| Class | : | 12 |
|-------|---|----|
|       | - |    |

| Register | T |
|----------|---|
| Number   |   |

## FIRST REVISION EXAMINATION, JANUARY - 2025

| Time Allowed: 3.00 Hours]                      |                                                                                                                                                                           | urs]                      | CHEMISTRY  |                          |             |                                         | (Max. Marks: 70 |                                                 |             |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------|--------------------------|-------------|-----------------------------------------|-----------------|-------------------------------------------------|-------------|
| PART – I                                       |                                                                                                                                                                           |                           |            |                          |             |                                         |                 |                                                 |             |
| NO                                             | TE:                                                                                                                                                                       | Answer all t              | he quest   | ions.                    |             |                                         |                 |                                                 | 15x1=15     |
| 1.                                             |                                                                                                                                                                           |                           |            | from tinstone b          | y the pro   | ocess of                                |                 |                                                 |             |
|                                                | a)                                                                                                                                                                        | Smelting                  | b)         | Calcination              | . c)        | Roasting                                | d) Electron     | agnetic s                                       | eparation   |
| 2.                                             | The                                                                                                                                                                       | e element that            | does not   | show catenation          | among       | the following                           | p-block ele     | ments is                                        |             |
|                                                |                                                                                                                                                                           | Carbon                    |            | silicon                  |             | Lead                                    |                 | germaniun                                       | n,          |
| 3.                                             | Wh                                                                                                                                                                        | ich of the follow         | wing is we | akest acid amo           | ng all?     |                                         | - 10 M          | ×                                               |             |
|                                                | a)                                                                                                                                                                        | Hı                        | b)         |                          | c)          | HBr                                     | d) l            | HCI                                             |             |
| 4.                                             | Pe                                                                                                                                                                        | manganate ion             | changes    | to in acidic me          | dium        |                                         |                 | /)                                              |             |
|                                                | a)                                                                                                                                                                        | MnO <sub>4</sub> 2-       |            | Mn <sup>2+</sup>         |             | Mn³+                                    | d) I            | MnO,                                            |             |
| 5.                                             | Αn                                                                                                                                                                        | nagnetic mome             | nt of 3.87 | BM will be show          | wn by on    | e among the                             | following       | -                                               |             |
|                                                | a)                                                                                                                                                                        |                           | b)         | [Co(CI) <sub>e</sub> ]4- |             | [Cu(NH,)]2+                             |                 | Ni(CN),]2-                                      |             |
| 6.                                             | Ass                                                                                                                                                                       | sertion: due to           | Frenkel    |                          |             |                                         |                 |                                                 |             |
|                                                | <ol> <li>Assertion: due to Frenkel defect, density of the crystalline solid decreases.</li> <li>Reason: in Frenkel defect cation and anion leaves the crystal.</li> </ol> |                           |            |                          |             |                                         |                 |                                                 |             |
|                                                | a)                                                                                                                                                                        |                           |            | ason are true ar         |             |                                         | ct explanati    | on of ass                                       | ertion.     |
| 40                                             | b)                                                                                                                                                                        |                           |            | ason are true bu         |             |                                         |                 |                                                 |             |
|                                                | c)                                                                                                                                                                        |                           |            | ason is false            |             | Both asserti                            |                 |                                                 |             |
| 7.                                             | The                                                                                                                                                                       | addition of a             | catalyst d | uring a chemica          | al reaction | n alters which                          | of the follo    | wing qua                                        | ntities?    |
|                                                |                                                                                                                                                                           | Enthalpy                  |            | Activation ene           |             |                                         |                 | nternal en                                      |             |
| 8.                                             | H,F                                                                                                                                                                       | O <sub>4</sub> the conjug |            |                          |             |                                         |                 |                                                 |             |
|                                                |                                                                                                                                                                           | PO,3-                     |            | P,O,                     | c)          | H,PO,                                   | d) H            | 1PO, 2-                                         |             |
| 9.                                             | Zin                                                                                                                                                                       | c can be coate            | ed on iro  | n to produce ga          | alvanized   | iron but the                            | reverse is      | not poss                                        | ible. It Is |
|                                                |                                                                                                                                                                           | ause                      |            |                          |             |                                         |                 | 1.5                                             |             |
| 5                                              | a)                                                                                                                                                                        | Zinc is lighter           | than iron  |                          | b)          | Zinc has low                            | er melting      | point than                                      | iron        |
|                                                | C)                                                                                                                                                                        | Zinc has lowe             | er negativ | e electrode pote         | ential tha  | n iron                                  |                 |                                                 |             |
|                                                | d)                                                                                                                                                                        | Zinc has high             | er negati  | ve electrode pot         | tential the | an iron                                 |                 | 3                                               |             |
| 10.                                            | collo                                                                                                                                                                     | idal gold is              |            |                          |             |                                         |                 |                                                 | 546         |
|                                                | a)                                                                                                                                                                        | gel                       | b)         | emulsion                 | c)          | solid sol                               | , d) s          | ol                                              |             |
| 11.                                            | Pic                                                                                                                                                                       | ic acid is                |            |                          | ×           | 1                                       |                 |                                                 |             |
|                                                | a)                                                                                                                                                                        | Phenol                    | b)         | 2,4,6 tri nitro p        | henol       | c) benzoic a                            | cid d) p        | henylace                                        | ic acid     |
| 12.                                            | Wh                                                                                                                                                                        | ich one of the t          | following  | reduces tollens          | reagenţ     |                                         |                 |                                                 |             |
|                                                | a)                                                                                                                                                                        | methanoic ac              | cid b)     | methanal                 | c)          | ethanal                                 | d) a            | III the abo                                     | ve          |
| 13.                                            | C.H                                                                                                                                                                       | NO, Fe/H                  | cl , A     | NaNO <sub>2</sub> /Hcl   | В           |                                         | •               | 111111111111111111111111111111111111111         | 1, 1        |
|                                                | 6                                                                                                                                                                         | 5 2                       | → ^        | 273K                     | Ь           |                                         |                 |                                                 |             |
|                                                | a) C,                                                                                                                                                                     | H <sub>s</sub> - OH       | b)         | C.H CH, OH               | c)          | C <sub>s</sub> H <sub>s</sub> -CHO      | d) (            | C <sub>6</sub> H <sub>6</sub> N <sub>2</sub> CI |             |
| 14.                                            | The                                                                                                                                                                       | number of sp2             |            | hybridised carbo         |             |                                         | pectively       | 6 5 2                                           | 0 0 0       |
|                                                | a)                                                                                                                                                                        |                           | b)         | 4 and 2                  |             | 5 and 1                                 | 70              | and 5                                           |             |
| 15.                                            | Nor                                                                                                                                                                       | stick cook war            | es gener   | ally have a coat         |             |                                         |                 |                                                 |             |
|                                                | a)                                                                                                                                                                        | ethane                    |            |                          |             | prop-2-enen                             |                 |                                                 | 1 ATT 1     |
|                                                | c)                                                                                                                                                                        | chloroethene              | 47 61      |                          |             | 1,1,2,2-tetra                           |                 | 16                                              |             |
|                                                | •                                                                                                                                                                         |                           |            | PΔ                       | RT - II     | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | aurocuiai       |                                                 |             |
| Notes Anouse and Observations Overthank to Car |                                                                                                                                                                           |                           |            |                          |             |                                         |                 |                                                 |             |
| 40                                             | •                                                                                                                                                                         | any ola                   | 420000     |                          |             | Joinpuisory.                            |                 | •                                               | 6X2=12      |

