$ and $A^{-1} = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$, then $B^{-1} = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$

 $(1)\begin{bmatrix}8 & -5\\ -3 & 2\end{bmatrix} \qquad (2)\begin{bmatrix}2 & -5\\ -3 & 8\end{bmatrix} \qquad (3)\begin{bmatrix}8 & 5\\ 3 & 2\end{bmatrix} \qquad (4)\begin{bmatrix}3 & 1\\ 2 & 1\end{bmatrix}$

19. The value of $\int_{0}^{\frac{\pi}{3}} \frac{dx}{\sqrt{4-9x^2}}$ is:

(1) $_{\pi}$

 $(2) \frac{\pi}{6}$

(3), $\frac{\pi}{2}$ (4) $\frac{\pi}{4}$

20. The order and degree of the differential equation $\frac{dx}{dy} + \frac{dy}{dx} = 0$ are :

(1) 2 degree not defined

(2) 1,2

(3) 2,1 (4) 2,2

PART-II

Note: (i) Answer any seven questions.

(ii) Question number 30 is Compulsory.

21. Prove that $\left(\frac{1+i}{1-i}\right)^3 - \left(\frac{1-i}{1+i}\right)^3 = -2i$

- 24. Find the magnitude and the direction cosines of the torque about the point (2,0,-1) of a force $2\hat{i}+\hat{j}-\hat{k}$, whose line of action passes through the origin.
- 25. Find the value in the interval $\left(\frac{1}{2},2\right)$ satisfied b the Rolle's theorem for the function $f(x) = x + \frac{1}{x}, x \in \left[\frac{1}{2},2\right] \text{ so small to instant interval and the value and the satisfied by the Rolle's theorem for the function <math display="block">f(x) = x + \frac{1}{x}, x \in \left[\frac{1}{2},2\right] \text{ so small to instant interval and the value of the Rolle's theorem for the function <math display="block">f(x) = x + \frac{1}{x}, x \in \left[\frac{1}{2},2\right] \text{ so small to instant interval and the value of the Rolle's theorem for the function <math display="block">f(x) = x + \frac{1}{x}, x \in \left[\frac{1}{2},2\right] \text{ so small to instant interval and the rolle's theorem for the function of the function of the Rolle's theorem for the Rolle's t$
- 26. For the function $f(x)=x^2+3x$, Calculate the differential df when x=2 and dx=0.1.
- 27. Prove that $\int_{0}^{\frac{\pi}{2}} \frac{f(\sin x)}{f(\sin x) + f(\cos x)} dx = \frac{\pi}{4}.$
- 28. Find the differential equation of the family of parabolas y²=4ax, where 'a' is an arbitrary constant.
- 29. Prove that the identify element is unique if it exists.
- 30. Find the equation of the parabola if the curve is open leftward, vertex is (2,1) and passing through the point (1,3).

PART-III

Note: (i) Answer any seven questions.

 $7 \times 3 = 21$

- (ii) Question number 40 is Compulsory.
- 31. If $A = \begin{bmatrix} 2 & 9 \\ 1 & 7 \end{bmatrix}$ then prove that $(A^T)^{-1} = (A^{-1})^T$.
- 32. If p is real, discuss the nature of the roots of the equation $4x^2+4px+p+2=0$, in terms of p.
- 33. A concrete bridge is designed as a parabolic arch. The road over bridge is 40 m long and the maximum height of the arch is 15 m. Write the equation of the parabolic arch. Take (0,0) as the vertex.
- 34. Find the Vector and Cartesian equations of a straight line passing through the points (-5,7,-4) and (13,-5,2). Find the point where the straight line crosses the xy plane.
- 35. Find the critical numbers (only x values) of the function $f(x) = x^{\frac{4}{3}}(x-4)^2$.
- 36. If $U = log (x^3 + y^3 + z^3)$ then find $\frac{\partial U}{\partial x} + \frac{\partial U}{\partial y} + \frac{\partial U}{\partial z}$
- 37. A random variable X has the following probability mass function:

X	1	2	3	4	5	6
P(X=x)	K	2k	6k	5k	6k	10k

38. Let X be a continuous random variable and f(x) is defined as:

$$f(x) = \begin{cases} kx(1-x)^{10} & , & 0 < x < 1 \\ 0 & , & \text{otherwise} \end{cases}$$

find the value of k.

www.TrbTnpsc.com

39. Prove that Psalaq Net pvq. 40. If the lines $\frac{x - x_1}{l_1} = \frac{y - y_1}{m_1} = \frac{z - z_1}{n_1}$ and $\frac{x - x_2}{l_2} = \frac{y - y_2}{m_2} = \frac{z - z_2}{n_2}$ be on the same plane then with then write the number of ways to find the Cartesian equation of the above plane and explain in detail. explain in detail.

