Tsi12M

Tenkasi District

03-02-25

Standard 12 **MATHEMATICS**

Marks: 90

Time: 3.00 Hours

Part - I

Note:

All questions are compulsory.

20x1 = 20

- ii) Choose the correct or most suitable answer from the given four alternatives. Write the option code and the corresponding answer.
- 1) If A is a 3 \times 3 matrix such that |3 adj A| = 3 then |A| is equal to

a)
$$\frac{1}{3}$$

b)
$$\frac{-1}{3}$$

c)
$$\pm \frac{1}{3}$$

d) ±3

2) If
$$A = \begin{bmatrix} 1 & \tan \frac{\theta}{2} \\ -\tan \frac{\theta}{2} & 1 \end{bmatrix}$$
 and $AB = I_2$, then $B = I_2$

a)
$$\left(\cos^2\frac{\theta}{2}\right)A$$

a)
$$\left(\cos^2\frac{\theta}{2}\right)A$$
 b) $\left(\cos^2\frac{\theta}{2}\right)A^{\mathsf{T}}$ c) $\left(\cos^2\theta\right)I$ d) $\left(\sin^2\frac{\theta}{2}\right)A$

c)
$$(\cos^2 \theta)I$$

$$\int \sin^2\frac{\theta}{2}A$$

3) If
$$\left|z - \frac{3}{2}\right| = 2$$
, then the least value of $|z|$ is

d) 5

4) If
$$\alpha$$
 and β are the roots of $x^2+x+1=0$, then $\alpha^{2020}+\beta^{2020}$ is

- b) -1

b) 4

c) 4i

d) 2

d) -4

- 5) A zero of x^3+64 is
- 6) The polynomial x^3-kx^2+9x has three real zeros if and only if, k satisfies, b) k = 0
 - c) |k|>6
- d) | k |≥ 6

7) If
$$\cot^{-1} x = \frac{2\pi}{5}$$
 for some $x \in \mathbb{R}$, then value of $\tan^{-1} x$ is

- b) $\frac{\pi}{5}$
- c) $\frac{\pi}{10}$

- 8) The vertex of the parabola x²=8y-1 is
 - a) $\left(-\frac{1}{8}, 0\right)$ b) $\left(\frac{1}{8}, 0\right)$ c) $\left(-6, \frac{9}{2}\right)$
- d) $\left(\frac{9}{2}, -6\right)$

9) The eccentricity of the ellipse
$$(x-3)^2 + (y-4)^2 = \frac{y^2}{9}$$
 is

- b) $\frac{1}{3}$
- c) $\frac{1}{3\sqrt{2}}$
- d) $\frac{1}{\sqrt{3}}$

10) If the direction cosines of a line
$$\frac{1}{c}$$
, $\frac{1}{c}$, $\frac{1}{c}$, then

- b) $c = +\sqrt{3}$ c) c > 0
- d) 0<c<1

11) If
$$\vec{a}, \vec{b}, \vec{c}$$
 are three non-coplanar vectors such that $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{\vec{b} + \vec{c}}{\sqrt{2}}$, then the angle between \vec{a} and \vec{b} is

- a) $\frac{\pi}{2}$
- b) $\frac{3\pi}{4}$
- c) $\frac{\pi}{4}$
- d) π

Tsi12M

12) The value of
$$\int_{-\pi/2}^{\pi/2} \sin^2 x + \cos x \, dx$$
 is

- d) 0

13) The maximum value of the functions. x^2e^{-2x} , x > 0 is

14) If $u(x, y) = x^2 + 3xy + y - 2019$, then $\frac{\partial u}{\partial x}\Big|_{(4, -5)}$ is

15) The intergrating factor of the differential equation $\frac{dy}{dx} + y =$

- b) $\frac{e^{x}}{x}$

16) The order and degree of the differential equation $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^{\frac{1}{3}} + x^{\frac{1}{4}} = 0$ are respectively

- a) 2, 3
- b) 3, 3
- c) 2, 6

17) Subtraction is not a binary operation in

- d) Q

18) If $a * b = \sqrt{a^2 + b^2}$ on the real number then * is

- a) commutative but not associative
- c) both commutative and associative
 - b) associative but not commutative d) neither commutative nor associative

19) If $f(x) = \begin{cases} 2x, & 0 \le x \le a \\ 0 & \text{otherwise}, \text{ is a probability density function of a random variable,} \end{cases}$ then the value of a is a) 1 b) 2 c) 3

20) A random variable X has binomial distribution with n = 25 and P = 0.8 then standard deviation of X is

- a) 6
- b) 4
- c) 3
- d) 2

Note:

- Part II i) Answer any 7 questions.
- ii) Q.No. 30 is compulsory.