Give the uses of Boric acid.

17. Why fluorine is more reactive than other halogens?

KK/J/12/Che/1

- 18. What are interstitial compounds?
- 19. Why ionic crystals are hard and brittle?
- 20. Define solubility product.
- 21. Write a note on acylation of anisole.
- 22. Aniline does not undergo Friedel Crafts reaction why?
- 23. Classify the following into monosaccharides, oligosaccharides and polysaccharides.
  - i) Starch
- ii) fructose
- iii) cellulose
- iv) lactose
- v)Galactose
- 24. Calculate the standard emf of the cell: Cd/Cd²\* // Cu²\*/Cu and determine the cell reaction. The standard reduction potentials of Cu²\*/Cu and Cd/Cd²\* are 0.34V and 0.40 volts respectively. Predict the feasibility of the cell reaction.

## PART - III

Note: Answer any Six questions. Questions No.33 is compulsory.

6x3=18

- Explain the following terms with suitable examples.
  - i) Gangue
- ii) Slag
- 26. a) Mg + dil HNO, → ?
  - b) Cu + conc.H₂SO₄→?
  - c) MnO₂ + Conc. HCl → ?
- 27. Transition metals show high melting points why?
- 28. Explain pseudo first order reaction with an example.
- 29. State Faraday's laws of electrolysis.
- 30. Write a note on electro osmosis.
- 31. How is carbolic acid prepared from chloro benzene.
- 32. Give short notes on Gabriel phthalimide synthesis?

33. Identify A,B, and C



PART - IV

Note: Answer All the questions.

5X5=25

- 34. a) i) Explain froth floatation method.
  - ii) What is silicate?
- (OR)
- b) i) What is known as Holme's signal?
  - ii) Which strong reducing agent Cr2+ or Fe2+
- 35. a) A Solution of [Ni (H<sub>2</sub>O)<sub>6</sub>]<sup>2</sup> is green, where as a solution of [Ni (CN)<sub>4</sub>]<sup>2</sup> is colorless explain.

  (OR)
  - b) Differentiate crystalline solids and amorphous solids.
- 36. a) i) Calculate the PH of 0.04 M HNO,
  - ii) Give the characteristics of catalysis. (OR)
  - Describe the construction of Daniel cell. Write the cell reaction.
- 37. a) i) How will you convert ethane-1,2 -diol to methanal.
  - ii) write short notes on saponification reaction. (OR)
  - b) How will you prepare
    - i. Acetic anhydride from acetic acid
- ii. Cinnamic acid from benzaldehyde
- iii. Acetaldehyde from ethyne
- 38. a) What are the functions of lipids in living organism? (OR
  - b) i) How is nylon 6,6 prepared? Mention its uses.
    - ii) How is neoprene prepared? Mention its uses.

KK/M. 12/Che/2