Contains and the contains and part-IV ANSWER ALL THE QUESTIONS

41. (a) Test the consistency of the following system of linear equations by rank method.

$$X - Y + Z = -9$$

$$2x - y + z = 4$$

$$3x - y + z = 6$$

$$4x - y + 2z = 7$$

(b) If $2\cos\alpha = x + \frac{1}{x}$ and $2\cos\beta = y + \frac{1}{y}$, show that :

(i)
$$\frac{x^m}{v^n} - \frac{y^n}{x^m} = 2i \sin(m\alpha - n\beta)$$

(ii)
$$x^m y^n + \frac{1}{x^m y^n} = 2 \cos(m\alpha + n\beta)$$

- **42.** (a) Draw the graph of $\cos x$ in $[0,\pi]$ and $\cos^{-1} x$ in [-1,1]
 - (b) Find the equation of the circle passing through the points (1,1) (2,-1) and (3,2).
- 43. (a) Assume that water issuing from the end of a horizontal pipe, 7.5 m above the ground, describes a parabolic path. The vertex of the parabolic path is at the end of the pipe. At a position 2.5 m below the line of the pipe, the flow of water has curved outward 3m beyond the vertical line through the end of the pipe. How far beyond this vertical line will the water strike the ground?

(OR)

- (b) By vector method, prove that, $cos(\alpha+\beta) = cos \alpha cos \beta sin \alpha sin \beta$
- 44. (a) Find the vector and Cartesian equation of the plane passing through the point (0,1,-5) and parallel to the straight lines.

$$\vec{r} = (\hat{i} + 2\hat{j} - 4\hat{k}) + s(2\hat{i} + 3\hat{j} + 6\hat{k}) \text{ and } \vec{r} = (\hat{i} - 3\hat{j} + 5\hat{k}) + t(\hat{i} + \hat{j} - \hat{k})$$

(OR)

(b) Evaluate : $\int_{-1}^{\pi} \frac{\cos^2 x}{1+a^x} dx$

45. (a) Application, approaching an orthogonal intersection from the northern direction, is chasing a speeding car that has turned and moving straight east. When the jeep is 0.6 km north of the intersection and the car is 0.8 km to the east, the police determine with a radar that the distance between the jeep and the car is increasing at 20 km/hr. If the jeep is moving at 60 km/hr at the instant of measurement, what is the speed of the car?

(OR)

- (b) Find the area of the region bounded by x-axis, the curve $y=|\cos x|$, the lines x=0 and $x=\pi$.
- 46. (a) A square shaped thin material with area 1% sq. Units to make into an open box by cutting small equal squares from the four corners and folding the sides upward. Prove that the length of the side of a removed square is $\frac{7}{3}$ when the volume of the box is maximum.
 - (b) If F is the constant force generated by the motor of an automobile of mass M, its velocity V is given by $M \frac{dV}{dt} = F kV$, where k is a constant.

Prove that $V = \frac{F}{k} \left(1 - e^{\frac{-kt'}{M}} \right)$ When t=0 and V=0.

47. (a) In an investigation, a corpse was found by a detective at exactly 8 p.m. Being alert, the detective also measured the body temperature and found it to be 70°F. Two hours later, the detective measured the body temperature again and found it to be 60°F. If the room temperature is 50°F, and assuming that the body temperature of the person before death was 98.6°F, prove that the time of death is

5.26 p.m (5 hrs, 26 minutes) (app.). $\left[\frac{\log 243}{\log (2)}1.28\right]$ (or)

(b) Three fair coins are tossed once. Find the probability mass function, mean and variance for number of heads occurred. Verify the results by binomial distribution.