7x2 = 14

21) If $adj(A) = \begin{bmatrix} 0 & -2 & 0 \\ 6 & 2 & -6 \\ -3 & 0 & 6 \end{bmatrix}$, find A^{-1}

SIVAKUMAR.M., Soi Rom Matric 1438 Vallam-627809

22) If |z| = 2, show that $3 \le |z + 3 + 4i| \le 7$

- 23) Solve the equation: $x^4-14x^2+45=0$
- 24) For what value of x does $\sin x = \sin^{-1}x$?
- 25) Find the equations of tangent to the parabola $x^2+6x+4y+5=0$ at (1, -3)
- 26) Find the vector and Cartesian equations of the plane passing through the point with position. Vector $2\vec{i} + 6\vec{j} + 3\vec{k}$ and normal to the vector $\vec{i} + 3\vec{j} + 5\vec{k}$

27) Evaluate:
$$\lim_{x\to 0} \left(\frac{1}{\sin x} - \frac{1}{x} \right)$$
.

- 28) Show that $F(x, y) = \frac{x^2 + 5xy 10y^2}{3x + 7y}$ is a homogeneous function of degree 1
- 29) Show that $x^2+y^2=r^2$, where r is a constant, is a solution of the differential equation $\frac{dy}{dx} = \frac{-x}{y}$
- 30) Let $m = \left\{ \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} : a \in R \{0\} \right\}$ and let * be the matrix multiplication. Determine whether m is closed under *. If so, examine the existence of identity, existence of inverse properties for the operation * on m .

Part - III

Note: i) Answer any 7 questions.

7x3 = 21

- ii) Q.No. 40 is compulsory.
- 31) In a competitive examination, one mark is awarded for every correct answer white $\frac{1}{4}$ mark is deducted for every wrong answer. A student answered 100 questions and got 80 marks. How many questions did he answer correctly? (Use Cramer's rule to solve the problem)
- 32) If z=x+iy is a complex number such that $\left|\frac{z-4i}{z+4i}\right|=1$ show that the locus of z is real axis
- 33) If p and q are the roots of the equation $1x^2 + nx + n = 0$, show that $\sqrt{\frac{p}{a}} + \sqrt{\frac{q}{p}} + \sqrt{\frac{n}{l}} = 0$
- 34) Find the vertices, foci for the hyperbola $4x^2-36y^2=144$.
- 35) Find the magnitude and the direction cosines of the torque about the point (2, 0, -1) of a force $2\vec{i} + \vec{j} \vec{k}$, whose line of action passes through the origin.
- 36) Show that $p \rightarrow q$ and $q \rightarrow p$ are not equivalent.
- 37) Find the volume of a sphere of radius a.
- 38) Assume that a spherical rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop
- 39) The mean and standard deviation of a binomial variatex are respectively 6 and 2. Find (i) The probability mass function (ii) $P(x \ge 2)$
- 40) If $\cot^{-1}\left(\frac{1}{7}\right) = \theta$, find the value of $\cos \theta$

Part - IV

Answer all the questions.

7x5=35

- 41) a) By using Gaussian elimination method, balance the chemical equation: $C_2H_6HO_2\rightarrow H_2O+CO_2 \eqno(OR)$
 - b) A hollow cone with base radius a cm and height b cm is placed on a table. Show that the volume of the largest cylinder that can be hidden underneath is $\frac{4}{9}$ times volume of the cone.

Tsi12M

4

42) a) If
$$z = x + iy$$
 and $arg\left(\frac{z - i}{z + 2}\right) = \frac{\pi}{4}$, show that $x^2 + y^2 + 3x - 3y + 2 = 0$
(OR)

b) If
$$u = \sec\left(\frac{x^3 - y^3}{x + y}\right)$$
 prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2 \cot u$

- 43) a) Find the area of the region bounded between the curves $y = \sin x$ and $y = \cos x$ and the lines x = 0 and $x = \pi$
 - (OR) b) Solve the following equation. $x^4-10x^3+26x^2-10x+1=0$
- 44) a) Prove that $tan |sin^{-1}x| = \frac{x}{\sqrt{1-x^2}}, -1 < x < 1.$
 - b) Suppose a person deposits ₹10,000 in a bank account at the rate of 5% per annum compounded continuously. How much money will be in his bank account 18 months later?
- 45) a) A retailer purchases a certain kind of electronic device from a manufacturer. The manufacturer indicates that the defective rate of the device is 5%. The inspector of the retailer randomly picks 10 items from a shipment. What is the probability that there will be (i) at least one defective item (ii) exactly two decfective items?

(OR)

- b) Find the equation of the circle passing through the points (1,1) (2,-1) and (3,2)
- 46) a) A rod of length 1.2m moves with its ends always touching the coordinate axes. The locus of a point P on the rod, which is 0.3m from the end in contact with x-axis is an ellipse. Find the eccentricity.

(OR)

b) Find the point of intersection of the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and x-4 y-1

$$\frac{\mathsf{x}-4}{5} = \frac{\mathsf{y}-1}{2} = \mathsf{z}$$

47) a) Let A be Q\{1}. Define * on A by x * y = x + y- xy. If * binary on A? If so, examine (i) commutative properties (ii) associative properties (iii) existence of identity (iv) existence of inverse properties for the operation * on A

(OR)

b) Prove by vector method that the perpendicular from the vertices to the opposite sides of a triangle are concurrent.